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Abstract  

The electro-oxidation of small organic molecules is one of the major areas of interest in 

electrocatalysis due to its potential use in energy conversion. Instabilities in alkaline 

solution, particularly in comparison with kinetic properties in a conventional regime, are 

rarely reported in the literature, despite the fact that the catalytic activity is higher in this 

medium and the onset potential is shifted to lower values compared to acidic media. 

Ethanol oxidation on polycrystalline platinum exhibits oscillations under galvanostatic 

control. As the reaction is structure-sensitive, it is possible to study the contribution of the 

three platinum basal planes to the complex kinetics.  We found that Pt(100) has the major 

influence in the overall non-linear kinetics of ethanol electro-oxidation on Pt(poly), 

possibly because it has the highest formation and accumulation rate of COads. Based on the 

differences observed in the galvanostatic transients on Pt(poly), Pt(110) and Pt(100), and 

the absence of this behaviour on Pt(111), it is possible to infer that surface sites strongly 

influence the kinetic scenario during the ethanol oxidation reaction. 

 

Keywords: Platinum single crystal electrodes, oscillation dynamics, ethanol oxidation, 

alkaline media 
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1. Introduction  

Small organic molecules represent an alternative to hydrogen for use in fuel cell anodes. An 

understanding of the reaction mechanism is therefore of fundamental interest. Among the 

organic molecules studied, ethanol is preferred due to its high theoretical energy density 

(8.0 kWh
−1

 kg) [1], because it is a renewable fuel that can be produced in large quantities 

through the fermentation of biomass [2], and because of the low toxicity of both ethanol 

and its oxidation products [3]. Most of the studies reported in the literature consider the 

reaction mechanism, identification and quantification of intermediates and products of the 

ethanol oxidation reaction (EtOR) in acidic media [1,4–6] because proton-exchange 

membranes are generally used in low-temperature fuel cells. However, the development of 

alkaline membranes [7] has reinforced interest in this reaction as it is known that the onset 

oxidation potential of ethanol in alkaline media occurs at lower values, reaches a higher 

current density than in acid media [3,8], and cheaper catalysts can be used [9]. 

It is accepted that EtOR on Pt follows two main reaction pathways, irrespective of pH 

[3,6,8], as shown in Figure 1. In the C2 pathway, the C−C bond remains intact and ethanol 

can be oxidized to acetaldehyde and acetic acid. In an alkaline medium, acetate is stable 

and acetaldehyde undergoes polymerization [10,11]. This can be compared with the C1 

pathway, in which C−C bond cleavage takes place, producing adsorbed CO and adsorbed 

CHx, which subsequently oxidize to CO2 which remains in solution as carbonate in alkaline 

media. 

Electrochemical systems far from thermodynamic equilibrium may present complex 

nonlinear dynamic behavior such as periodic oscillations, quasi-periodicity and chaos 

[12,13]. A number of electrochemical systems exhibit complex dynamics which promote a 

higher energy conversion when compared with the same system operating in stationary 
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conditions [14–16]. One of the requirements for the emergence of oscillations is the 

existence of a negative differential resistance in the voltammogram, i.e., a decrease in the 

current density as the potential increases [17]. In electrocatalytic oxidation, spontaneous 

current and potential oscillations can be observed under potentiostatic and galvanostatic 

conditions, respectively [12,18–20]. 

It is known that the CV profile obtained during electro-oxidation of organic molecules 

depends on the crystallographic orientation of the surface of the catalyst [6,21,22], but only 

a few works consider the use of single crystals to study oscillatory dynamics [23–25]. In 

these works, formic acid was the organic fuel and the oscillatory behavior was shown to be 

structure sensitive. 

In this communication, we report the oscillatory behavior of EtOR under galvanostatic 

control in alkaline media, at Pt single-crystal electrodes with basal orientations. Our aim is 

to analyze the response of the complex kinetics observed at polycrystalline platinum, and to 

unravel the contributions of the different crystallographic planes to the oscillatory pattern. 

 

2. Experimental 

The spherical poly-oriented Pt electrode and bead-type single-crystal Pt electrodes were 

flame-annealed for 30 s in a gas-oxygen flame, cooled in a H2+Ar atmosphere and 

quenched in ultrapure water before transfer to the electrochemical cell [26]. 

Electrochemical measurements were carried out in a three-compartment cell at room 

temperature with a spiral Pt wire as counter electrode and a reversible hydrogen electrode 

(RHE) as reference. 

The geometric area of each electrode was measured using a microscope and ImageJ 

Software. Cyclic voltammograms of each platinum surface were recorded in Ar-saturated, 
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0.1 M NaOH (99,99%, Trace Metal Grade, Merck
®
) at 50 mVs

−1
. 0.5 M CH3CH2OH 

(Absolute, Emsure
®

) was oxidized on different Pt surfaces, varying the electrode potential 

from 0.06 V to 0.9 V at 50 mV s
−1

. The ohmic drop was corrected for during the 

experiment by inserting the additional resistance value of the system in the potentiostat 

software. For the three basal planes, the ohmic drop values were typically around 200 Ω 

(meniscus configuration) while the corresponding value for Pt(poly) was 35 Ω.  

