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Abstract—There is an increasing concern to reduce the cost and overheads during the development of reliable systems. 

Selective protection of most critical parts of the systems represents a viable solution to obtain a high level of reliability at a 

fraction of the cost. In particular to design a selective fault mitigation strategy for processor-based systems, it is mandatory to 

identify and prioritize the most vulnerable registers in the register file as best candidates to be protected (hardened).This 

paper presents an application-based metric to estimate the criticality of each register from the microprocessor register file in 

microprocessor-based systems. The proposed metric relies on the combination of three different criteria based on common 

features of executed applications. The applicability and accuracy of our proposal have been evaluated in a set of applications 

running in different microprocessors. Results show a significant improvement in accuracy comparing to previous approaches 

and regardless the underlying architecture. 
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1 INTRODUCTION

Technological scaling is posing major challenges on the 

development of reliable systems, e.g.: voltage and tempera-

ture variability, sensitivity to soft errors and electromagnetic 

interferences, accelerated degradation as aging [1]. These 

challenges may cause timing faults and Single Event Effects 

(SEEs), which provoke permanent or temporary effects over 

the electronic components operation, increasingly affecttin-

greliability.Therefore, fault tolerant design has become a 

mandatory issue for an increasing number of application 

domains, including: space, avionics, automotive, defense, 

medicine, and communications [2]. 

A wide spectrum of design techniques has emerged to 

overcome these problems. Traditionally, fault tolerant de-

sign has relied mainly on expensive and power costly ap-

proaches based on hardware redundancy [3]. More recently, 

thanks to the proliferation of processor-based systems and 

the need for reliable low-cost solutions, a large number of 

techniques based on redundant software have been proposed 

[4, 25]. However, they cause non-negligible overheads in 

terms of code size, execution time, and data that designers 

have to cope with [5]. 

To reduce the costs and overheads inherent to the protec-

tion, whether hardware or software, recent approaches pro-

pose to use a selective protection strategy (selective harden-

ing). It consists of protecting only the most critical parts of 

the designs. This partial protection can be achieved by 

means of selective redundancy applied to: hardware [6-7], 

software [8-9], or by means of hybrid hardware/software 

approaches [10-11]. 

In particular for processor-based systems, a well-known 

strategy consists of protecting only the most critical registers 

in the microprocessor register file [8-11].Thus, it is evident 

the necessity to identify the most critical registers properly 

during an early design stage in order to facilitate the selec-

tion of the hardened set of registers. A proper selection of 

registers determines to achieve good efficiency/cost trade-

offs for the designed solution and, at the same time, permits 

to explore the design space effectively, avoiding costly ex-

plorations guided by brute force strategies [24]. 

Furthermore, early estimation of the register file criticali-

ty is crucial in order to quickly obtain an evaluation before 

the system is fully implemented and fault injections can be 

performed. These estimations are strongly needed during the 

design phase in order to properly develop a hardening strat-

egy that better fulfills the reliability requirements and sys-

tem constraints. 

In this context, our work presents a metric to estimate the 
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criticality of each register from the microprocessor register 

file, which allows a fine-grained analysis. It is based on 

dynamic code analysis (profiling), using the low-level (as-

sembly) source code of the program. In addition, the pro-

posed metric facilitates the selection (and prioritization) of 

registers to be hardened when a selective approach is re-

quired. 

As in the original work of Bergaoui et al. [12], our metric 

is based on the combination of three different criteria: life-

time, weight in conditional branches, and functional de-

pendencies. The novelty and contributions of our proposal 

can be summarized as follows: 

 Dynamic code analysis: unlike the compilation-time 

method used in [12] (static code analysis), we propose 

to use dynamic measurements for the computation al-

gorithms during run-time (simulation-time). This kind 

of assessment does not represent any inconvenience in 

the usual design-flow of embedded systems, and alter-

natively, improves significantly the accuracy of the es-

timations. 

 Effective lifetime: the modulation of the role of the 

register lifetime using diverse considerations not taken 

into account in previous works. These include the con-

sideration of the total lifetime as the sum of several 

lifetime intervals, and the correct calculation of those 

intervals (Section 3.1). 

 Normalization: all criteria have to be normalized with 

respect to the total number of executed instructions. 

For instance, in the case of the weight in conditional 

branches criterion, this consideration permits to assign 

a real contribution to the criticality estimation. 

