What is the optimal level of vitamin D in non-dialysis chronic kidney disease population?

Pablo Molina, José L Górriz, Mariola D Molina, Sandra Beltrán, Belén Vizcaíno, Verónica Escudero, Julia Kanter, Ana I Ávila, Jordi Bover, Elvira Fernández, Javier Nieto, Secundino Cigarrán, Enrique Gruss, Gema Fernández-Juárez, Alberto Martínez-Castelao, Juan F Navarro-González, Ramón Romero, Luis M Pallardó

drafted the manuscript, designed the research and supervised the study; Molina P and Molina MD performed statistical analysis; Beltrán S, Vizcaíno B, Escudero V, Kanter J, Ávila AL, Bover J, Fernández E, Nieto J, Cigarrán S, Gruss E, Fernández-Juárez G, Martínez-Castelao A and Navarro-González JF were involved with data collection, and assisted with data analysis; all authors read and approved the final manuscript.

Supported by Abbott and the Spanish Society of Nephrology.

Institutional review board statement: The study was reviewed and approved by the Dr Peset Hospital Research Ethics Committee.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: Molina P, Górriz JL and Martínez-Castelao A have received honoraria for giving lectures and for consulting on advisory boards for Abbott. The others authors declare no conflict of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Pablo Molina, MD, PhD, Department of Nephrology, Dr Peset University Hospital, Avda. Gaspar Aguilar, 90, 46017 Valencia, Spain. molina_pab@gva.es
Abstract

AIM
To evaluate thresholds for serum 25(OH)D concentrations in relation to death, kidney progression and hospitalization in non-dialysis chronic kidney disease (CKD) population.

METHODS
Four hundred and seventy non-dialysis 3-5 stage CKD patients participating in OSERCE-2 study, a prospective, multicenter, cohort study, were prospectively evaluated and categorized into 3 groups according to 25(OH)D levels at enrollment (less than 20 ng/mL, between 20 and 29 ng/mL, and at or above 30 ng/mL), considering 25(OH)D between 20 and 29 ng/mL as reference group. Association between 25(OH)D levels and death (primary outcome), and time to first hospitalization and renal progression (secondary outcomes) over a 3-year follow-up, were assessed by Kaplan-Meier survival curves and Cox-proportional hazard models. To identify 25(OH)D levels at highest risk for outcomes, receiver operating characteristic (ROC) curves were performed.

RESULTS
Over 29 ± 12 mo of follow-up, 46 (10%) patients dead, 156 (33%) showed kidney progression, and 126 (27%) were hospitalized. After multivariate adjustment, 25(OH)D < 20 ng/mL was an independent predictor of all-cause mortality (HR = 2.33; 95%CI: 1.10-4.91; P = 0.027) and kidney progression (HR = 2.46; 95%CI: 1.63-3.71; P < 0.001), whereas the group with 25(OH)D at or above 30 ng/mL did not have a different hazard for outcomes from the reference group. Hospitalization outcomes were predicted by 25(OH)D levels (HR = 0.98; 95%CI: 0.96-1.00; P = 0.027) in the unadjusted Cox proportional hazards model, but not after multivariate adjusting. ROC curves identified 25(OH)D levels at highest risk for death, kidney progression, and hospitalization, at 17.4 ng/mL [area under the curve (AUC) = 0.60; 95%CI: 0.52-0.69; P = 0.027], 18.6 ng/mL (AUC = 0.65; 95%CI: 0.60-0.71; P < 0.001), and 19.0 ng/mL (AUC = 0.56; 95%CI: 0.50-0.62; P = 0.048), respectively.

CONCLUSION
25(OH)D < 20 ng/mL was an independent predictor of death and progression in patients with stage 3-5 CKD, with no additional benefits when patients reached the levels at or above 30 ng/mL suggested as optimal by CKD guidelines.

