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1 Introduction

This work deals with the problem of analysing the sensitivity of a vector convex optimization

problem with respect to changes in the right-hand side. This topic has been widely studied

by many authors since the works of Karush in 1939 and Kuhn and Tucker in 1951. Several

significant results can be found in the papers [1–5].

There is a noteworthy fact that marks an essential difference between scalar and vectorial

programming. Whereas in the case of scalar programming, the optimal point reached is a

minimum point, and therefore unique; in the case of vectorial programming, the optimal

ones are Pareto minimal or nondominated points. This fact implies that, in the vectorial

case, the efficient set is not necessarily a singleton, and therefore, the problem of analysing

its sensitivity becomes the problem of studying a point-to-set or set-valued map.

Traditionally, the problem generated by the appearance of this set-valued map has been

solved by the implementation of selections in the efficient set (see, for example, [6, 7]).

In this way, the arisen set-valued map is reduced to a conventional point-to-point map, on

which, subsequently, it is possible to study its differentiability. This approach has produced

significant results. For example, in [5], using a selection of a special kind of optima, cha-

racterized to become minimum when the objective function is composed with a positive

function T , the sensitivity of a convex vector optimization problem was measured. These

optimal points are called T -optimal points and, under weak assumptions (see [8]), they are

dense in the efficient set. This kind of optima has also been used in previous works such

as [5–8], where it was analysed the sensitivity of different types of multiobjective problems.

An alternative to the use of selections is to introduce set-valued maps in the sensitivity

analysis. This approach allows us to measure the evolution of certain sets of optima (not

necessarily singletons) with respect to changes of some parameters (see, for example, the
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papers [1, 2]). Following this methodology, the sensitivity of a differential vector optimiza-

tion problem with equality constraints was analysed in [9]. Similarly, the sensitivity of a

convex vector problem with inequality constraints was studied in [10]. In both cases, the

study was carried out by analysing the derivability and by computing the contingent deriva-

tive of the set-valued map solution. In this paper, we deal with the same problem as in [10],

but focusing on the tangential regularity of the set-valued solution map and the computation

of its circatangent derivative, also called Clarke derivative.

The use of the circatangent derivative in sensitivity analysis assures some kind of “stabi-

lity” in the obtained results. Intuitively, while the contingent cone of a set at a point consists

in limits of directions that go from the set to the point, the Clarke tangent or circatangent

cone “stabilizes” this tangency idea by allowing perturbations of the base point (see [11,

page 138]). This fact makes particularly interesting the introduction of this derivative in the

sensitivity analysis. The paper [12], by Chuong and Yao, is one of the first results in this

direction. However, the price of this stability could sometimes be quite high since the cir-

catangent cone may be too small or even reduced to the singleton {0}. This might occur for

example in absence of convexity (see [13, page 129]). In those cases, the circatangent deriva-

tive does not provide any information, and the sensitivity analysis must be accomplished by

using others set-valued derivatives (contingent, paratingent, and so on).

The article is organized as follows. Section 2 introduces notation, basic concepts, and

some results that will be used throughout the paper. Section 3 is devoted to identify some

regularity conditions that allow us to extend some useful properties of Fréchet differentiable

maps to tangentially regular set-valued maps. Theorem 3.1 constitutes the main result of

this section. Sensitivity analysis is the aim of Section 4. Namely, Theorem 4.2 states that

the sensitivity of the problem, measured through the circatangent derivative, depends on a

suitable Lagrange multiplier, solution of a dual problem, and its derivative.
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2 Notation and Preliminaries

Let X, Y, Z and W be four Banach spaces and let assume that Y , Z and W are ordered

vector spaces with positive cones Y+, Z+ and W+, respectively, being the orders of Y and

W antisymmetric and the order of W verifying the infimum axiom (i.e., every non-empty

order-bounded from below subset of W has an infimum in W ). From now on, the cones Y+,

Z+, and W+ are assumed to be closed and Z+ and W+ with non-empty interior.

Let T : Y → W be a positive (i.e., T (Y+\{0}) ⊂ W+\{0}), linear, and continuous surjec-

tive map such that Ker T has a topological supplement, YT . Let T̂ denote the restriction of

T to YT and π the natural projection from Y onto Ker T . It follows from the open mapping

Theorem (Theorem 2.11 in [14]) that the inverse operator T̂−1 is continuous. Let denote by

V ⊂ Z an open and convex set such that 0 /∈ V , by D ⊂ X a convex set, and by f : D → Y

and g : D → Z two convex functions. Consider now the problem

Min f (x) s.t. x ∈ D, g(x) ≤ b, (1)

for every b ∈ V .