 Direct descendants: counting dynamically only its 

direct descendants during the program execution to 

avoid counting erroneously n-levels descendants.  

Two case studies have been explored and discussed. To 

validate the applicability of the proposed metric, each case 

study targets a different microprocessor and benchmark. To 

corroborate the accuracy of the results, criticality estimations 

have been analyzed and compared with the results obtained 

during fault injection campaigns. The experimental out-

comes show that the proposal improves related works accu-

racy results. 

This paper is organized as follows. Next section provides 

background information about related works. Section 3 

presents the criticality criteria and defines the proposed 

metric. Section 4 validates the proposal by means of a com-

prehensive experimental study. Finally, Section 5 summa-

rizes the concluding remarks of this work. 

2 RELATED WORKS 

The most commonly used vulnerability metric is the Archi-

tectural Vulnerability Factor (AVF) [13]. The AVF of a 

hardware structure is defined as the probability that a fault in 

that structure will result in a visible error in the final output 

of a program. AVF-derived works evaluate the vulnerability 

based on the micro-architecture features of processors; how-

ever, they do not take into account detailed characteristics of 

the executed programs. 

In addition, it is known [14-15] that different programs 

and even different functions in an application are not equally 

critical due to different data and control flow properties, 

internal error masking effects, etc. These programs/functions 

exhibit distinct resilience to hardware-level faults. In this 

work, therefore, we focus on the criticality of the registers in 

the register file for a given executed program. 

Among proposals analyzing specific features of the exe-

cuted programs to estimate criticality, two groups can be 

found: proposals based on static code analysis, and those 

based on dynamic measurements.  

Static analysis does not require simulation or actual us-

age of the system. Instead, it relies on statically-determined 

criteria (e.g., lifetime, functional dependencies between 

variables) [12, 16-17]. Static code analysis is a very im-

portant task in modern compilers because it makes possible 

to find bugs and perform live variable analysis in order to 

allocate registers. However, it is not very useful in the con-

text of this work, since no compiler can statically know all 

the program dynamic properties to estimate criticality. 

Therefore, we propose to compute the criticality based on 

dynamic code analysis during simulation-time.  

Dynamic techniques use information gathered during 

simulation or operation of the system to estimate criticality 

factors [18-19]. Unlike approaches based on static code 

analysis, dynamic analysis takes into account conditional 

branches, loop iterations,  recursive functions, values only 

known in run-time, and in general, the execution progress of 

the application.  

In addition, authors in [26-27] have proposed a control 

flow protection technique known as Optimized Embedded 

Signature Monitoring (OESM). The first step in this ap-

proach consists on the application profiling (dynamic code 

analysis) to optimize the number of checkpoints introduced 

into the application code, which are inserted in the second 

step by means of the application of a well-known control 

flow technique such as CFCSS [28]. Unlike this control-

flow protection technique, our metric is aimed at identifying 

the most critical registers from the microprocessor register 

file for a further application of data protection schemes (out 

of the scope of the present work). 

As summarized in the introduction, the present work ex-

tends the proposal presented in [12] by re-defining the calcu-

lation of the criticality criteria improving their accuracy in 

the estimation, by means of considering new parameters and 

performing dynamic analyses of the executed programs, 

instead of the static code analysis originally proposed. 

3 APPLICATION-BASED CRITICALITY METRIC 

We focus on the criticality of each individual register in the 

microprocessor register file for a given program (assembly 

code). Criticality can be expressed in terms of 3 criteria: 

effective lifetime, weight in conditional branches, and func-

tional dependencies. 

 
3.1 Effective Lifetime 

Register lifetime represents the time when useful data is 

present in the register. Any fault occurring to the register 

during that time destroys data integrity. Therefore, the high-

er the lifetime is, the longer the register is prone to faults. 
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Register lifetime is expressed as the sum of clock cycles 

of all the register living intervals during the program simula-

tion/execution. A living interval starts with a generic write 

operation and ends with the last read operation, which pre-

cedes the next write operation or the end of the program 

execution.  

However, it is important considering that a new interval 

is created every time there is a write operation to the regis-

ter, and during the execution of that instruction (n clock 

cycles), there are k clock cycles (k<n) at the beginning of the 

write execution in which the register has not yet stored the 

value, and any fault affecting it during that k time will be 

overwritten when it finally stores the written value. The 

remaining time in the interval (n - k) is called partial effec-

tive lifetime (pelt). Hence, the register effective lifetime is the 

sum of all the partial effective lifetimes. These terms are 

illustrated in Fig. 1. 