Key words: Vitamin D; Chronic kidney disease; Mortality; Renal progression; Hospitalization

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study examines the prognosis value of 25(OH)D levels on death, chronic kidney disease (CKD) progression, and hospitalization in a cohort of 3-5 stage CKD subjects not on dialysis. The main findings were the predictor value of vitamin D deficiency (< 20 ng/mL), but not insufficiency (< 30 ng/mL), for the 3-year incidence of death and CKD progression, which remained significant after multivariate adjustments. These results could highlight the need for a revision of the current guidelines, which have defined optimal vitamin D status at ≥ 30 ng/mL based on levels required to suppress parathyroid hormone, as opposed to our study, which evaluates thresholds for serum 25(OH)D concentrations in relation to “hard” endpoints.

INTRODUCTION
There is a high prevalence of vitamin D (VD) deficiency in all stages of chronic kidney disease (CKD)1-5. Observational studies in this population have shown that VD levels correlated with cardiovascular disease and markers of renal injury, including albuminuria6, renal progression4-6, vascular calcification8,10, left ventricular hypertrophy9 and mortality8,11-13. Moreover, growing evidence supports a potential role for VD receptor activation in suppressing the renin-angiotensin system, reducing proteinuria and ameliorating kidney dysfunction14-16, showing 25-hydroxyvitamin D [25(OH)D] as an attractive, cheap and feasible treatment target17. As a result of these findings, current guidelines have suggested VD supplementation in CKD patients18-21, increasing VD supplementation rates among this population22.

Nevertheless, these recommendations are opinion based and the optimal VD levels as well as the upper safe limit of VD intakes remains controversial23,24. Based on the inverse relationship between serum concentrations of 25(OH)D and parathyroid hormone (PTH), most current guidelines have defined VD deficiency and insufficiency, as a serum 25(OH)D level of < 20 ng/mL (50 nmol/L) and 20-29 ng/mL (52-72 nmol/L) respectively18,19, suggesting a serum concentration of 25(OH)D above 30-40 ng/mL...
(75-100 nmol/L) to be desirable, levels at which PTH is suppressed to a minimum in its relation to 25(OH)D.[25,26]. By contrast, the Institute of Medicine advocates VD repletion as a level of 20 ng/ml.[27] Determining the 25(OH)D target level for optimal health is especially important in CKD population, where overuse of VD leads to hypercalcemia, hypercalciuria and hyperphosphatemia, which could predispose to vascular calcification, nephrolithiasis and reduced glomerular filtration rate.[28-30]. All these data suggest an optimal level of VD exists that is neither too high nor too low.[31].

Aware of the lack of evidence behind guidelines recommendations, and our concerns about VD over-supplementation, encouraged us to investigate the optimal VD status in non-dialysis CKD patients. The aim of our study was to evaluate thresholds for serum 25(OH)D concentrations in relation to hard end-points such as death, kidney progression and hospitalization in this population.

MATERIALS AND METHODS

Study design and patient selection
OSERCE-2 was a 3-year follow-up prospective, observational study which enrolled 742 adults with 3 to 5-stage CKD not on dialysis subjects attending 39 centres in Spain, to evaluate the effects of vascular calcifications and CKD-mineral bone disorders on mortality, hospitalization and kidney progression.[32]. Inclusion criteria were age ≥ 18 years and CKD Stages 3-5. Exclusion criteria were acute kidney injury, transplantation, hospitalization in the month previous to the enrollment, and severe comorbidity. In this post-hoc analysis of the OSERCE-2 study, patients on current treatment with active VD (calcitriol, α-calcidiol or paricalcitol) were also excluded, so 25(OH)D levels reflected the effect of the exposure to VD.

The study was reviewed and approved by the Dr Peset Hospital Research Ethics Committee. All study participants provided informed written consent prior to study enrollment.

Study protocol and baseline data

The study protocol of the OSERCE-2 study has been previously reported.[33] All patients were assessed at baseline for blood pressure measurement, lateral lumbar, pelvis and hands X-ray, an ankle brachial pressure index (ABPI) determination and laboratory blood sampling. All blood samples were analyzed in a central laboratory, including 25(OH)D, 1,25(OH)2 vitamin D, creatinine, calcium, phosphorus, intact PTH, albumin, and high-sensitivity C-reactive protein. 25(OH)D levels were assessed by radioimmunoassay (Biosource), which were transformed to the usual method of reference (DiaSorin Liaison chemiluminescent radioimmunoassay) for improving the comparability of the results, as previously described.[32]. To study the renal progression, blood samples for determination of serum creatinine levels were obtained every 12 mo. Estimated glomerular filtration rate (eGFR) was calculated using the modification of diet in renal disease (MDRD) formula.[33].

