
 1

Application-based Analysis of Register File

Criticality for Reliability Assessment in

Embedded Microprocessors

Felipe Restrepo-Calle, Sergio Cuenca-Asensi, Antonio Martínez-Álvarez, Eduardo Chielle,

Fernanda Lima Kastensmidt

Abstract—There is an increasing concern to reduce the cost and overheads during the development of reliable systems.

Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a

fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to

identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened).This

paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in

microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common

features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications

running in different microprocessors. Results show a significant improvement in accuracy comparing to previous approaches

and regardless the underlying architecture.

Index Terms—Embedded systems, Metrics, Microprocessors, Reliability

————————————————————

1 INTRODUCTION

Technological scaling is posing major challenges on the

development of reliable systems, e.g.: voltage and tempera-

ture variability, sensitivity to soft errors and electromagnetic

interferences, accelerated degradation as aging [1]. These

challenges may cause timing faults and Single Event Effects

(SEEs), which provoke permanent or temporary effects over

the electronic components operation, increasingly affecttin-

greliability.Therefore, fault tolerant design has become a

mandatory issue for an increasing number of application

domains, including: space, avionics, automotive, defense,

medicine, and communications [2].

A wide spectrum of design techniques has emerged to

overcome these problems. Traditionally, fault tolerant de-

sign has relied mainly on expensive and power costly ap-

proaches based on hardware redundancy [3]. More recently,

thanks to the proliferation of processor-based systems and

the need for reliable low-cost solutions, a large number of

techniques based on redundant software have been proposed

[4, 25]. However, they cause non-negligible overheads in

terms of code size, execution time, and data that designers

have to cope with [5].

To reduce the costs and overheads inherent to the protec-

tion, whether hardware or software, recent approaches pro-

pose to use a selective protection strategy (selective harden-

ing). It consists of protecting only the most critical parts of

the designs. This partial protection can be achieved by

means of selective redundancy applied to: hardware [6-7],

software [8-9], or by means of hybrid hardware/software

approaches [10-11].

In particular for processor-based systems, a well-known

strategy consists of protecting only the most critical registers

in the microprocessor register file [8-11].Thus, it is evident

the necessity to identify the most critical registers properly

during an early design stage in order to facilitate the selec-

tion of the hardened set of registers. A proper selection of

registers determines to achieve good efficiency/cost trade-

offs for the designed solution and, at the same time, permits

to explore the design space effectively, avoiding costly ex-

plorations guided by brute force strategies [24].

Furthermore, early estimation of the register file criticali-

ty is crucial in order to quickly obtain an evaluation before

the system is fully implemented and fault injections can be

performed. These estimations are strongly needed during the

design phase in order to properly develop a hardening strat-

egy that better fulfills the reliability requirements and sys-

tem constraints.

In this context, our work presents a metric to estimate the

————————————————

 F. Restrepo-Calle is with the Department of Systems and Industrial Engi-

neering, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail:

ferestrepoca@unal.edu.co.

 S. Cuenca-Asensi and A. Martínez-Álvarez are with the Computer Technol-
ogy Department, University of Alicante, Carretera San Vicente del Raspeig
s/n, 03690 Alicante, Spain. E-mail: {sergio, amartinez}@dtic.ua.es.

 E. Chielle and F. Lima Kastensmidt are with the Instituto de Informática,
PPGC and PGMICRO, Universidade Federal do Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil. E-mail: {echielle, fglima}@inf.ufrgs.br.

Usuario
Texto escrito a máquina
This is a previous version of the article published in Journal of Electronic Testing. 2015, 31(2): 139-150. doi:10.1007/s10836-015-5513-9

http://dx.doi.org/10.1007/s10836-015-5513-9

2

criticality of each register from the microprocessor register

file, which allows a fine-grained analysis. It is based on

dynamic code analysis (profiling), using the low-level (as-

sembly) source code of the program. In addition, the pro-

posed metric facilitates the selection (and prioritization) of

registers to be hardened when a selective approach is re-

quired.

As in the original work of Bergaoui et al. [12], our metric

is based on the combination of three different criteria: life-

time, weight in conditional branches, and functional de-

pendencies. The novelty and contributions of our proposal

can be summarized as follows:

 Dynamic code analysis: unlike the compilation-time

method used in [12] (static code analysis), we propose

to use dynamic measurements for the computation al-

gorithms during run-time (simulation-time). This kind

of assessment does not represent any inconvenience in

the usual design-flow of embedded systems, and alter-

natively, improves significantly the accuracy of the es-

timations.

 Effective lifetime: the modulation of the role of the

register lifetime using diverse considerations not taken

into account in previous works. These include the con-

sideration of the total lifetime as the sum of several

lifetime intervals, and the correct calculation of those

intervals (Section 3.1).

 Normalization: all criteria have to be normalized with

respect to the total number of executed instructions.

For instance, in the case of the weight in conditional

branches criterion, this consideration permits to assign

a real contribution to the criticality estimation.

 Direct descendants: counting dynamically only its

direct descendants during the program execution to

avoid counting erroneously n-levels descendants.

Two case studies have been explored and discussed. To

validate the applicability of the proposed metric, each case

study targets a different microprocessor and benchmark. To

corroborate the accuracy of the results, criticality estimations

have been analyzed and compared with the results obtained

during fault injection campaigns. The experimental out-

comes show that the proposal improves related works accu-

racy results.