In the simplest case, these cycles are due to the number of 

stages in the instruction pipeline, and in case of more com-

plex processorsthey are consequence of using different tech-

niques that delay the effective write in the register file, these 

include: forwarding, speculative execution, reorder buffers, 

etc.  

This consideration is very important because it implies 

that in cases of registers having the same/similar lifetime, 

criticality is lower for those registers whose lifetime presents 

a larger number of living intervals, i.e., their effective life-

time is lower.  

According to this, we propose to adjust the lifetime 

(measured in clock cycles) by subtracting the non-effective 

lifetime (k) of each write operation from the total lifetime of 

a register, i.e., the effective lifetime. Depending on the mi-

croprocessor complexity, the k number of cycles can be 

either calculated or estimated. Finally, for estimating the 

register criticality the effective lifetime is normalized with 

respect to the duration of the program (clock cycles). 

 

 

 

Fig. 1.Effective lifetime 

 
3.2 Weight in Conditional Branches 

The second criterion is weight in conditional branches. As it 

was first proposed in [12], it should be given more attention 

to the registers taking part in branch conditions. Erroneous 

data stored in these registers may lead the program control 

flow to take an incorrect path. We introduce two improve-

ments to this criterion based on the dynamic analysis. 

Firstly, real influence of registers on criticality is taken 

into account depending on the statement where the condi-

tional branch is located. For instance, it is more critical a 

register involved in the evaluation of a loop condition, 

whose condition is repeated n times, than another that partic-

ipates in a single conditional statement (executed once). 

Dynamic counting of registers that take part in branch condi-

tions is able to capture this influence. Static code analysis, in 

contrast, may incorrectly indicate the same level of criticali-

ty for both registers in the previous example. 

 

Fig. 2. Example of the weight in conditional branches criteria 

Fig. 2 presents an example of different variations that can 

occur during the dynamic counting of the registers involved 

in conditional branches: r1 is present in a single conditional 

statement executed once; r2 is firstly present in a loop con-

dition with a static loop limit (executed 10 times) and then it 

also participates in a second dynamic loop (executed N 

times); r3 is involved in the last loop statement (executed N 

times). In terms of weight in conditional branches for this 

example, the most critical register is r2 and the least critical 

r1. 

The second improvement to this criterion consists on the 

normalization procedure. The dynamic measurement for 

each register taking part in conditional branches has to be 

normalized with respect the total number of executed in-

structions of the program, instead of the total number of 

effectively conditional branches. Otherwise, a register in-

volved in conditional branches might have a high value for 

this criterion, regardless that number of conditional branches 

did not represent a significant portion of the executed in-

structions. For instance, a register participating in most con-

ditional branches may be seen as critic for this criterion if 

only effectively conditional branches are taken into account 

on the normalization; however, let’s suppose that those 

branches only represent the 1-2% of the executed instruc-

tions of the program, in which case the real register vulnera-

bility is considerably lower. This consideration not only 

permits to assign a real contribution to the conditional 

branch criterion, but also facilitates to combine this criterion 

with other criticality criteria. 

 
3.3 Functional Dependencies 

The third criterion is the count of functional dependencies 

between registers. A register depends on a given register r 

(or is a direct descendant of r) if it takes a value that is the 

result of an expression involving the value of r. This criteri-
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on remarks the criticality of those registers having a lot of 

descendants, as erroneous values will be propagated widely.  

We propose to measure functional dependencies for each 

register by counting dynamically only its direct descendants 

during the program execution. Other descendants different 

to the register direct descendants (n-level descendants where 

n ≥  2) are not taken into account. Considering other levels 

without including dependency time intervals could lead to 

consider some n-level dependencies erroneously. 

To compute functional dependencies, it is built an N×N 

matrix M (where N is the number of registers in the register 

file). A cell Mi,j means that register i is descendant of regis-

ter j. For each instruction simulated, matrix M is updated 

with the dynamic count of direct descendants. Once the 

matrix M is completely calculated, each cell is normalized in 

the same way as for the conditional branches criterion, i.e., 

with respect to the total number of executed instructions. 