Outcomes

Deaths episodes (primary outcome), time to first hospital admission and the appearance of a combined renal end-point, defined as a drop ≥ 30% in eGFR, or beginning of renal replacement therapy (secondary outcomes), were prospectively gathered over a 3-year period.[32].

Statistics analysis

Summary statistics were reported as frequencies or percentages, and as mean ± SD, for categorical and quantitative variables, respectively. Skewed quantitative variables were expressed as geometric mean (95%CI), after log transformation. Presence or absence of prominent calcification for Adragao (AS) and Kaupilla scores (KS) was reported as AS ≥ 3 and KS > 6, respectively.

Patients were classified further into 3 groups by 25(OH)D level: < 20 ng/mL (deficiency), 20-29 ng/mL (insufficiency) and ≥ 30 ng/mL. Comparison of baseline characteristics in these 3 groups was assessed using one-way analysis of variance (ANOVA) for continuous variables, and χ2 test for trend, for categorical variables. Analysis of variables independently related to 25(OH)D levels was assessed by linear regression model. To assess the relationship between the odds of VD deficiency and clinical and laboratory baseline characteristics, a stepwise binary logistic regression was performed between 25(OH)D level < 20 or ≥ 20 ng/mL as dependent variables. PTH and 1,25(OH)D levels were considered as posterior variables to 25(OH)D levels and then they were not introduced in the models, to avoid an overadjustment bias. Twenty-four hours urine proteinuria was not included either because it was available in only 50% of the patients.

Kaplan-Meier analysis and log-rank tests were used to estimate the effects of VD status on all-cause mortality, appearance of the composite renal end-point, and hospitalizations. We then used univariate and multivariate Cox proportional hazard regression models to determine the association of VD levels with various pre-specified outcomes. Patients with 25(OH)D levels between 20 to 29 ng/mL were considered as reference group. Covariates significantly associated in the univariate analysis were entered (forward selection: Likelihood ratio) into the models. The relatively small number of deaths limited the list of adjustment variables that were included in the regression analyses. To identify VD levels at highest risk for outcomes, we performed a receiver operating characteristic (ROC) curve. The value associated with the highest accuracy was considered as the cut-off point for defining an increased risk of death, appearance of the composite renal endpoint, and hospitalization.
The literature indicates that annual mortality in patients with stage 3 to 5 CKD (not on dialysis), is between 3% and 9%. Previous studies have shown a 35% prevalence of VD deficiency in this population\(^3\). Compared with the group with VD deficiency, the group with VD insufficiency shows a 57% decrease in mortality\(^3\). With 470 patients included, a minimum follow-up of three years, and considering an error of alfa = 0.05, the power estimation of the study is 0.754. The statistical methods of this study were reviewed by MD Molina, from the Department of Mathematics, Universidad de Alicante, Spain, who was included as a co-author. All data analyses were conducted using SPSS, version 15.0 (SPSS Inc., Chicago, IL). A \(P\)-value < 0.05 was considered statistically significant.

RESULTS

Baseline data

From the 742 subjects enrolled at OSERCE-2 Study, 252 were excluded and 20 were lost to follow-up, leaving 470 patients in the final analysis (Figure 1). Tables 1 and 2 show the patient characteristics and laboratory values, respectively, as a function of vitamin D status. According to 25(OH)D levels, the proportion of patients with deficiency or insufficiency was 53% and 33%, respectively. At baseline, the proportion of patients with 5-stage CKD, diabetes mellitus, diabetic nephropathy and chronic heart failure was higher in the group with less 25(OH)D levels. ABPI, eGFR, PTH, 1,25(OH)\(_2\) vitamin D and albumin levels were increased in groups with better VD status, which showed lower degree of proteinuria. The group with 25(OH)D less than 20 ng/mL was prescribed more frequently treatment with diuretics and erythropoietin-stimulating agents, with a lower proportion of patients under native VD treatment.