This paper is organized as follows. Next section provides

background information about related works. Section 3

presents the criticality criteria and defines the proposed

metric. Section 4 validates the proposal by means of a com-

prehensive experimental study. Finally, Section 5 summa-

rizes the concluding remarks of this work.

2 RELATED WORKS

The most commonly used vulnerability metric is the Archi-

tectural Vulnerability Factor (AVF) [13]. The AVF of a

hardware structure is defined as the probability that a fault in

that structure will result in a visible error in the final output

of a program. AVF-derived works evaluate the vulnerability

based on the micro-architecture features of processors; how-

ever, they do not take into account detailed characteristics of

the executed programs.

In addition, it is known [14-15] that different programs

and even different functions in an application are not equally

critical due to different data and control flow properties,

internal error masking effects, etc. These programs/functions

exhibit distinct resilience to hardware-level faults. In this

work, therefore, we focus on the criticality of the registers in

the register file for a given executed program.

Among proposals analyzing specific features of the exe-

cuted programs to estimate criticality, two groups can be

found: proposals based on static code analysis, and those

based on dynamic measurements.

Static analysis does not require simulation or actual us-

age of the system. Instead, it relies on statically-determined

criteria (e.g., lifetime, functional dependencies between

variables) [12, 16-17]. Static code analysis is a very im-

portant task in modern compilers because it makes possible

to find bugs and perform live variable analysis in order to

allocate registers. However, it is not very useful in the con-

text of this work, since no compiler can statically know all

the program dynamic properties to estimate criticality.

Therefore, we propose to compute the criticality based on

dynamic code analysis during simulation-time.

Dynamic techniques use information gathered during

simulation or operation of the system to estimate criticality

factors [18-19]. Unlike approaches based on static code

analysis, dynamic analysis takes into account conditional

branches, loop iterations, recursive functions, values only

known in run-time, and in general, the execution progress of

the application.

In addition, authors in [26-27] have proposed a control

flow protection technique known as Optimized Embedded

Signature Monitoring (OESM). The first step in this ap-

proach consists on the application profiling (dynamic code

analysis) to optimize the number of checkpoints introduced

into the application code, which are inserted in the second

step by means of the application of a well-known control

flow technique such as CFCSS [28]. Unlike this control-

flow protection technique, our metric is aimed at identifying

the most critical registers from the microprocessor register

file for a further application of data protection schemes (out

of the scope of the present work).

As summarized in the introduction, the present work ex-

tends the proposal presented in [12] by re-defining the calcu-

lation of the criticality criteria improving their accuracy in

the estimation, by means of considering new parameters and

performing dynamic analyses of the executed programs,

instead of the static code analysis originally proposed.

3 APPLICATION-BASED CRITICALITY METRIC

We focus on the criticality of each individual register in the

microprocessor register file for a given program (assembly

code). Criticality can be expressed in terms of 3 criteria:

effective lifetime, weight in conditional branches, and func-

tional dependencies.

3.1 Effective Lifetime

Register lifetime represents the time when useful data is

present in the register. Any fault occurring to the register

during that time destroys data integrity. Therefore, the high-

er the lifetime is, the longer the register is prone to faults.

 3

Register lifetime is expressed as the sum of clock cycles

of all the register living intervals during the program simula-

tion/execution. A living interval starts with a generic write

operation and ends with the last read operation, which pre-

cedes the next write operation or the end of the program

execution.

However, it is important considering that a new interval

is created every time there is a write operation to the regis-

ter, and during the execution of that instruction (n clock

cycles), there are k clock cycles (k<n) at the beginning of the

write execution in which the register has not yet stored the

value, and any fault affecting it during that k time will be

overwritten when it finally stores the written value. The

remaining time in the interval (n - k) is called partial effec-

tive lifetime (pelt). Hence, the register effective lifetime is the

sum of all the partial effective lifetimes. These terms are

illustrated in Fig. 1.

In the simplest case, these cycles are due to the number of

stages in the instruction pipeline, and in case of more com-

plex processorsthey are consequence of using different tech-

niques that delay the effective write in the register file, these

include: forwarding, speculative execution, reorder buffers,

etc.

This consideration is very important because it implies

that in cases of registers having the same/similar lifetime,

criticality is lower for those registers whose lifetime presents

a larger number of living intervals, i.e., their effective life-

time is lower.

According to this, we propose to adjust the lifetime

(measured in clock cycles) by subtracting the non-effective

lifetime (k) of each write operation from the total lifetime of

a register, i.e., the effective lifetime. Depending on the mi-

croprocessor complexity, the k number of cycles can be

either calculated or estimated. Finally, for estimating the

register criticality the effective lifetime is normalized with

respect to the duration of the program (clock cycles).

Fig. 1.Effective lifetime

3.2 Weight in Conditional Branches

The second criterion is weight in conditional branches. As it

was first proposed in [12], it should be given more attention

to the registers taking part in branch conditions. Erroneous

data stored in these registers may lead the program control

flow to take an incorrect path. We introduce two improve-

ments to this criterion based on the dynamic analysis.

Firstly, real influence of registers on criticality is taken

into account depending on the statement where the condi-

tional branch is located. For instance, it is more critical a

register involved in the evaluation of a loop condition,

whose condition is repeated n times, than another that partic-

ipates in a single conditional statement (executed once).