 
3.4 Criticality Metric 

Criticality C of a register r can be estimated as expressed in 

(1). 

 

𝐶(𝑟) = 𝑊𝑙𝑡 ∙ 𝐶𝑙𝑡(𝑟) + 𝑊𝑐𝑏 ∙ 𝐶𝑐𝑏(𝑟) + 𝑊𝑓𝑑 ∙ 𝐶𝑓𝑑(𝑟) (1) 

 

Where: Wlt, Wcb, and Wfd are weight coefficients assigned 

to each criterion; Clt(r) is the normalized effective lifetime; 

Ccb(r) is the normalized conditional branch value; and Cfd(r) 

is the normalized functional dependencies value, which can 

be calculated using (2). 

 

𝐶𝑓𝑑(𝑟) =  ∑ 𝑀𝑖,𝑟 ∙ (𝑊𝑙𝑡 ∙ 𝐶𝑙𝑡(𝑖) + 𝑊𝑐𝑏 ∙ 𝐶𝑐𝑏(𝑖))𝑁−1
𝑖=0      (2) 

Where: M is the dynamic functional dependencies ma-
trix, and N is the number of registers in the register file. 
Notice that (2) includes the effective lifetime and conditional 
branches criteria of all direct descendants of r in the calcula-
tion of Cfd(r). 

4 EXPERIMENTAL RESULTS AND DISCUSSION 

 
4.1 Experimental setup 

The weight coefficients used in (1) and (2) for the register 

criticality calculation were equal to 0.33 each. This config-

ures an equal weight for each criterion. These values were 

chosen for demonstration, and at the same time, for compar-

ison purposes, as these were the same weights used by au-

thors in [12]. However, these coefficients could have been 

modified according to each application dependability re-

quirements.  

To validate the applicability of the proposal, several tar-

get applications have been studied. The experimental setup 

is divided in two different case studies that permit to demon-

strate that the metric is hardware-agnostic. The first set of 

target applicationsis based on the PicoBlaze microprocessor 

[20] (case study 1), whereas the second group targets the 

miniMIPS microprocessor [21] (case study 2). 

To corroborate the accuracy of the results in both case 

studies, criticality estimations have been analyzed and com-

pared with results obtained during fault injection test. We 

focus on the type of transient fault known as Single Event 

Upset (SEU), which is characterized by the logic state altera-

tion of a single memory element in the system. For each 

studied application in the case studies, a fault injection cam-

paign has been carried out against each one of the registers 

in the register file. Each campaign consisted in 10,000 faults 

injected (one fault per run). Each fault consisted of a bit-flip 

in a randomly selected bit from the target register in a ran-

domly selected clock cycle from all the workload duration. 

Besides to validate the accuracy of the estimated criticali-

ty results comparing with those obtained by means of fault 

injection tests, the case studies were aimed to verify that our 

proposal improves related works accuracy results. Therefore, 

we have also implemented the criticality metric based on 

static code analysis proposed in [12] to compare the results 

using the same processor and the same test programs. 

To evaluate the goodness of the estimations, we check 

how well the expected rank of critical registers (based on the 

error rate obtained in the fault injection tests) matches to the 

estimated rank, i.e., match level. Ranks are expressed in 

ascending order from the most critical to the least critical 

register. The match level determines the distance between 

each value of the estimated criticality rank compared to its 

respective expected value. A match level equals to 0 means 

an exact match between them, which is the desirable value. 

Moreover, the analysis of the code necessary for the criti-

cality estimation is performed previously to the final de-

ployment. To do so, specific features of the simulator or 

code instrumentation can be used. In case of code instru-

mentation, it is removed from the program after the estima-

tion. Therefore, there is no memory overhead or perfor-

mance penalty introduced to the deployed program in any 

case. 
 

4.2 Case Study 1: PicoBlaze 

PicoBlaze is a widely used IP (intellectual property) core. 

The main features of this processor are: 16 byte-wide gen-

eral-purpose data registers, 1K instructions of programmable 

on-chip program store, byte-wide Arithmetic Logic Unit 

(ALU) with Carry and Zero indicator flags, 64-byte scratch-

pad RAM, 256 input and 256 output ports, 31-location 

Call/Return stack. 