Relationship between 25(OH)D levels and baseline characteristics

Linear correlation analysis showed significant correlation between 25(OH)D levels and eGFR (\(R = 0.10; P = 0.027\)), body mass index (\(R = 0.10; P = 0.046\)), serum levels of albumin (\(R = 0.10; P = 0.027\)), calcium (\(R = 0.12; P = 0.013\)), 1,25(OH)\(_2\) vitamin D (\(R = 0.20; P < 0.001\)), PTH (\(R = -0.26; P < 0.001\)), and hemoglobin (\(R = 0.13; P = 0.005\)), proteinuria (log transformed, \(R = -0.19; P = 0.004\)) and ABPI (\(R = 0.15; P = 0.002\)). Multivariate binary logistic regression analysis showed as independent predictors of 25(OH)D < 20 ng/mL the albumin levels (OR = 0.61; 95%CI: 0.40-0.92; \(P = 0.018\)), the ABPI (OR = 0.28; 95%CI: 0.11-0.73; \(P = 0.010\)), and treatment with native VD (OR = 0.35; 95%CI: 0.17-0.73; \(P = 0.005\)), and diuretics (OR = 2.03; 95%CI: 1.35-3.06; \(P = 0.001\)).

Mortality

Forty-six (10%) patients died after a mean follow-up of 29 ± 12 mo. Cardiovascular disease (\(n = 16, 35\%\)) and infections (\(n = 8, 17\%\)) were the most common causes of death. Tumors and others accounted for 11% (\(n = 5\)) and 13% (\(n = 6\)) of deaths, respectively. In 11 cases (24%) the cause of death was not identified. The Kaplan-Meier survival analysis (Figure 2A) suggested that patients with 25(OH)D less than 20 ng/mL had significantly higher mortality than the other two groups (log rank test, \(P = 0.031\)). Univariate Cox regression found a more than twice higher risk of death in the group with 25(OH)D level less than 20 ng/mL compared with the reference group (HR = 2.47; 95%CI: 1.18-5.18; \(P = 0.017\)), whereas the group with 25(OH)D at or above 30 ng/mL was not significantly different from that with the 25(OH)D between 20 to 29 ng/mL (HR = 0.78; 95%CI: 0.26-2.32; \(P = 0.650\)). Multivariate analysis.
During the follow-up, 81 (17%) patients started renal replacement therapy and 156 (33%) patients showed the composite renal end-point. Kaplan-Meier analysis (Figure 2B) showed that the 25(OH)D < 20 group had significantly more risk than the other two groups (log rank test, $P < 0.001$). Univariate Cox regression found again higher risk of the renal end-point with 25(OH)D level less than 20 ng/mL compared with 20 to 29 ng/mL (HR = 2.78; 95%CI: 1.84-4.16; $P < 0.001$), whereas the group with 25(OH)D above 30 ng/mL did not show different risk from reference group (HR = 1.13; 95%CI: 0.59-2.13; $P = 0.717$). Multivariate analysis showed the predictive value of VD levels as a continuous variable for preventing appearance of renal end point when adjusted for multiple covariates (Table 4). Adjusted for viscosity showed the predictive value of 25(OH)D levels as a continuous variable for preventing death when adjusted for multiple covariates in different models (Table 3). Adjusted for age, comorbidity, diabetes mellitus, eGFR and phosphorous and albumin levels, the HR for all-cause mortality for 25(OH)D < 20 was 2.33 (95%CI: 1.10-4.91; $P = 0.027$; Figure 3). The 25(OH)D ≥ 30 group did not have a significantly different mortality hazard from the reference group (HR = 1.19; 95%CI: 0.37-3.81; $P = 0.775$).