Dynamic counting of registers that take part in branch condi-

tions is able to capture this influence. Static code analysis, in

contrast, may incorrectly indicate the same level of criticali-

ty for both registers in the previous example.

Fig. 2. Example of the weight in conditional branches criteria

Fig. 2 presents an example of different variations that can

occur during the dynamic counting of the registers involved

in conditional branches: r1 is present in a single conditional

statement executed once; r2 is firstly present in a loop con-

dition with a static loop limit (executed 10 times) and then it

also participates in a second dynamic loop (executed N

times); r3 is involved in the last loop statement (executed N

times). In terms of weight in conditional branches for this

example, the most critical register is r2 and the least critical

r1.

The second improvement to this criterion consists on the

normalization procedure. The dynamic measurement for

each register taking part in conditional branches has to be

normalized with respect the total number of executed in-

structions of the program, instead of the total number of

effectively conditional branches. Otherwise, a register in-

volved in conditional branches might have a high value for

this criterion, regardless that number of conditional branches

did not represent a significant portion of the executed in-

structions. For instance, a register participating in most con-

ditional branches may be seen as critic for this criterion if

only effectively conditional branches are taken into account

on the normalization; however, let’s suppose that those

branches only represent the 1-2% of the executed instruc-

tions of the program, in which case the real register vulnera-

bility is considerably lower. This consideration not only

permits to assign a real contribution to the conditional

branch criterion, but also facilitates to combine this criterion

with other criticality criteria.

3.3 Functional Dependencies

The third criterion is the count of functional dependencies

between registers. A register depends on a given register r

(or is a direct descendant of r) if it takes a value that is the

result of an expression involving the value of r. This criteri-

time

(clock cycles)

Rx really written

effective lifetime (n - k) = 20 cycles

partial effective

lifetime

pelt1 = 8 cycles

end last read Rx

non effective

lifetime

k = 4 cycles

single living interval lifetime (n) = 24 cycles

non effective

lifetime

k1 = 4 cycles

living inte rval 1 living inte rval 2

total lifetime (n) = 24 cycles
total effective lifetime = 16 cycles

time

(clock cycles)

start write Rx

start 1
st w

rite
 Rx

Rx really
 writte

n

start 1
st re

ad Rx

end 1st re
ad Rx

partial effective

lifetime

pelt2 = 8 cycles

non effective

lifetime

k2 = 4 cycles

start 2
nd write

 Rx

Rx really
 writte

n

start 2
nd read Rx

end 2nd read Rx

…

bne r1, 0, CondDest

…

Loop10:

…

bne r2, 10, Loop10

…

Repeat:

…

bne r2, r3, Repeat

…

10×

N×

Weight in Conditional Branches
(WCB)

r1 = 1

r2 = 10 + N

r3 = N

N will be known during

runtime

4

on remarks the criticality of those registers having a lot of

descendants, as erroneous values will be propagated widely.

We propose to measure functional dependencies for each

register by counting dynamically only its direct descendants

during the program execution. Other descendants different

to the register direct descendants (n-level descendants where

n ≥ 2) are not taken into account. Considering other levels

without including dependency time intervals could lead to

consider some n-level dependencies erroneously.

To compute functional dependencies, it is built an N×N

matrix M (where N is the number of registers in the register

file). A cell Mi,j means that register i is descendant of regis-

ter j. For each instruction simulated, matrix M is updated

with the dynamic count of direct descendants. Once the

matrix M is completely calculated, each cell is normalized in

the same way as for the conditional branches criterion, i.e.,

with respect to the total number of executed instructions.

3.4 Criticality Metric

Criticality C of a register r can be estimated as expressed in

(1).

𝐶(𝑟) = 𝑊𝑙𝑡 ∙ 𝐶𝑙𝑡(𝑟) + 𝑊𝑐𝑏 ∙ 𝐶𝑐𝑏(𝑟) + 𝑊𝑓𝑑 ∙ 𝐶𝑓𝑑(𝑟) (1)

Where: Wlt, Wcb, and Wfd are weight coefficients assigned

to each criterion; Clt(r) is the normalized effective lifetime;

Ccb(r) is the normalized conditional branch value; and Cfd(r)

is the normalized functional dependencies value, which can

be calculated using (2).

𝐶𝑓𝑑(𝑟) = ∑ 𝑀𝑖,𝑟 ∙ (𝑊𝑙𝑡 ∙ 𝐶𝑙𝑡(𝑖) + 𝑊𝑐𝑏 ∙ 𝐶𝑐𝑏(𝑖))𝑁−1
𝑖=0 (2)

Where: M is the dynamic functional dependencies ma-
trix, and N is the number of registers in the register file.
Notice that (2) includes the effective lifetime and conditional
branches criteria of all direct descendants of r in the calcula-
tion of Cfd(r).

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experimental setup

The weight coefficients used in (1) and (2) for the register

criticality calculation were equal to 0.33 each. This config-

ures an equal weight for each criterion. These values were

chosen for demonstration, and at the same time, for compar-

ison purposes, as these were the same weights used by au-

thors in [12]. However, these coefficients could have been

modified according to each application dependability re-

quirements.

To validate the applicability of the proposal, several tar-

get applications have been studied. The experimental setup

is divided in two different case studies that permit to demon-

strate that the metric is hardware-agnostic. The first set of

target applicationsis based on the PicoBlaze microprocessor

[20] (case study 1), whereas the second group targets the

miniMIPS microprocessor [21] (case study 2).