The benchmark software suite used for PicoBlaze is made 

up of 11 example programs. Some of them are representa-

tive programs used in embedded systems: proportional-

integral-derivative controller (PID), finite impulse response 

filter (FIR), and advanced encryption standard (AES) or 

Rijndael. The rest of them consist of typical small computa-

tions: bubble sort (BUB), Fibonacci (FIB), greatest common 

divisor (GCD), matrix addition (MADD), matrix multiplica-

tion (MM), scalar multiplication (MULT), exponentiation 

(POW), and quick sort (QSORT). In this case, fault injection 

tests were performed using the software-based simulation 

tool presented and validated in [22]. 

Table 1 presents the obtained results for the PicoBlaze 

case study. For each studied application and for each register 

(RX) used within the program source code, it is presented 

the register error rate obtained in the fault injection tests, the 

estimated criticality calculated using the static criticality 
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metric, and the estimated criticality calculated using our 

proposal. In all the cases only 5 (or less) registers were used 

to code the applications. 

Notice that the estimations of criticality ranks obtained by 

the dynamic criticality metric are quite approximate to the 

ranks obtained by fault injection. An 82.0% of the estimated 

positions in the rank correspond to the respective expected 

value in the criticality rank (match level = 0).  

Furthermore, in case of giving an acceptable error margin 

to the estimations, i.e., considering match levels equal to 0 

and 1 as well, this percentage goes up to 98.0%. That is, the 

estimated positions in the criticality rank can be at a maxi-

mum distance of one position to its expected value based on 

the fault injection results. 

Comparing these results with the originally published re-

sults (from Tables VII and VIII in [12]) using the match 

level, it can be seen that only 25.0% of the estimations 

match to the respective expected value in the criticality rank 

(match level = 0). Including results from match levels equal 

to 0 and 1, this percentage only increases to 62.5%.  

Nevertheless, for the sake of comparison, it is necessary 

to analyze the estimated results obtained by the static criti-

cality metric for the same microprocessor and the same 

benchmark (Table 1). In this case, from Table 1 one can see 

that only a 46.0% of the estimated positions in the rank 

match the expected value in the criticality rank. This per-

centage is increased to 78.0% when considering as accepta-

ble match levels equal to 0 and 1. These results are 36.0% 

and 20% less accurate than our proposal, respectively. 

Fig. 3 represents the match level results presented in Ta-

ble 1. This premits to compare, at a glance, estimation re-

sults obtained by the state-of-the-art static approach [12] 

with results achieved using our proposal. As commented 

above, the experimental outcomes show that our proposal 

improves significantly the related work accuracy results. 
 

Fig. 3. Proposal Vs. Static metric match levels in PicoBlaze 

 

Fig. 4 represents the correlation coefficient between the 

estimations (static metric and dynamic metric) and the error 

rate obtained in the fault injection campaigns for each test 

program, which shows the strength of the linear association 

between the variables. All the correlation coefficients from 

the proposed metric are greater than the coefficients ob-

tained in the static metric (closer to 1.0). This means that the 

criticality estimations obtained using our metric represent 

the expected criticality in a much better way than the static 

metric. 

 

TABLE 1 

CRITICALITY RESULTS FOR THE PICOBLAZE CASE STUDY 

Prog. RX 

Fault  

Injection 

Static criticality 

metric [12] 

Dynamic Criticality 

Metric (proposed) 

Error 

Rate (%) 

Crit. 

Rank 

Est. 

Crit. 

Est. 

Crit. 

Rank 

Match 

Level a 

Est. 

Crit. 

Est. 

Crit. 