It is said that a feasible point xb of Problem (1) (i.e., xb ∈ D and g(xb) ≤ b) is a

T -optimal solution of Problem (1) iff Tf (xb) ≤ Tf (x) for every x ∈ D such that g(x) ≤ b.

If xb is a T -optimal solution of Problem (1), then f(xb) is an optimal point of Problem (1),

i. e., f(xb)− f(x) 6∈ Y+ \ {0} for every x ∈ D such that g(x) ≤ b.

By L(Z,W ) we will denote the space of all linear and continuous maps from Z into W

endowed with the usual norm. We say that L ∈ L(Z,W ) is a Lagrange T -multiplier of

Problem (1) iff L ≥ 0 (i.e., L(Z+) ⊂W+) and

Inf {Tf (x) : x ∈ D, g(x) ≤ b} = Inf {Tf (x) + L(g (x)− b) : x ∈ D} ∈W.
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Theorem 3 in [5] yields that, if there exists a T -optimal solution of Problem (1) and the

Slater condition is satisfied (i.e., if there is x1 ∈ D such that g (x1) ∈ −int Z+), then there

exists a Lagrange T -multiplier of Problem (1).

Let us define ΓT as the set of all the positive operators L ∈ L(Z,W ) such that the set

{Tf (x) + Lg (x) : x ∈ D}

is an order-bounded from below subset of W . Let us set, for each L ∈ ΓT ,

ϕ(T,L) := Inf {Tf (x) + Lg (x) : x ∈ D} ∈W,

and, for each G ∈ L(Z, Y ) such that TG ∈ ΓT , the dual map

ψ (T,G) := T̂−1ϕ (T, TG) ∈ YT .

Now, let us consider the following dual program

Max (ψ (T,G)−G (b)) s.t. G ∈ L (Z, Y ) , TG ≥ 0, and TG ∈ ΓT , (2)

for every b ∈ V .

It is said that a feasible solution Gb ∈ L(Z, Y ) of Problem (2) is a T -optimal dual solution

of Problem (2) iff

T (ψ (T,G)−G (b)) ≤ T (ψ (T,Gb)−Gb (b)),

for every feasible solution G ∈ L (Z, Y ).

Finally, iff xb is a T -optimal solution of Problem (1), Gxb is a T -optimal dual solution of

Problem (2), and

f (xb) = ψ (T,Gxb)−Gxb (b) , (3)

then we say that [xb, Gxb ] are T -optimal associated solutions. Theorem 10 in [5] states that,

given xb a T -optimal solution of Problem (1), there exists a T -optimal dual solution Gxb
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of Problem (2) such that [xb, Gxb ] are T -optimal associated solutions if, and only if, there

exists a Lagrange T -multiplier Lb ∈ L(Z,W ) of Problem (1); in this case Lb = TGxb .

Here, we recall some of the essential concepts of set-valued analysis that we will use

throughout this work (further details can be found in [13] or [11]).

Let S be a normed space, A ⊂ S a non-empty set, A its closure in the norm topology,

and x ∈ A. The Bouligand or contingent cone TA (x) is defined by

TA(x) :=

{
v ∈ S : lim inf

h→0+

d (A, x+ hv)

h
= 0

}
.

Therefore, v ∈ TA (x) if, and only if, there exist two sequences, {hn}∞n=1 ⊂ R+\{0}

converging to 0 and {vn}∞n=1 ⊂ S converging to v, such that x + hnvn ∈ A for every

n ∈ N. The intermediate or adjacent cone T [A (x) is defined by

T [A(x) :=

{
v ∈ S : lim

h→0+

d (A, x+ hv)

h
= 0

}
.

Therefore, v ∈ T [A (x) if, and only if, for every sequence {hn}∞n=1 ⊂ R+\{0} converging

to 0, there exists a sequence {vn}∞n=1 ⊂ S converging to v such that x + hnvn ∈ A for

every n ∈ N. The Clarke or circatangent cone CA (x) is defined by

CA(x) :=

v ∈ S : lim
h→0+

A3x̂→x

d (A, x̂+ hv)

h
= 0

 .