Progression of CKD and renal replacement therapy initiation

During the follow-up, 81 (17%) patients started renal replacement therapy and 156 (33%) patients showed the composite renal end-point. Kaplan-Meier analysis (Figure 2B) showed that the 25(OH)D < 20 group had significantly more risk than the other two groups (log rank test, $P < 0.001$). Univariate Cox regression found again higher risk of the renal end-point with 25(OH)D level less than 20 ng/mL compared with 20 to 29 ng/mL (HR = 2.78; 95%CI: 1.84-4.16; $P < 0.001$), whereas the group with 25(OH)D above 30 ng/mL did not show different risk from reference group (HR = 1.13; 95%CI: 0.59-2.13; $P = 0.717$). Multivariate analysis showed the predictive value of VD levels as a continuous variable for preventing appearance of renal end point when adjusted for multiple covariates (Table 4). Adjusted for

<table>
<thead>
<tr>
<th>n</th>
<th>25(OH)D < 20 ng/mL</th>
<th>25(OH)D 20-29 ng/mL</th>
<th>25(OH)D ≥ 30 ng/mL</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>252 (53%)</td>
<td>154 (33%)</td>
<td>64 (14%)</td>
<td>0.421</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>66.1 ± 12.9</td>
<td>65.8 ± 13.1</td>
<td>65.9 ± 11.9</td>
<td>68.1 ± 12.1</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>309 (66%)</td>
<td>162 (64%)</td>
<td>101 (66%)</td>
<td>46 (72%)</td>
</tr>
<tr>
<td>High blood pressure (%)</td>
<td>444 (95%)</td>
<td>242 (96%)</td>
<td>144 (94%)</td>
<td>58 (91%)</td>
</tr>
<tr>
<td>Dyslipidemia (%)</td>
<td>311 (66%)</td>
<td>168 (68%)</td>
<td>101 (66%)</td>
<td>42 (66%)</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>183 (39%)</td>
<td>114 (45%)</td>
<td>53 (34%)</td>
<td>16 (25%)</td>
</tr>
<tr>
<td>Ischemic heart disease (%)</td>
<td>104 (22%)</td>
<td>60 (24%)</td>
<td>33 (22%)</td>
<td>11 (17%)</td>
</tr>
<tr>
<td>Chronic heart failure (%)</td>
<td>43 (9%)</td>
<td>33 (13%)</td>
<td>7 (5%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>Stroke (%)</td>
<td>52 (11%)</td>
<td>15 (10%)</td>
<td>7 (11%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Peripheral arterial disease (%)</td>
<td>93 (20%)</td>
<td>59 (24%)</td>
<td>22 (14%)</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Stage of CKD (%)</td>
<td>221 (47%)</td>
<td>105 (46%)</td>
<td>64 (42%)</td>
<td>26 (41%)</td>
</tr>
<tr>
<td>Etiology of CKD (%)</td>
<td>205 (44%)</td>
<td>105 (46%)</td>
<td>64 (42%)</td>
<td>26 (41%)</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>44 (9%)</td>
<td>34 (13%)</td>
<td>6 (4%)</td>
<td>4 (6%)</td>
</tr>
</tbody>
</table>

1Data available in 439 patients; ≤ 0.9 or > 1.3; > 6 data available in 370 patients; ≥ 3 data available in 383 patients. If not indicated otherwise, results are presented as mean ± SD, or number (percent). ABPI: Ankle-brachial pressure index; ACEI: Angiotensin-converting-enzyme inhibitor; ARB: Angiotensin II receptor blocker; eGFR: Estimated glomerular filtration rate; ESA: Erythropoietin-Stimulating agents; 25(OH)D: 25-hydroxivitamin D.
age, gender, diabetes mellitus, eGFR, and phosphorous levels, the HR for the composite renal end-point for the 25(OH)D < 20 group compared to the reference group was 2.46 (95%CI: 1.63-3.71; \(P < 0.001 \); Figure 4). The 25(OH)D ≥ 30 group did not have a significantly different hazard for kidney progression from the reference group (HR = 1.20; 95%CI: 0.62-2.32; \(P = 0.581 \)).

Hospitalization

During the follow-up, 126 (27%) patients were admitted for hospitalization, cardiovascular (49%) and infections (20%) being the most common causes. Kaplan-Meier analysis (Figure 2C) indicated that crude hospitalization event-free period was different between the VD groups (log rank test, \(P = 0.039 \)). Univariate Cox regression found a shorter hospitalization event-free period in patients with 25(OH)D level less than 20 ng/mL compared with 20–29 ng/mL (HR = 1.58; 95%CI: 1.05-2.36; \(P = 0.027 \)), with no difference between the 25(OH)D ≥ 30 and the reference groups \((P = 0.861 \). Hospitalization outcomes were predicted by 25(OH)D levels (HR = 0.98; 95%CI: 0.96-1.00; \(P = 0.027 \)) in the unadjusted Cox proportional hazards model, but not after adjusting for age, eGFR, diabetes and comorbidity.