To corroborate the accuracy of the results in both case

studies, criticality estimations have been analyzed and com-

pared with results obtained during fault injection test. We

focus on the type of transient fault known as Single Event

Upset (SEU), which is characterized by the logic state altera-

tion of a single memory element in the system. For each

studied application in the case studies, a fault injection cam-

paign has been carried out against each one of the registers

in the register file. Each campaign consisted in 10,000 faults

injected (one fault per run). Each fault consisted of a bit-flip

in a randomly selected bit from the target register in a ran-

domly selected clock cycle from all the workload duration.

Besides to validate the accuracy of the estimated criticali-

ty results comparing with those obtained by means of fault

injection tests, the case studies were aimed to verify that our

proposal improves related works accuracy results. Therefore,

we have also implemented the criticality metric based on

static code analysis proposed in [12] to compare the results

using the same processor and the same test programs.

To evaluate the goodness of the estimations, we check

how well the expected rank of critical registers (based on the

error rate obtained in the fault injection tests) matches to the

estimated rank, i.e., match level. Ranks are expressed in

ascending order from the most critical to the least critical

register. The match level determines the distance between

each value of the estimated criticality rank compared to its

respective expected value. A match level equals to 0 means

an exact match between them, which is the desirable value.

Moreover, the analysis of the code necessary for the criti-

cality estimation is performed previously to the final de-

ployment. To do so, specific features of the simulator or

code instrumentation can be used. In case of code instru-

mentation, it is removed from the program after the estima-

tion. Therefore, there is no memory overhead or perfor-

mance penalty introduced to the deployed program in any

case.

4.2 Case Study 1: PicoBlaze

PicoBlaze is a widely used IP (intellectual property) core.

The main features of this processor are: 16 byte-wide gen-

eral-purpose data registers, 1K instructions of programmable

on-chip program store, byte-wide Arithmetic Logic Unit

(ALU) with Carry and Zero indicator flags, 64-byte scratch-

pad RAM, 256 input and 256 output ports, 31-location

Call/Return stack.

The benchmark software suite used for PicoBlaze is made

up of 11 example programs. Some of them are representa-

tive programs used in embedded systems: proportional-

integral-derivative controller (PID), finite impulse response

filter (FIR), and advanced encryption standard (AES) or

Rijndael. The rest of them consist of typical small computa-

tions: bubble sort (BUB), Fibonacci (FIB), greatest common

divisor (GCD), matrix addition (MADD), matrix multiplica-

tion (MM), scalar multiplication (MULT), exponentiation

(POW), and quick sort (QSORT). In this case, fault injection

tests were performed using the software-based simulation

tool presented and validated in [22].

Table 1 presents the obtained results for the PicoBlaze

case study. For each studied application and for each register

(RX) used within the program source code, it is presented

the register error rate obtained in the fault injection tests, the

estimated criticality calculated using the static criticality

 5

metric, and the estimated criticality calculated using our

proposal. In all the cases only 5 (or less) registers were used

to code the applications.

Notice that the estimations of criticality ranks obtained by

the dynamic criticality metric are quite approximate to the

ranks obtained by fault injection. An 82.0% of the estimated

positions in the rank correspond to the respective expected

value in the criticality rank (match level = 0).

Furthermore, in case of giving an acceptable error margin

to the estimations, i.e., considering match levels equal to 0

and 1 as well, this percentage goes up to 98.0%. That is, the

estimated positions in the criticality rank can be at a maxi-

mum distance of one position to its expected value based on

the fault injection results.

Comparing these results with the originally published re-

sults (from Tables VII and VIII in [12]) using the match

level, it can be seen that only 25.0% of the estimations

match to the respective expected value in the criticality rank

(match level = 0). Including results from match levels equal

to 0 and 1, this percentage only increases to 62.5%.

Nevertheless, for the sake of comparison, it is necessary

to analyze the estimated results obtained by the static criti-

cality metric for the same microprocessor and the same

benchmark (Table 1). In this case, from Table 1 one can see

that only a 46.0% of the estimated positions in the rank

match the expected value in the criticality rank. This per-

centage is increased to 78.0% when considering as accepta-

ble match levels equal to 0 and 1. These results are 36.0%

and 20% less accurate than our proposal, respectively.

Fig. 3 represents the match level results presented in Ta-

ble 1. This premits to compare, at a glance, estimation re-

sults obtained by the state-of-the-art static approach [12]

with results achieved using our proposal. As commented

above, the experimental outcomes show that our proposal

improves significantly the related work accuracy results.

Fig. 3. Proposal Vs. Static metric match levels in PicoBlaze

Fig. 4 represents the correlation coefficient between the

estimations (static metric and dynamic metric) and the error

rate obtained in the fault injection campaigns for each test

program, which shows the strength of the linear association

between the variables. All the correlation coefficients from

the proposed metric are greater than the coefficients ob-

tained in the static metric (closer to 1.0). This means that the

criticality estimations obtained using our metric represent

the expected criticality in a much better way than the static

metric.

TABLE 1

CRITICALITY RESULTS FOR THE PICOBLAZE CASE STUDY

Prog. RX

Fault

Injection

Static criticality

metric [12]

Dynamic Criticality

Metric (proposed)

Error

Rate (%)

Crit.