Rank 

Match 

Level a 

AES 

0 48.91 2 0.264 1 1 0.277 2 0 

1 69.94 1 0.180 2 1 0.314 1 0 

2 31.55 3 0.136 3 0 0.205 3 0 

3 12.15 5 0.108 4-5 0 0.107 5 0 

4 15.40 4 0.108 4-5 0 0.114 4 0 

FIR 

0 30.56 4 0.240 3 1 0.118 4 0 

1 38.35 3 0.247 2 1 0.313 2 1 

2 86.02 1 0.272 1 0 0.331 1 0 

3 45.08 2 0.233 4 2 0.291 3 1 

4 1.26 5 0.042 5 0 0.006 5 0 

MM 

0 39.81 5 0.145 2 2 0.173 5 0 

1 76.16 3 0.061 4 1 0.308 3 0 

2 74.95 4 0.022 5 1 0.290 4 0 

3 85.01 2 0.079 3 1 0.337 1 1 

4 96.64 1 0.174 1 0 0.321 2 1 

PID 

0 65.01 3 0.124 5 2 0.241 5 2 

1 31.54 5 0.143 4 1 0.246 4 1 

2 80.32 1 0.172 1 0 0.311 1 0 

3 40.69 4 0.156 3 1 0.269 3 1 

4 70.94 2 0.170 2 0 0.275 2 0 

QSORT 

0 82.09 1 0.221 1 0 0.306 1 0 

1 66.95 2 0.083 4 2 0.253 2 0 

2 14.70 4 0.022 5 1 0.073 4 0 

3 8.65 5 0.102 3 2 0.057 5 0 

4 28.12 3 0.111 2 1 0.165 3 0 

FIB 

0 57.82 3 0.192 3 0 0.222 3 0 

1 79.79 2 0.243 2 0 0.306 2 0 

2 55.08 4 0.147 4 0 0.218 4 0 

3 81.51 1 0.259 1 0 0.347 1 0 

GCD 

0 86.22 1 0.336 1 0 0.423 1 0 

1 81.81 2 0.254 2 0 0.400 2 0 

2 1.59 3 0.041 3 0 0.008 3 0 

MULT 

0 87.11 3 0.203 1 2 0.364 2 1 

1 99.32 1 0.198 2 1 0.437 1 0 

2 99.31 2 0.165 3 1 0.328 3 1 

POW 

0 99.36 2 0.178 2 0 0.336 2 0 

1 99.77 1 0.242 1 0 0.370 1 0 

2 16.84 5 0.134 3 2 0.152 5 0 

3 17.30 4 0.110 5 1 0.185 4 0 

4 19.05 3 0.113 4 1 0.191 3 0 

BUB 

0 76.06 4 0.292 1 3 0.263 4 0 

1 79.31 3 0.111 2 1 0.313 3 0 

2 23.71 5 0.043 3 2 0.148 5 0 

3 99.07 2 0.042 4 2 0.327 2 0 

4 99.15 1 0.028 5 4 0.343 1 0 

MADD 

0 88.40 1 0.240 1 0 0.332 1 0 

1 49.66 2 0.166 2 0 0.189 2 0 

2 49.51 3 0.151 3 0 0.167 3 0 

3 9.00 4 0.049 4-5 0 0.043 4-5 0 

4 8.96 5 0.049 4-5 0 0.043 4-5 0 

aMatch level: distance between each value of the estimated criticality rank com-

pared to its respective expected value (based on fault injection results). 0 means an 

exact match between them (desirable). 
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Fig. 4. Correlation coefficients between estimations and error rate in Pico-
Blaze 

The only two programs with significant discrepancies for 

our proposal were PID and MULT, i.e., their correlation 

coefficients were less than 0.8. One possible reason for this 

divergence is that the criticality estimations in these cases 

are under the sensitivity of the proposed metric.In both cases 

the standard deviation of the results is less than 0.060, which 

means that the estimations are very close to each other and 

the criticality rank could vary slightly. The standard devia-

tion for the rest of the test programs is greater than 0.060. 

 
4.2 Case Study 2: miniMIPS 

MiniMIPS is a 32 bits core based on MIPS I architecture. It 

has a pipeline of 5 stages and 32 general purpose registers 

($0-$28, $sp, $fp and $31). All miniMIPS instructions take 

five cycles to be executed and the peak throughput is 1 in-

struction per cycle. Register $0 is constant, so it is not con-

sidered in the analysis. 

Five case-study applications are selected as benchmak for 

miniMIPS: a bubble sort (BS), a matrix multiplication 

(MM), a non-recursive Depth-Fist Search (nDFS), a recur-

sive Depth-First Search (rDFS) and the Tower of Hanoi 

(TH). The number of used registers ranges from 7 to 16 

depending of the application. 

A Register Transfer Level (RTL) description of the mi-

croprocessor is submited to a fault injection campaign per-

formed by means of a VHDL simulator [23]. The faults are 

injected by forcing a bit-flip in the registers’ signals. The 

duration of a fault is set to one clock cycle to increase the 

probability of the fault causes an error. The fault injection 

results are then compared to the results obtained by the pro-

posed metric. 