Therefore, v ∈ CA (x) if, and only if, for every two sequences, {hn}∞n=1 ⊂ R+\{0} con-

verging to 0 and {xn}∞n=1 ⊂ A converging to x, there exists a sequence {vn}∞n=1 ⊂ S

converging to v such that xn + hnvn ∈ A for every n ∈ N. The following inclusions are

fulfilled: CA (x) ⊂ T [A (x) ⊂ TA (x) .

Let us fix two normed spaces S1 and S2, a subset A ⊂ S1, a set-valued map

F : A ⊂ S1 ⇒ S2, and x0 ∈ Dom F := {x ∈ A : F (x) 6= ∅}. F is said to be lower

semicontinuous at x0 iff, for every y ∈ F (x0) and any sequence {xn}∞n=1 ⊂ Dom(F ) con-

verging to x0, there exists a sequence {yn}∞n=1 ⊂ Y converging to y such that yn ∈ F (xn)
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for every n ∈ N. Let (x, y) ∈ Graph F := {(x, y) ∈ S1 × S2 : y ∈ F (x)}. The Bouligand

or contingent derivative DF (x, y) of F at (x, y) is the set-valued map from S1 to S2 defined

by

GraphDF (x, y) := TGraphF (x, y),

the adjacent derivative D[F (x, y) of F at (x, y) is the set-valued map from S1 to S2 defined

by

GraphD[F (x, y) := T [GraphF (x, y),

and the circatangent derivative is the set-valued map from S1 to S2 defined by

GraphCF (x, y) := CGraphF (x, y).

F is said to be derivable at (x, y) ∈ GraphF iff DF (x, y) = D[F (x, y). If F is single-

valued and Fréchet differentiable at x, then F is also derivable at (x, F (x)) and we have

DF (x, y)(u) = F ′(x, u) for every u ∈ S1. F is said to be tangentially regular at the point

(x, y) ∈ GraphF iff DF (x, y) = CF (x, y). If F is single-valued and continuously Fréchet

differentiable at x, then F is tangentially regular at (x, F (x)) and CF (x, y)(u) = F ′(x, u)

for every u ∈ S1.

3 Regularity Conditions for Tangentially Regular Set-Valued Maps

This section is devoted to deduce some regularity conditions, that allow to extend a useful

property of Fréchet differentiable maps to tangentially regular set-valued maps.

Let us consider throughout this section a set-valued mapΣ : V ⊂ Z ⇒ L(Z, Y ), a point

(b0, G0) ∈ GraphΣ, and the set-valued map Σ̌ : V ⊂ Z ⇒ Y defined by Σ̌(b) := Σ(b)(b)

for every b ∈ V.
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If Σ is a single-valued and Fréchet differentiable map, then Σ̌ is also Fréchet differen-

tiable (see Lemma 11 in [5]). Nevertheless, this does not remain true for tangentially regular

maps, even if they are derivable. In Theorem 6 of [9] it is proved that, when Σ is derivable,

a necessary and sufficient condition to guarantee the derivability of Σ̌ is that Σ fulfils pro-

perty R formulated in Definition 5 of [9]. Here we recall it.

Definition 3.1 The set-valued map Σ satisfies property R at (b0, G0) when, given three

sequences {bn}∞n=1 ⊂ Z, {hn}∞n=1 ⊂ R+\{0}, and {Gn}∞n=1 ⊂ L(Z, Y ) such that

a.1) {bn}∞n=1 is convergent and {hn}∞n=1 converges to 0,

a.2) Gn ∈ Σ(b0 + hnbn) for every n ∈ N and the sequence

{
Gn(b0 + hnbn)−G0(b0)

hn

}∞
n=1

is convergent,

there exist two sequences, {b̄n}∞n=1 ⊂ Z and {Ḡn}∞n=1 ⊂ L(Z, Y ) such that

b.1) limn→∞ b̄n = limn→∞ bn,

b.2) Ḡn ∈ Σ(b0 + hnb̄n) for every n ∈ N and

lim
n→∞

Ḡn(b0 + hnb̄n)−G0(b0)

hn
= lim
n→∞

Gn(b0 + hnbn)−G0(b0)

hn
,

b.3) the sequence

{
Ḡn −G0

hn

}∞
n=1

is convergent in L(Z, Y ).