Rank

Est.

Crit.

Est.

Crit.

Rank

Match

Level a

Est.

Crit.

Est.

Crit.

Rank

Match

Level a

AES

0 48.91 2 0.264 1 1 0.277 2 0

1 69.94 1 0.180 2 1 0.314 1 0

2 31.55 3 0.136 3 0 0.205 3 0

3 12.15 5 0.108 4-5 0 0.107 5 0

4 15.40 4 0.108 4-5 0 0.114 4 0

FIR

0 30.56 4 0.240 3 1 0.118 4 0

1 38.35 3 0.247 2 1 0.313 2 1

2 86.02 1 0.272 1 0 0.331 1 0

3 45.08 2 0.233 4 2 0.291 3 1

4 1.26 5 0.042 5 0 0.006 5 0

MM

0 39.81 5 0.145 2 2 0.173 5 0

1 76.16 3 0.061 4 1 0.308 3 0

2 74.95 4 0.022 5 1 0.290 4 0

3 85.01 2 0.079 3 1 0.337 1 1

4 96.64 1 0.174 1 0 0.321 2 1

PID

0 65.01 3 0.124 5 2 0.241 5 2

1 31.54 5 0.143 4 1 0.246 4 1

2 80.32 1 0.172 1 0 0.311 1 0

3 40.69 4 0.156 3 1 0.269 3 1

4 70.94 2 0.170 2 0 0.275 2 0

QSORT

0 82.09 1 0.221 1 0 0.306 1 0

1 66.95 2 0.083 4 2 0.253 2 0

2 14.70 4 0.022 5 1 0.073 4 0

3 8.65 5 0.102 3 2 0.057 5 0

4 28.12 3 0.111 2 1 0.165 3 0

FIB

0 57.82 3 0.192 3 0 0.222 3 0

1 79.79 2 0.243 2 0 0.306 2 0

2 55.08 4 0.147 4 0 0.218 4 0

3 81.51 1 0.259 1 0 0.347 1 0

GCD

0 86.22 1 0.336 1 0 0.423 1 0

1 81.81 2 0.254 2 0 0.400 2 0

2 1.59 3 0.041 3 0 0.008 3 0

MULT

0 87.11 3 0.203 1 2 0.364 2 1

1 99.32 1 0.198 2 1 0.437 1 0

2 99.31 2 0.165 3 1 0.328 3 1

POW

0 99.36 2 0.178 2 0 0.336 2 0

1 99.77 1 0.242 1 0 0.370 1 0

2 16.84 5 0.134 3 2 0.152 5 0

3 17.30 4 0.110 5 1 0.185 4 0

4 19.05 3 0.113 4 1 0.191 3 0

BUB

0 76.06 4 0.292 1 3 0.263 4 0

1 79.31 3 0.111 2 1 0.313 3 0

2 23.71 5 0.043 3 2 0.148 5 0

3 99.07 2 0.042 4 2 0.327 2 0

4 99.15 1 0.028 5 4 0.343 1 0

MADD

0 88.40 1 0.240 1 0 0.332 1 0

1 49.66 2 0.166 2 0 0.189 2 0

2 49.51 3 0.151 3 0 0.167 3 0

3 9.00 4 0.049 4-5 0 0.043 4-5 0

4 8.96 5 0.049 4-5 0 0.043 4-5 0

aMatch level: distance between each value of the estimated criticality rank com-

pared to its respective expected value (based on fault injection results). 0 means an

exact match between them (desirable).

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 0 1 2 0 1 2 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

AES FIR MM PID QSORT FIB GCDMULT POW BUB MADD

M
at

ch
 le

ve
l

Static metric [12]
Proposed metric

6

Fig. 4. Correlation coefficients between estimations and error rate in Pico-
Blaze

The only two programs with significant discrepancies for

our proposal were PID and MULT, i.e., their correlation

coefficients were less than 0.8. One possible reason for this

divergence is that the criticality estimations in these cases

are under the sensitivity of the proposed metric.In both cases

the standard deviation of the results is less than 0.060, which

means that the estimations are very close to each other and

the criticality rank could vary slightly. The standard devia-

tion for the rest of the test programs is greater than 0.060.

4.2 Case Study 2: miniMIPS

MiniMIPS is a 32 bits core based on MIPS I architecture. It

has a pipeline of 5 stages and 32 general purpose registers

($0-$28, $sp, $fp and $31). All miniMIPS instructions take

five cycles to be executed and the peak throughput is 1 in-

struction per cycle. Register $0 is constant, so it is not con-

sidered in the analysis.

Five case-study applications are selected as benchmak for

miniMIPS: a bubble sort (BS), a matrix multiplication

(MM), a non-recursive Depth-Fist Search (nDFS), a recur-

sive Depth-First Search (rDFS) and the Tower of Hanoi

(TH). The number of used registers ranges from 7 to 16

depending of the application.

A Register Transfer Level (RTL) description of the mi-

croprocessor is submited to a fault injection campaign per-

formed by means of a VHDL simulator [23]. The faults are

injected by forcing a bit-flip in the registers’ signals. The

duration of a fault is set to one clock cycle to increase the

probability of the fault causes an error. The fault injection

results are then compared to the results obtained by the pro-

posed metric.