Cutoff points to define VD sufficiency based on hard endpoints

ROC curves identified VD levels at highest risk for death,
the composite renal endpoint, and hospitalization, at 17.4 ng/mL [area under the curve (AUC) = 0.60; 95%CI: 0.52-0.69; \(P = 0.027 \)], 18.6 (AUC = 0.65; 95%CI: 0.60-0.71; \(P < 0.001 \)), and 19.0 (AUC = 0.56; 95%CI: 0.50-0.62; \(P = 0.048 \)), respectively.

DISCUSSION

One of the main limitations for the development of evidence-based clinical recommendations for VD supplementation lies in the discrepancies in the criteria...
for defining VD deficiency and insufficiency, which can explain conflicting results from meta-analysis addressing vitamin D levels and outcomes\[24,34\]. These criteria vary among authors and societies, including 25(OH)D levels below which osteomalacia [10 ng/mL (25 nmol/L)] or secondary hyperparathyroidism [20-30 ng/mL (50 to 75 nmol/L)] may appear\[18-20,35,36\]. Being aware of their potential clinical significance, the present study examines the prognosis value of 25(OH)D levels in a cohort of 3-5 stage CKD subjects not on dialysis, trying to identify cut-off points for serum 25(OH)D levels to define VD sufficiency. These cut-offs were not based on biological abnormalities as classically noted\[25,26\], but on VD levels at highest risk for death, CKD progression and all-cause hospitalization.

Although randomized clinical trials are the best way for generating a high evidence for treatment decisions, trials are rare and suboptimal in nephrology\[37\]. Therefore, observational studies have an important role, particularly when the intervention, in this case vitamin D supplementation, is inexpensive and potentially effective. Although there are previous prospective observational studies which examined the prognosis value of 25(OH)D levels in CKD subjects not on dialysis, this is the first one, to our knowledge, in which 25OH(D) levels unequivocally reflect exposure to VD, given that patients on treatment with active VD were excluded, as well as including the biggest cohort of non-dialysis CKD subjects with data regarding emerging cardiovascular risk factors as vascular calcification scores and ABPI.

In the main analysis of the OSERCE-2 study, low VD levels were associated to worse survival and CKD progression only in the univariate analysis\[32\]. However, 26% of patients of the study received activated VD, which may confer a protective effect and therefore may decrease any negative effect of VD levels observed, as it has been stated on dialysis population\[39\]. In this context, we conducted this post-hoc analysis of the OSERCE-2 dataset in patients without active VD treatment. In this selected cohort, the main findings were the independent predictor value of VD deficiency, but not insufficiency, for the 3-year incidence of death and CKD progression, which remained significant after multivariate adjustments, as previously published\[8,12\]. In a prospective study involving 94 CKD patients, those with 25(OH)D levels less than 16.7 ng/mL had a higher mortality rate\[12\]. 25(OH)D was confirmed as an independent inverse predictor of death in a 6-year follow-up study which included 168 CKD subjects\[8\]. In that study patients with \(\geq 15\) ng/mL of 25(OH)D showed a reduction in mortality by 33% to 60% in the different models, compared to patients with 25(OH)D < 15 ng/mL. Less CKD progression to end-stage renal disease was also reported in the groups of patients with better VD status. All these data are in agreement with our results, which show how low 25(OH)D levels predicted mortality and CKD progression independently of such traditional and non-traditional risk factors, as vascular calcification or inflammation. In this context, it is noteworthy that the lack of association between 25(OH)D levels and vascular calcification observed in our study, is in agreement with some\[12\], but not all\[9,10\], previously published data. These findings indicate that 25(OH)D may impact on CKD outcomes by additional mechanisms including the suppression of the renin-angiotensin system, albuminuria reduction or amelioration of left ventricular hypertrophy\[6,9,16,31,39\]. Of note, we have detected ABPI as an independent predictor of VD deficiency, which could contribute to vascular stiffness and high cardiovascular risk for this population.