Nonetheless, as the following example shows, property R is not sufficient to assure the

tangential regularity of Σ̌ even though Σ is tangentially regular. By R+ we will denote the

set of non-negative real numbers, by 0`2 the zero element of the Hilbert space `2, and by

0L, the zero element of L(R, `2).
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Example 3.1 Let us define Σ : R+ ∪ {− 1
2i : i ∈ N}⇒ L(R, `2) by

Σ(t)(x) :=



(tx, 0, . . . , 0, . . . ), if t ≥ 0,

i-th coordinate

(0, . . . , 0,

︷︸︸︷
2

i
2
x, 0, . . . ), if t = − 1

2i with i ∈ N,

for every x ∈ R. Then Σ satisfies property R and it is tangentially regular at (0,0L), but Σ̌

is not tangentially regular at (0,0`2).

Proof It can easily be verified that Σ satisfies property R at (0,0L) and

TGraphΣ(0,0L) = CGraphΣ(0,0L) = {(t, (tx, 0, . . . , 0, . . . )) ∈ R+ × L(R, `2), x ∈ R}.

Since Σ̌ : R+ ∪ {− 1
2i : i ∈ N}⇒ `2 is defined as

Σ̌(t) := Σ(t)(t) =



(t2, 0, . . . , 0, . . . ), if t ≥ 0,

i-th coordinate

(0, . . . , 0,

︷ ︸︸ ︷
−2

− i
2

, 0, . . . ), if t = − 1
2i with i ∈ N,

then

TGraph Σ̌(0,0`2) = {(t,0`2) ∈ R+ × `2},

while CGraph Σ̌(0,0`2) = {(0,0`2)}. Thus, Σ is tangentially regular while Σ̌ is not. �

Consequently, we need to introduce other regularity condition to guarantee the tangential

regularity of Σ̌.

Definition 3.2 The set-valued map Σ satisfies property S at (b0, G0) when, given two se-

quences {an}∞n=1 ⊂ V and {Rn}∞n=1 ⊂ L(Z, Y ) such that

c.1) {an}∞n=1 converges to b0 and Rn ∈ Σ(an) for every n ∈ N,

c.2) {Rn(an)}∞n=1 converges to G0(b0),
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there exists a sequence
{
R̄n
}∞
n=1
⊂ L(Z, Y ) such that

d.1) R̄n ∈ Σ(an) and R̄n(an) = Rn(an) for every n ∈ N,

d.2)
{
R̄n
}∞
n=1

converges to G0.

Theorem 3.1 Suppose that the set-valued map Σ is tangentially regular and satisfies pro-

pertiesR and S at (b0, G0). Then the corresponding set-valued map Σ̌ is tangentially regular

at (b0, G0(b0)) and

CΣ̌(b0, G0(b0))(u) = CΣ(b0, G0)(u)(b0) +G0(u), (4)

for every u ∈ Z.

Proof Let (u, v) ∈ TGraph Σ̌(b0, G0(b0)). Then there exist two sequences,

{hn}∞n=1 ⊂ R+\{0} converging to 0 and {(bn, vn)}∞n=1 ⊂ Z×Y converging to (u, v) such

that

(b0, G0(b0)) + hn(bn, vn) ∈ Graph Σ̌,

for every n ∈ N. Therefore, for each n ∈ N, there exists Gn ∈ Σ(b0 + hnbn) such that

vn =
Gn(b0 + hnbn)−G0(b0)

hn
.

Since Σ satisfies property R, there exist two sequences, {b̄n}∞n=1 ⊂ Z and

{Ḡn}∞n=1 ⊂ L(Z, Y ), such that {b̄n}∞n=1 converges to u, Ḡn ∈ Σ(b0 + hnb̄n) for every

n ∈ N, the following equality holds

lim
n→∞

Ḡn(b0 + hnb̄n)−G0(b0)

hn
= v,

and the sequence

{
Ḡn −G0

hn

}∞
n=1

,
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is convergent in L(Z, Y ). Setting

Gv := lim
n→∞

Ḡn −G0

hn
∈ L(Z, Y ),

we obtain that (u,Gv) ∈ TGraphΣ(b0, G0), and thus, since Σ is tangentially regular at

(b0, G0),

(u,Gv) ∈ CGraphΣ(b0, G0). (5)

Let {h̄n}∞n=1 ⊂ R+\{0}, {an}∞n=1 ⊂ V , and {Rn}∞n=1 ⊂ L(Z, Y ) be three sequences such

that {h̄n}∞n=1 converges to 0, {an}∞n=1 converges to b0, Rn ∈ Σ(an) for every n ∈ N,

and {Rn(an)}∞n=1 converges to G0(b0).