 

3. Results  

Figure 2 shows the current sweep of 0.5 M CH3CH2OH oxidation in 0.1 M NaOH on 

Pt(poly) and Pt(111) at 1.0 µA s
−1

, Pt(100) and Pt(110) at 0.15 µA s
−1

. The current sweep 

was used to identify the parametric regions of oscillation. The galvanodynamic curves 

follow the curves of the potentiodynamic sweep at low sweep rates (not shown). The 

corresponding blanks for each electrode are given in the insets and are similar to those in 

the literature [11]. Special care was taken to preserve the surface order and the upper 

potential limit was carefully kept below 1.0 V because it is known that electrochemical 

oxygen adsorption disturbs the surface structure [27,28]. It can be observed that the activity 

on Pt(poly) and Pt(111) is higher than that on the other basal planes, with a maximum 

current density peak of oscillation of 2.7 mA cm
−2

 and 1.3 mA cm
−2

 respectively, followed 

by 0.48 mA cm
−2

 on Pt(110) and 0.23 mA cm
−2

 on Pt(100). Thus the oscillatory window 

varies, depending on the electrode used. A very narrow window was observed for all 

electrodes, with the broadest region obtained on Pt (100) while no oscillatory behavior 

occurred on Pt (111). 

The oscillatory kinetics during EtOR were measured under galvanostatic control, and 

current sweep experiments used to identify the parametric regions where oscillation 
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occurred. Potential oscillations begin when the systems reach a supercritical Hopf 

bifurcation around 0.7 V, and vanish as they reach a saddle-node bifurcation around 0.8 V. 

In addition, the amplitude of the oscillations increases very rapidly with increase in the 

current value. Thus, the oscillatory window varies depending on the electrode used, the 

broadest region being observed for Pt(100).  

To compare the oscillatory pattern of each electrode under stationary current condition, the 

size of the galvanodynamic oscillatory region was taken into account. To do this, the 

applied current was normalized according to the following equation, proposed by Nagao et 

al. [29]: 

 

JN = (j - ji) / (jf - ji) 

 

where j is the applied current density, ji and jf are the initial and final currents of the 

oscillatory potential region, respectively, estimated from the galvanodynamic sweep. In this 

way, the potential time series obtained from each electrode can be compared for a given 

applied current. In the case of Pt(111), which did not produce oscillations during the 

galvanodynamic sweep, a current of 0.98 mA cm
−2

 was applied. This particular orientation 

might be affected by acetaldehyde polymerization [11]. For the other electrodes the current 

densities were: 2.31 mA cm
−2

 for Pt(poly), 0.195 mA cm
−2

 for Pt(100) and 0.465 mA cm
−2

 

for Pt(110). These are the values related to the normalized current density, JN, of 0.5 and 

the associated oscillation patterns are illustrated in Figure 3. 

Transient potential oscillations appear on Pt(poly), Pt(100) and Pt(110) while no oscillatory 

behavior is seen on Pt(111). The potential range observed during oscillatory EtOR was 

between 0.45~0.5 and 0.8 V, similar to the results obtained by Samjeské et al. [13] during 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

6 
 

electro-oxidation of formic acid in acidic solution. The morphologies of the potential time 

series obtained on Pt(poly) and Pt(100) are quite similar, though the frequency is higher for 

the former. Further investigations will probably show that some stepped surfaces, vicinal to 

the Pt(100) pole, contain an ensemble of sites in which the frequency of the oscillations 

increases. The oscillations presented are a combination of small oscillations between the 

two peaks of the principal oscillation. They can be represented by the number of cycles of 

the principal oscillation with number of peaks of the secondary oscillation denoted by a 

superscript. Different patterns appear during the potential time series at Pt(poly), beginning 

with period 1
7
 , and then going through 1

6
 to 1

3
 progressively and rapidly, passing to 1

2
 and 

finally ending in a period 1
0
 oscillation. The same pattern occurs with Pt (100).  

Pt (110) presents mostly 1
3
, 1

2
 and period 1

0
 oscillations over a very short range of time 

and with a low oscillation frequency. A rapid variation in morphology is noticed, which 

could be an indication that some uncontrolled parameter is changing very fast during the 

experiment. It may be assumed that certain chemical species are involved in another 

feedback loop that gives rise to two chemical oscillators [25] and to the diverse patterns in 

the time series. Furthermore, for all surfaces studied, an increase in the potential amplitude 

can be seen over time until the oscillations disappear when the potential reaches a value 

around 0.8 V. 