Table 2 presents the obtained results for the miniMIPS 

case study. For each studied application and for each register 

(RX) used within the program source code, it is presented 

the register error rate obtained in the fault injection tests, the 

estimated criticality calculated using the static criticality 

metric, and the estimated criticality calculated using our 

proposal.  

Only 33.3% of the estimated positions in the rank corre-

spond to the expected criticality rank (match level = 0), but 

it is still better than the 29.8% presented by the static criti-

cality metric. The low correspondence for the miniMIPS is 

due to the higher number of registers used by the programs 

and also to the close error rates presented by many registers. 

That makes the probability of ranking them correctly more 

unlikely. 

Furthermore, in case of giving an acceptable error margin 

to the estimations, i.e., considering match levels equal to 0 

and 1 as well, the percentage goes up to 66.7% for the pro-

posed metric. It is an improvement when compared with the 

state-of-the-art because the static criticality metric reaches 

47.4%. Match level results obtained by the state-of-the-art 

approach [12] and the results achieved using our proposal 

are presented in Fig. 5. 

One fact that must be pointed out is about the register 6 in 

the matrix multiplication. Our approach says it is the second 

most critical when it is not that much (match level = 9). The 

reason for this is that register 6 has actually no much effect 

in the program outputs, but as it has a long lifetime, our 

metric see it as critical. There is a loop (whose limits are 

unknown in compilation-time) between the write and read of 

register 6. In this way, the lifetime of this register in the 

static approach is short because the positions of write and 

read are close but due the loop between such positions our 

dynamic approach sees a long lifetime, and consequently, a 

high criticality is assigned to this register. Anyway, as this 

kind of situation is not common, the average match level for 

all case-study applications is smaller in our proposal than in 

the static approach as shown in Table 3, which clearly shows 

the improvements of our approach in the state-of-the-art. 

However, the influence of the registers in the outputs is a 

topic for a future work to avoid counting these dummy regis-

ters within the resultant criticality estimation. 

 

 

Fig. 6 shows the correlation coefficient between the esti-

mations and the error rate obtained in by fault injection. 

Four of five correlation coefficients from the proposed met-

ric are greater than the coefficients obtained in the static 

metric, and the other one differs only by 3% from the static 

metric. The miniMIPS results support that the criticality 

estimations obtained using our metric represent better the 

expected criticality. 
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TABLE 3 

AVERAGE MATCH LEVEL FOR THE MINIMIPS CASE STUDY 

Program 
Static Criticality 

Metric [12] 

Dynamic Criticality 

Metric (Proposed) 

BS 1.83 1.50 

MM 1.88 1.75 

nDFS 1.86 0.57 

rDFS 2.60 1.00 

TH 1.27 1.09 

Average 1.89 1.18 
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TABLE 2 

CRITICALITY RESULTS FOR THE MINIMIPS CASE STUDY 

Prog. RX 

Fault  

Injection 

Static Criticality Met-

ric [12] 

Dynamic Criticality 

Metric (proposed) 

Prog. RX 

Fault 

Injection 

Static Criticality 

Metric [12] 

Dynamic Criticality 

Metric (proposed) 

Error 

Rate (%) 

Crit. 

Rank 

Est. 

Crit. 

Est. 

Crit. 

Rank 

Match 

Level a 

Est. 

Crit. 

Est. Crit. 

Rank 

Match 

Level a 

Error 

Rate (%) 

Crit. 

Rank 

Est. 

Crit. 

Est. 

Crit. 

Rank 

Match 

Level a 

Est. 

Crit. 

Est. Crit. 