SinceΣ satisfies property S, there exists a sequence {R̄n}∞n=1 ⊂ L(Z, Y ) converging toG0

such that R̄n ∈ Σ(an) and R̄n(an) = Rn(an) for every n ∈ N. Therefore, from (5), there

exists a sequence {(dn, Ln)}∞n=1 ⊂ Z × L(Z, Y ) converging to (u,Gv) such that

(an, R̄n) + h̄n(dn, Ln) ∈ GraphΣ,

for every n ∈ N. Taking for each n ∈ N Sn := R̄n + h̄nLn, we obtain that

Sn ∈ Σ(an + h̄ndn) for every n ∈ N and

lim
n→∞

Sn − R̄n
h̄n

= lim
n→∞

Ln = Gv.

Hence

lim
n→∞

Sn(an + h̄ndn)− R̄n(an)

h̄n
= lim

n→∞
Sn −Rn
h̄n

(an) + Sn(dn)

= Gv(b0) +G0(u) = v,

and therefore, since for every n ∈ N

(an, Rn(an)) + h̄n

(
dn,

Sn(an + h̄ndn)− R̄n(an)

h̄n

)
∈ Graph Σ̌,

we finally obtain that (u, v) ∈ CGraph Σ̌(b0, G0(b0)).
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Equality (4) immediately follows from Theorem 6 in [9], taking into account that every

tangentially regular set-valued map is derivable and its circatangent and contingent deriva-

tives coincide. �

The following example shows that Σ and Σ̌ may be tangentially regular, while Σ does not

satisfy property S.

Example 3.2 Let us consider Σ : R2 ⇒ L(R2,R) defined by

Σ(t1, t2) :=


(0, 0), if (t1, t2) ∈ R2 \ ∪∞n=1{( 1

2n ,
1

2n )},

(1,−1), if (t1, t2) ∈ ∪∞n=1{( 1
2n ,

1
2n )},

and (b0, G0) = ((0, 0), (0, 0)) ∈ GraphΣ. Then Σ and Σ̌ are tangentially regular; never-

theless, Σ does not satisfy property S.

Proof Some easy computations show that

TGraphΣ((0, 0), (0, 0)) = CGraphΣ((0, 0), (0, 0)) =

= {((t1, t2), (0, 0)) ∈ R2 ×R2 : (t1, t2) ∈ R2},

and

TGraph Σ̌((0, 0), 0) = CGraph Σ̌((0, 0), 0) = {((t1, t2), 0) ∈ R2 : (t1, t2) ∈ R2}.

Therefore, Σ and Σ̌ are tangentially regular. Nevertheless, Σ does not satisfy property S,

since for an = ( 1
2n ,

1
2n ) and Rn = Σ( 1

2n ,
1

2n ) = (1,−1) for every n ∈ N, there is not any

sequence
{
R̄n
}∞
n=1

such that R̄n ∈ Σ(an) and
{
R̄n
}∞
n=1

converges to (0, 0). �
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4 Sensitivity Analysis

From now on, let us consider the two following set-valued maps.

Definition 4.1 The T -optimal solution set-valued map of (1), Υ , and the T -optimal dual

solution set-valued map of Problem (1), Ψ , are defined by

Υ : V ⇒ Y,

b⇒ Υ (b) := {f(xb) : xb is a T -optimal solution of (1)},

and

Ψ : V ⇒ Y,

b⇒ Ψ (b) := {Gxb ∈ L(Z, Y ) : xb is a T -optimal solution of (1)

and [xb, Gxb ] are associated solutions},

where V ⊂ Z is an open and convex set such that 0 /∈ V .

Remark 4.1 If Ψ is lower semicontinuous in V, from Lemma 2 of [10], it follows that TΨ

is a single-valued map.

Theorem 4.1 Let (b0, G0) ∈ Graph Ψ and Ψ̌ : V ⇒ Y be the set-valued map defined by

Ψ̌(b) := Ψ(b)(b) for every b ∈ V. If Ψ is lower semicontinuous in V, tangentially regular at

(b0, G0), and TΨ is Fréchet differentiable at b0 ∈ V, then Ψ̌ is lower semicontinuous on V,

tangentially regular at (b0, G0(b0)), and

CΨ̌(b0, G0(b0))(u) = CΨ(b0, G0)(u)(b0) +G0(u), (6)

for every u ∈ Z.