Table 2 presents the obtained results for the miniMIPS

case study. For each studied application and for each register

(RX) used within the program source code, it is presented

the register error rate obtained in the fault injection tests, the

estimated criticality calculated using the static criticality

metric, and the estimated criticality calculated using our

proposal.

Only 33.3% of the estimated positions in the rank corre-

spond to the expected criticality rank (match level = 0), but

it is still better than the 29.8% presented by the static criti-

cality metric. The low correspondence for the miniMIPS is

due to the higher number of registers used by the programs

and also to the close error rates presented by many registers.

That makes the probability of ranking them correctly more

unlikely.

Furthermore, in case of giving an acceptable error margin

to the estimations, i.e., considering match levels equal to 0

and 1 as well, the percentage goes up to 66.7% for the pro-

posed metric. It is an improvement when compared with the

state-of-the-art because the static criticality metric reaches

47.4%. Match level results obtained by the state-of-the-art

approach [12] and the results achieved using our proposal

are presented in Fig. 5.

One fact that must be pointed out is about the register 6 in

the matrix multiplication. Our approach says it is the second

most critical when it is not that much (match level = 9). The

reason for this is that register 6 has actually no much effect

in the program outputs, but as it has a long lifetime, our

metric see it as critical. There is a loop (whose limits are

unknown in compilation-time) between the write and read of

register 6. In this way, the lifetime of this register in the

static approach is short because the positions of write and

read are close but due the loop between such positions our

dynamic approach sees a long lifetime, and consequently, a

high criticality is assigned to this register. Anyway, as this

kind of situation is not common, the average match level for

all case-study applications is smaller in our proposal than in

the static approach as shown in Table 3, which clearly shows

the improvements of our approach in the state-of-the-art.

However, the influence of the registers in the outputs is a

topic for a future work to avoid counting these dummy regis-

ters within the resultant criticality estimation.

Fig. 6 shows the correlation coefficient between the esti-

mations and the error rate obtained in by fault injection.

Four of five correlation coefficients from the proposed met-

ric are greater than the coefficients obtained in the static

metric, and the other one differs only by 3% from the static

metric. The miniMIPS results support that the criticality

estimations obtained using our metric represent better the

expected criticality.

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AES FIR MM PID QSORT FIB GCD MULT POW BUB MADD

C
or

re
la

ti
on

 c
oe

ff
ic

ie
nt

Target Static criticality
metric [12]

Dynamic criticality
metric (proposed)

TABLE 3

AVERAGE MATCH LEVEL FOR THE MINIMIPS CASE STUDY

Program
Static Criticality

Metric [12]

Dynamic Criticality

Metric (Proposed)

BS 1.83 1.50

MM 1.88 1.75

nDFS 1.86 0.57

rDFS 2.60 1.00

TH 1.27 1.09

Average 1.89 1.18

 7

TABLE 2

CRITICALITY RESULTS FOR THE MINIMIPS CASE STUDY

Prog. RX

Fault

Injection

Static Criticality Met-

ric [12]

Dynamic Criticality

Metric (proposed)

Prog. RX

Fault

Injection

Static Criticality

Metric [12]

Dynamic Criticality

Metric (proposed)

Error

Rate (%)

Crit.

Rank

Est.

Crit.

Est.

Crit.

Rank

Match

Level a

Est.

Crit.

Est. Crit.

Rank

Match

Level a

Error

Rate (%)

Crit.

Rank

Est.

Crit.

Est.

Crit.

Rank

Match

Level a

Est.

Crit.

Est. Crit.