More interestingly, our study, as the first prospective which analyzed the upper level associated to better improvement in survival and CKD progression on CKD patients, did not demonstrate additional benefits on these hard outcomes when patients reached the optimal target levels for VD suggested by current guidelines (\(\geq 30\) ng/mL). It is noteworthy that all three cut-off points

Figure 4 Proportion of patients with different 25-hydroxyvitamin D levels and hazard ratio (95%CI) for composite renal end-point after adjustment by age, sex, diabetes mellitus, estimated glomerular filtration rate and albumin levels. 25(OH)D: 25-hydroxyvitamin D.
for serum 25(OH)D levels at highest risk for death, CKD progression and all-cause hospitalization were between 17 ng/mL and 19, which reinforces the threshold value for abnormally reduced 25(OH)D in 20 ng/mL. These findings confirm the data reported in the biggest retrospective observational study analyzing VD and mortality in CKD patients. Navaneethan et al. studied 12763 patients with 3-4 stage CKD, showing 25(OH)D level ≤ 15 ng/mL to be associated independently with a 33% increased risk of all-cause mortality, whereas the group with 25(OH)D levels of 15-29 ng/mL did not show a significantly increased risk of mortality compared with patients with 25(OH)D levels ≥ 30 ng/mL.

Taking all these data together, we agree with the Institute of Medicine recommendation to consider sufficient 25(OH)D levels of at least 20 ng/mL, given that serum 25(OH)D concentrations above 30 ng/mL are not consistently associated with increased benefit[27,40]. In addition, most clinical trials have only confirmed the neutral effect of VD supplementation on hard outcomes[16], whereas some controlled studies have shown positive results in spite of the mean VD concentration not reaching the optimal recommended levels of ≥ 30 ng/mL[14]. Moreover, VD might not be safe in all settings, and supplementing could cause harm in people with CKD, who have a high prevalence of vascular calcification, and a decreasing ability for renal excretion of calcium and phosphorous[32,42]. Excessive VD supplementation may be particularly harmful in those high risk individuals with serum 25(OH)D levels above 20 ng/mL which are classified as insufficient according to current guidelines, and who then are treated with high-dose supplements of VD containing many times the levels of intake recommended for adults (600-800 UI/d)[18,27,43]. Although some experts suggest that it is safe to carry higher vitamin D levels (40-70 ng/mL), this recommendation is based on acute and not long-term observations[44].

Lastly, our study confirmed the high prevalence of low VD status on CKD patients[11,15]. There are many factors which could contribute to the deficiency that are not related to GFR, including limited exposure to the sun, reduced dietary intake and urinary loss of 25(OH)D and VD-binding protein in proteinuric nephropathies[24,44,45]. The present study, as others[8,12,38], has shown significant correlation between 25(OH)D levels and body mass index and albumin, which emphasizes the relationship between nutritional status, VD levels and survival in chronic illness as CKD. Of note, the independent relationship observed, even after adjustment for chronic heart failure, between VD deficiency and diuretic use. VD deficiency is highly prevalent in heart failure patients, being a significant predictor of reduced survival. In addition, loop diuretics treatment may worsen osteoporosis on general population, but no data are available in CKD patients[46,47].

Strengths and limitations
The strong points of the study include the relatively high number of patients included and the 3-year follow-up, which strengthens the study’s power. To minimize the inter-method and seasonal variability in VD and PTH measurements, blood samples were analyzed by a central laboratory, and patients’ recruitment was done in a short period of time (April-May)[32]. In contrast, there are several limitations to be commented. As a longitudinal study, it is still insufficient to determine whether the association between low 25(OH)D levels and worse CKD outcomes is causal and reversible, which should be tested in future randomized clinical trials. The results may not be valid to non-Caucasian populations living at other latitudes, or to patients on active VD treatment. The multivariate analysis of cardiovascular deaths was limited due to its low incidence. Lastly, it would be interesting to study other relevant bone-related clinical outcomes, such as bone-density changes or fracture risk.