Rank 

Match 

Level a 

BS 

2 47.32 3 0.141 3 0 0.330 1 2 

nDFS 

1 9.11 5 0.010 7 2 0.012 6 1 

3 2.82 7 0.090 4 3 0.164 6 1 2 89.00 2 0.079 4 2 0.310 3 1 

4 61.00 2 0.267 1 1 0.315 4 2 3 89.62 1 0.117 3 2 0.318 1 0 

5 0.32 8 0.179 2 6 0.303 5 3 4 38.93 4 0.166 2 2 0.280 4 0 

6 62.90 1 0.076 5 4 0.330 2 1 5 5.75 6 0.049 6 0 0.112 5 1 

7 0.00 9-12 0.013 8-10 0 0.002 11 0 6 1.27 7 0.079 4 3 0.006 7 0 

8 0.00 9-12 0.013 8-10 0 0.014 10 0 31 61.62 3 0.204 1 2 0.314 2 1 

9 0.00 9-12 0.000 12 0 0.000 12 0 

rDFS 

1 8.73 8 0.007 10 2 0.008 9 1 

10 3.88 6 0.000 11 5 0.328 3 3 2 68.15 2 0.056 7 5 0.232 3 1 

12 8.64 4 0.064 6-7 2 0.137 7 3 3 69.66 1 0.083 6 5 0.239 2 1 

13 6.37 5 0.064 6-7 1 0.124 8 3 4 46.60 3 0.201 3 0 0.303 1 2 

14 0.00 9-12 0.013 8-10 0 0.025 9 0 5 13.60 7 0.035 8 1 0.105 6 1 

MM 

2 69.51 5 0.159 7 2 0.259 9 4 6 25.97 5 0.228 2 3 0.087 7 2 

3 85.53 3 0.263 1 2 0.321 3 0 7 18.96 6 0.133 5 1 0.204 5 1 

4 80.77 4 0.215 4 0 0.308 8 4 8 4.03 9 0.034 9 0 0.073 8 1 

5 47.31 9 0.110 8 1 0.228 10 1 sp 0.00 10 0.269 1 9 0.003 10 0 

6 6.28 11 0.018 13 2 0.326 2 9 31 34.39 4 0.144 4 0 0.211 4 0 

7 86.83 2 0.220 3 1 0.327 1 1 

TH 

2 60.08 3 0.242 2 1 0.316 3 0 

8 94.56 1 0.110 9 8 0.317 5 4 3 10.06 9 0.218 4 5 0.180 6 3 

9 0.00 13-16 0.018 14 0 0.021 15 0 4 27.87 4 0.197 5 1 0.208 5 1 

10 0.00 13-16 0.000 16 0 0.000 16 0 5 17.21 7 0.194 6 1 0.211 4 3 

12 64.74 8 0.196 6 2 0.314 7 1 6 92.21 1 0.301 1 0 0.330 1 0 

13 64.80 7 0.202 5 2 0.315 6 1 7 0.00 10-11 0.073 10 0 0.059 10 0 

14 65.45 6 0.257 2 4 0.321 4 2 8 20.46 5 0.122 7 2 0.081 9 4 

15 8.94 10 0.025 12 2 0.066 11 1 9 15.31 8 0.103 8 0 0.085 8 0 

16 0.00 13-16 0.006 15 0 0.024 14 0 10 62.99 2 0.241 3 1 0.321 2 0 

17 1.61 12 0.037 10 2 0.046 12 0 sp 0.00 10-11 0.054 11 0 0.000 11 0 

18 0.00 13-16 0.025 11 2 0.030 13 0 31 17.52 6 0.102 9 3 0.105 7 1 

aMatch level: distance between each value of the estimated criticality rank compared to its respective expected value (based on fault injection results). 0 means an exact 

match between them (desirable). 

 

 

Fig. 5. Proposal vs. Static metric match levels in miniMIPS 
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Fig. 6. Correlation coefficients between estimations and error rate in mini-
MIPS 

7 CONCLUSION 

Given that providing early estimations of the register 

file criticality is a key task within the fault tolerant 

design of embedded systems, this paper presents an 

application-based metric to estimate the criticality of 

each register from the register file in microprocessor-

based systems.  

This metric facilitates the selection of the hardened 

set of registers when a selective hardening strategy is 

required in software, avoiding costly design space 

explorations guided by costly brute force strategies. 

Furthermore, early estimation of the register file criti-

cality permits to perform preliminary reliability as-

sessments before the system is fully implemented and 

fault injections can be carried out.  

Experimental results demonstrate the applicability 

and accuracy of the proposed metric. Criticality esti-

mations obtained using our metric represent the ex-

pected criticality (based on fault injection campaigns). 

Moreover, results showed that criticality estimations 

based on dynamic code analysis improve significantly 

the accuracy of results compared to metrics based on 

static code analysis. 

This work opens up interesting new boundaries in 

the criticality analysis of resources in the design of 

fault tolerant embedded systems. Beside application-

based criticality criteria, we will investigate new met-

rics taking into account more factors for the proper 

selection of the hardened set of registers, e.g., the in-

fluence of the registers in the output, expected time 

execution overheads.  
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