Rank

Match

Level a

BS

2 47.32 3 0.141 3 0 0.330 1 2

nDFS

1 9.11 5 0.010 7 2 0.012 6 1

3 2.82 7 0.090 4 3 0.164 6 1 2 89.00 2 0.079 4 2 0.310 3 1

4 61.00 2 0.267 1 1 0.315 4 2 3 89.62 1 0.117 3 2 0.318 1 0

5 0.32 8 0.179 2 6 0.303 5 3 4 38.93 4 0.166 2 2 0.280 4 0

6 62.90 1 0.076 5 4 0.330 2 1 5 5.75 6 0.049 6 0 0.112 5 1

7 0.00 9-12 0.013 8-10 0 0.002 11 0 6 1.27 7 0.079 4 3 0.006 7 0

8 0.00 9-12 0.013 8-10 0 0.014 10 0 31 61.62 3 0.204 1 2 0.314 2 1

9 0.00 9-12 0.000 12 0 0.000 12 0

rDFS

1 8.73 8 0.007 10 2 0.008 9 1

10 3.88 6 0.000 11 5 0.328 3 3 2 68.15 2 0.056 7 5 0.232 3 1

12 8.64 4 0.064 6-7 2 0.137 7 3 3 69.66 1 0.083 6 5 0.239 2 1

13 6.37 5 0.064 6-7 1 0.124 8 3 4 46.60 3 0.201 3 0 0.303 1 2

14 0.00 9-12 0.013 8-10 0 0.025 9 0 5 13.60 7 0.035 8 1 0.105 6 1

MM

2 69.51 5 0.159 7 2 0.259 9 4 6 25.97 5 0.228 2 3 0.087 7 2

3 85.53 3 0.263 1 2 0.321 3 0 7 18.96 6 0.133 5 1 0.204 5 1

4 80.77 4 0.215 4 0 0.308 8 4 8 4.03 9 0.034 9 0 0.073 8 1

5 47.31 9 0.110 8 1 0.228 10 1 sp 0.00 10 0.269 1 9 0.003 10 0

6 6.28 11 0.018 13 2 0.326 2 9 31 34.39 4 0.144 4 0 0.211 4 0

7 86.83 2 0.220 3 1 0.327 1 1

TH

2 60.08 3 0.242 2 1 0.316 3 0

8 94.56 1 0.110 9 8 0.317 5 4 3 10.06 9 0.218 4 5 0.180 6 3

9 0.00 13-16 0.018 14 0 0.021 15 0 4 27.87 4 0.197 5 1 0.208 5 1

10 0.00 13-16 0.000 16 0 0.000 16 0 5 17.21 7 0.194 6 1 0.211 4 3

12 64.74 8 0.196 6 2 0.314 7 1 6 92.21 1 0.301 1 0 0.330 1 0

13 64.80 7 0.202 5 2 0.315 6 1 7 0.00 10-11 0.073 10 0 0.059 10 0

14 65.45 6 0.257 2 4 0.321 4 2 8 20.46 5 0.122 7 2 0.081 9 4

15 8.94 10 0.025 12 2 0.066 11 1 9 15.31 8 0.103 8 0 0.085 8 0

16 0.00 13-16 0.006 15 0 0.024 14 0 10 62.99 2 0.241 3 1 0.321 2 0

17 1.61 12 0.037 10 2 0.046 12 0 sp 0.00 10-11 0.054 11 0 0.000 11 0

18 0.00 13-16 0.025 11 2 0.030 13 0 31 17.52 6 0.102 9 3 0.105 7 1

aMatch level: distance between each value of the estimated criticality rank compared to its respective expected value (based on fault injection results). 0 means an exact

match between them (desirable).

Fig. 5. Proposal vs. Static metric match levels in miniMIPS

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6 7 8 9 10 12 13 14 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 1 2 3 4 5 6 31 1 2 3 4 5 6 7 8 sp 31 2 3 4 5 6 7 8 9 10 sp 31

BS MM nDFS rDFS TH

M
at

ch
 le

ve
l

Static metric [12]
Proposed metric

8

Fig. 6. Correlation coefficients between estimations and error rate in mini-
MIPS

7 CONCLUSION

Given that providing early estimations of the register

file criticality is a key task within the fault tolerant

design of embedded systems, this paper presents an

application-based metric to estimate the criticality of

each register from the register file in microprocessor-

based systems.

This metric facilitates the selection of the hardened

set of registers when a selective hardening strategy is

required in software, avoiding costly design space

explorations guided by costly brute force strategies.

Furthermore, early estimation of the register file criti-

cality permits to perform preliminary reliability as-

sessments before the system is fully implemented and

fault injections can be carried out.

Experimental results demonstrate the applicability

and accuracy of the proposed metric. Criticality esti-

mations obtained using our metric represent the ex-

pected criticality (based on fault injection campaigns).

Moreover, results showed that criticality estimations

based on dynamic code analysis improve significantly

the accuracy of results compared to metrics based on

static code analysis.

This work opens up interesting new boundaries in

the criticality analysis of resources in the design of

fault tolerant embedded systems. Beside application-

based criticality criteria, we will investigate new met-

rics taking into account more factors for the proper

selection of the hardened set of registers, e.g., the in-

fluence of the registers in the output, expected time

execution overheads.

ACKNOWLEDGMENT

This work was funded in part by the Spanish Ministry of

Education, Culture and Sports with the project “Developing

hybrid fault tolerance techniques for embedded micropro-

cessors” (PHB2012-0158-PC).

REFERENCES

[1] S. Hamdioui, M. Nicolaidis, D. Gizopoulos, A. Grasset, G. Guido, and P.

Bonnot (2013) Reliability challenges of real-time systems in forthcoming tech-

nology nodes. Proc. Design, Automation and Test in Europe (DATE '13), EDA

Consortium, Pp. 129-134.

[2] M. Nicolaidis (2011) Soft Errors in Modern Electronic Systems. 1st Ed. Fron-

tiers in Electronic Testing Series, vol. 41. Springer.

[3] M. Nicolaidis (2005) Design for soft error mitigation.IEEE Trans.

Device Mater. Rel. 5(3):405-418.

[4] B. Nicolescu, Y. Savaria, and R. Velazco (2004) Software detection

mechanisms providing full coverage against single bit-flip faults.IEEE

Trans. Nucl. Sci.51(6):3510-3518

[5] J.R. Azambuja, S. Pagliarini, L. Rosa, and F. Lima Kastensmidt

(2011) Exploring the Limitations of Software-based Techniques in

SEE Fault Coverage, J. Electron. Test.27(4):541-550

[6] B. Pratt, M. Caffrey, J.F. Carroll, P. Graham, K. Morgan, M. Wirthlin

(2008) Fine-Grain SEU Mitigation for FPGAs Using Partial TMR,

IEEE Trans. Nucl. Sci., 55(4):2274-2280

[7] O. Ruano, J.A. Maestro, P. Reviriego (2009) A Methodology for

Automatic Insertion of Selective TMR in Digital Circuits Affected by

SEUs, IEEE Trans. Nucl. Sci., 56(4):2091-2102

[8] F. Restrepo-Calle, A. Martínez-Álvarez, S. Cuenca-Asensi and A.