 

4. Discussion  

The core oscillating mechanism for electro-oxidation of small hydrocarbon molecules 

includes the co-existence of two poisoning species (CO and OH) that cover the electrode 

surface and the occurrence of a parallel process with a high turnover rate. The dual path 

mechanism for ethanol electro-oxidation is consistent with these requirements. The C1 
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pathway of EtOR suggests CO accumulation on the surface until the potential reaches a 

certain value at which oxides are formed and allows the co-existence of CO and oxygenated 

species that react via a Langmuir-Hinshelwood (LH) mechanism. On the other hand, the C2 

pathway involves ethanol conversion to side products such as acetate and acetaldehyde. 

This reaction represents a parallel process with respect to the CO electro-oxidation reaction 

and has a high turnover rate, associated with the main current flow. This is the kinetic 

scenario against which the temporal behavior seen in Fig. 3 should be understood. 

As concluded by Lai et al. [3], the reaction products and byproducts of ethanol electro-

oxidation at low and high pH values are not very different. Thus, earlier investigations of 

product formation during ethanol electro-oxidation in both acidic and alkaline media could 

be used to analyze the differences in nonlinear behavior. It has been previously shown 

[5,11,21,30] that surface structure has a significant role on the activity rate of ethanol 

oxidation and product distribution. The main EtOR products detected on Pt(111) in acidic 

media were acetic acid and acetaldehyde. Formation of CO and CO2 was negligible 

compared to the other products and in alkaline media a large amount of acetate was 

produced. Lopes et al. [31] also observed acetate as a product and clear identification of 

carbonate or acetaldehyde was not possible. 

The opposite situation was observed in the case of Pt(100), when a substantial amount of 

CO is formed at low potential values, blocking the surface for further reaction. At higher 

potential values, acetaldehyde and acetic acid are also detected. The scission of the C−C 

bond was observed on Pt(110) but the oxidation of acetaldehyde to acetic acid had a lower 

reaction rate than on the other surfaces.  

During the oscillations, CO is progressively accumulated on the surface until the potential 

rises. At this point, OHads and COads react via the LH mechanism, removing CO from the 
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surface and liberating Pt sites. The potential value goes back to a minimum and another 

cycle begins. It can therefore be concluded that, in addition to the claim that the main 

product in EtOR in alkaline media is acetate [11,32], the formation of COads and OHads is 

key to the emergence of instabilities at Pt(100) and Pt(110). However the other products 

and/or intermediates are formed, the selectivity and diffusion of these species at different 

sites and with different rate constants on each surface influence the nonlinear behavior and 

thus the presence or absence of oscillations. Further studies are ongoing to fully understand 

the nonlinear kinetic scenario and the absence of oscillatory behavior on Pt(111). 

 

5. Conclusions  

The oscillatory behavior of EtOR in alkaline media is studied using polycrystalline 

platinum and its basal planes. The different crystallographic planes have a strong influence 

on the reaction path, and thus on the distribution of products and byproducts and also on 

non-linear dynamic patterns. The similarity of the potential time series obtained on Pt(100) 

to the Pt(poly) results clearly indicates the major contribution of this surface and its kinetic 

processes to the overall polycrystalline response. Although COads is key in the emergence 

of instabilities, its selectivity on the different platinum sites, as well as the selectivities of 

the other species formed during EtOR, influence the nonlinear behavior, and the existence 

or absence of oscillations. Differences in kinetic parameters and the diffusion of species at 

each site also affect the oscillatory process. More work is in progress to clarify the role of 

surface steps, especially those vicinal to Pt(100) and Pt(111), and also to study the 

oscillatory behavior under potentiostatic control.   
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Figure Captions 

 

Figure 1. Simplified reaction pathway of ethanol electro-oxidation. The black lines indicate 

the reaction path at low pH values and the dotted lines indicate the reaction path at high pH 

values. Adapted from reference [3]. 

 

Figure 2. Galvanodynamic sweep of 0.5 M CH3CH2OH oxidation in 0.1 M NaOH on (a) 

Pt(poly) and (b) Pt(111) at 1.0 µA s
−1

,  (c) Pt(100) and (d) Pt(110)  at 0.15 µA s
−1

 and the 

corresponding blanks of each electrode in the insets, all at 50 mV s
−1

. 

 

Figure 3. Potential oscillation during 0.5 M CH3CH2OH oxidation on (a) Pt(poly), (b) 

Pt(111), (c) Pt(100) and (d) Pt(110) in 0.1 M NaOH. Potential-time series performed at a 

current density of 2.31 mA cm
-2

 for Pt(poly), 0.195 mA cm
-2

 for Pt(100), 0.465 mA cm
-2

 

for Pt(110) and 0.98 mA cm
-2

 for Pt(111).  
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Fig. 1  
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Fig. 2  
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Fig. 3  
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Graphical abstract  
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Highlights 

  

 Ethanol oxidation on platinum in alkaline media exhibits potential oscillations. 

 The oscillatory behavior is structure sensitive. 

 Pt(100) provides the major contribution to the overall response. 

 The C-C bond-breaking rate is: Pt(100) > Pt(110) >  Pt(111). 