In conclusion, in accordance with previously published data, the present study confirms: (1) a high prevalence of 25(OH)D deficiency and insufficiency in non-dialysis CKD patients; and (2) an independent association between serum 25(OH)D levels and worse clinical outcomes, such as death and CKD progression. The results of this study add to the knowledge of optimal VD status in non-dialysis CKD patients, identifying the threshold value for abnormally reduced 25(OH)D in 20 ng/mL, which is in agreement with the Institute of Medicine recommendations. Whereas high doses of VD supplementation on this population can lead to a calcium and phosphate overload, promoting vascular calcification and CKD progression, our results suggest that, with the limitations inherent to the observational studies, 25(OH)D levels between 20 to 30 ng/mL could be sufficient for CKD patients. Randomized clinical trials are warranted to know the most favorable 25(OH)D level for CKD patients.

ACKNOWLEDGMENTS
The authors gratefully acknowledge their co-investigators in the OSERCE-2 Study. The authors thank to Jacqueline Clarke, B.Ed (Hons) for her collaboration in translating this text. For the figure editing, the authors thank to David Almenar, PhD. Portions of this work were presented and published in thesis form in fulfillment of the requirements for the PhD for Student Pablo Molina from University Autonoma of Barcelona.

COMMENTS

Background
Although knowledge of the skeletal and non-skeletal effects of nutritional vitamin D (VD) has expanded, no consensus currently exists within the medical community regarding the criteria for defining thresholds for VD supplementation in chronic kidney disease (CKD) patients.

Research frontiers
Based on levels of 25(OH)D required to suppress parathyroid hormone
provide a new option in this so controversial field of VD treatment in CKD when patients reached the optimal target levels for VD suggested by current patients, did not demonstrate additional benefits on these hard outcomes that their study as the first prospective which analyzed the upper level of VD Peer-review is currently recommended, advocating that 25(OH)D levels at or above 20 ng/mL. The data in this study suggested that the optimal VD level might be lower than in 20 ng/mL. CKD patients, identifying the threshold value for abnormally reduced 25(OH)D results of this study add to the knowledge of optimal VD status in non-dialysis at highest risk for death, CKD progression and all-cause hospitalization. The innovations and breakthroughs are aware of both the therapeutic and iatrogenic power of VD supplementation on this population can lead to a calcium and phosphate overload, promoting vascular calcification and CKD progression.

Applications
In 2002; 33: 1-10 [PMID: 11996818 DOI: 10.1161/363-523020008] -[PMID: 17091124 DOI: 10.1038/sj.kj.5002009]

Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 2002; 110: 229-238 [PMID: 12122115 DOI: 10.1172/JCI021529]

(PTH), clinical guidelines most commonly recommend a serum concentration of 25(OH)D above 30-40 ng/mL (75-100 nmol/L), levels at which PTH is suppressed to a minimum in its relation to 25(OH)D. However, there is a lack of evidence regarding this target recommendation, and overuse of VD supplementation on this population can lead to a calcium and phosphate overload, promoting vascular calcification and CKD progression.

Innovations and breakthroughs
Being aware of both the therapeutic and iatrogenic power of VD supplementation, the present study examines the prognosis value of 25(OH)D levels in a cohort of 3-5 stage CKD subjects not on dialysis, trying to identify cut-off points for serum 25(OH)D levels to define VD sufficiency. These cut-offs were not based on biochemical abnormalities as classically noted, but on VD levels at highest risk for death, CKD progression and all-cause hospitalization. The results of this study add to the knowledge of optimal VD status in non-dialysis CKD patients, identifying the threshold value for abnormally reduced 25(OH)D in 20 ng/mL.

Applications
In 2002; 33: 1-10 [PMID: 11996818 DOI: 10.1161/363-523020008] -[PMID: 17091124 DOI: 10.1038/sj.kj.5002009]

Molina P et al. Estimating optimal vitamin D status in CKD

247-254 [PMID: 1690815]
29 Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. *Lancet Diabetes Endocrinol* 2014; 2: 76-89 [PMID: 24622671 DOI: 10.1016/S2213-8587(13)70165-7]