Jimeno (2013) Selective SWIFT-R: A Flexible Software-Based Tech-

nique for Soft Error Mitigation in Low-Cost Embedded Systems, J.

Electron. Test., 29(6):825-838

[9] E. Chielle, J.R. Azambuja, R.S. Barth, F. Almeida, F. Lima

Kastensmidt (2013) Evaluating Selective Redundancy in Data-flow

Software-based Techniques, IEEE Trans. Nucl. Sci., 60(4):2768-2775

[10] S. Cuenca-Asensi, A. Martínez-Álvarez, F. Restrepo-Calle, F.R.

Palomo, H. Guzmán-Miranda, M.A. Aguirre (2011) A Novel Co-

Design Approach for Soft Errors Mitigation in Embedded Systems,

IEEE Trans. Nucl. Sci., 58(3):1059-1065

[11] A. Lindoso, L. Entrena, E. San Millan, S. Cuenca-Asensi, A. Mar-

tínez-Álvarez, F. Restrepo-Calle (2012) A Co-Design Approach for

SET Mitigation in Embedded Systems, IEEE Trans. Nucl. Sci.,

59(4):1034-1039

[12] S. Bergaoui, P. Vanhauwaert, and R. Leveugle (2010) A New Critical

Variable Analysis in Processor-Based Systems, IEEE Trans. Nucl.

Sci., 57(4):1992-1999

[13] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, T. Austin (2003)

A systematic methodology to compute the architectural vulnerability

factors for a high-performance microprocessor, in Proc. 36th Int.

Symp. on Microarchitecture., MICRO-36. pp. 29-40

[14] S.Rehman, M.Shafique, F.Kriebel, and J. Henkel, (2011) Reliable

software for unreliable hardware: embedded code generation aiming

at reliability, In Proc.7th IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis (CODES+ISSS

'11),pp. 237-246

[15] P. Giacinto, N. Wang, Z.Kalbarczyk, S. Patel, and R.Iyer (2005) An

experimental Study of Soft Error in Microprocessors, IEEE MICRO,

25(6):30-39

[16] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri (2000) A C/C++

source to source compiler for dependable applications, in Proc. IEEE

Int. Conf. on Dependable Systems and Networks (DSN), pp. 71-78

[17] J. Lee, and A. Shrivastava (2011) Static Analysis of Register File

Vulnerability, IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., 30(4):607-616

[18] K. Pattabiraman, Z. Kalbarczyk, R.K. Iyer (2005) Application-based

metrics for strategic placement of detectors," in Proc. 11th Pacific Rim

Int. Symp. on Dependable Computing, pp.8, 12-14

-1,0
-0,9
-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

BS MM nDFS rDFS TH

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Target Static criticality
metric [12]

Dynamic criticality
metric (proposed)

 9

[19] V. Sridharan, and D.R. Kaeli (2008) Quantifying Software Vulnera-

bility, in Proc. Workshop Radiation Effects and Fault Tolerance in

Nanometer Tech. WREFT, pp. 323-328

[20] K. Chapman (2003) PicoBlaze KCPSM3. 8-bit Micro Controller for

Spartan-3, Virtex-II and Virtex-II, Xilinx Ltd.

[21] L. M. O. S. S. (2010) Hangout and S. Jan, TheMinimips Project

[Online]. Availiable: http://www.opencores.org/projects.cgi/

web/minimips/overview 2010.

[22] A. Martínez-Álvarez, S. Cuenca-Asensi, F. Restrepo-Calle, F.R.

Palomo Pinto, H. Guzmán-Miranda, M.A. Aguirre (2012) Compiler-

Directed Soft Error Mitigation for Embedded Systems, IEEE Trans.

Dependable and Secure Computing, 9(2):159-172

[23] Mentor Graphics (2014) http://www.model.com/content/modelsim-

support

[24] Antonio Martínez-Álvarez, Felipe Restrepo-Calle, Luis Alberto Vivas

Tejuelo, Sergio Cuenca-Asensi (2013) Fault tolerant embedded sys-

tems design by multi-objective optimization, Expert Systems with Ap-

plications, 40(17):6813-6822

[25] Goloubeva, O., Rebaudengo, M., Reorda, M. S., & Violante, M.

(2006). Software-Implemented Hardware Fault Tolerance (Vol. XIV).

Springer.

[26] M. Portela-Garcia, A. Lindoso, L. Entrena, M. Garcia-Valderas, C.

Lopez-Ongil, N. Marroni, B. Pianta, L. Bolzani Poehls, and F. Vargas

(2012) Evaluating the Effectiveness of a Software-Based Technique

Under SEEs Using FPGA-Based Fault Injection Approach. J. Elec-

tron. Test. 28(6): 777-789.

[27] Vargas F, Rocha CA, Farina A, de Alecrim AA Jr (2007) Embedded
signature monitoring based on profiling deployed software technique.

IEEE Int East–west Des Test Symp, Yerevan, Armenia, pp. 230–236.

[28] Oh, N.; Shirvani, P.P.; McCluskey, E.J. (2002) Control-flow checking

by software signatures, IEEE Trans. Rel., 51(1):111,122.

http://www.opencores.org/projects.cgi/%20web/minimips/
http://www.opencores.org/projects.cgi/%20web/minimips/