Proof The lower semicontinuity of Ψ̌ easily follows from the direct application of the de-

finition; therefore, the proof is omitted. Let us prove the tangential regularity of Ψ̌ . Since Ψ
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satisfies property R (see the proof of Theorem 4 in [10]), by using Theorem 3.1, we have

just to prove that Ψ satisfies property S at (b0, G0).

Let {an}∞n=1 ⊂ V and {Rn}∞n=1 ⊂ L(Z, Y ) be two sequences such that {an}∞n=1 con-

verges to b0, Rn ∈ Ψ(an) for every n ∈ N, and {Rn(an)}∞n=1 converges to G0(b0).

Let xan be a T -optimal solution of (1) associated to Rn, and consider J [Rn] the

linear and continuous map defined as

J [Rn](z) := T̂−1TRn(z)− πf(xan)β(an)(z), (7)

for every z ∈ Z and n ∈ N, where β : V → Z∗ is a continuously Fréchet differentiable

function in V such that β(b)(b) = 1 for every b ∈ V 1. By Z∗ we denote the topological

dual space of Z.

Let us check that the map J [Rn] is a T -optimal dual solution of (2) associated with xan for

every n ∈ N.

Indeed, since Rn is a T -optimal dual solution of (2), from (7) we get that

TJ [Rn] = TRn ≥ 0 (8)

for every n ∈ N. Therefore, ϕ (T, TRn) = ϕ (T, TJ [Rn]), and then,

ϕ (T, TJ [Rn]) = ϕ (T, TRn)

= Inf {Tf (x) + TRng (x) : x ∈ D}

= Inf {Tf (x) + TRn (g (x)− an) : x ∈ D}+ TRn(an)

for every n ∈ N. Thus,

ϕ (T, TJ [Rn]) = Tf(xan) + TRn(an), (9)

1 The existence of such a β comes from a separation theorem. Indeed, since V is convex and 0 /∈ V,

Theorem 3.4 in [14] provides a z∗0 ∈ Z∗ such that z∗0 (0) < z∗0 (b) for every b ∈ V . The function

β : V → Z∗, defined as β(b) = z∗0/z
∗
0 (b), satisfies the required conditions.
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and hence,

TJ [Rn] ∈ ΓT (10)

for every n ∈ N. Consequently, from (8) and (10) we get that J [Rn] is a dual feasible

solution of (2) for every n ∈ N.

On the other side, since Rn is a T -optimal dual solution of (2),

T (ψ(T,G)−G(an)) ≤ T (ψ(T,Rn)−Rn(an)) (11)

for each dual feasible solution G ∈ L(Z, Y ) of (2), and then, from (8) it follows that

ψ(T,Rn) = T̂−1ϕ (T, TRn) = T̂−1ϕ (T, TJ [Rn]) = ψ(T, J [Rn])

and TJ [Rn](an) = TRn(an) for every n ∈ N. Therefore,

T (ψ(T,G)−G(an)) ≤ T (ψ(T, J [Rn])− J [Rn](an))

for each dual feasible solutionsG ∈ L(Z, Y ) of (2), that is, J [Rn] is T -optimal dual solution

of (2) for every n ∈ N.

Finally, from (9) it follows that

ψ (T, J [Rn]) = T̂−1Tf(xan) + T̂−1TRn(an) (12)

for every n ∈ N. Now, since

J [Rn](an) = T̂−1TRn(an)− πf(xan)β(an)(an) = T̂−1TRn(an)− πf(xan),

we get that

T̂−1TRn(an) = J [Rn](an) + πf(xan),

and then, from (12), we obtain that

ψ (T, J [Rn]) = T̂−1Tf(xan) + J [Rn](an) + πf(xan) = f(xan) + J [Rn](an),
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that is,

f(xan) = ψ (T, J [Rn])− J [Rn](an)

for every n ∈ N. Consequently, J [Rn] is a T -optimal dual solution of (2) associated with

xan for every n ∈ N.

Likewise, if xb0 is the T -optimal solution of (1) associated with G0, then the linear and

continuous map J [G0], defined as

J [G0](z) := T̂−1TG0(z)− πf(xb0)β(b0)(z),

for every z ∈ Z, is a T -optimal dual solution of (2) associated with xb0 .

Consider now the sequence {R̄n}∞n=1 ⊂ L(Z, Y ), defined as

R̄n(z) := J [Rn](z) + (G0 − J [G0])(z)− (G0 − J [G0])(an)β(an)(z), (13)

for every z ∈ Z and n ∈ N.

To complete the proof we will check that R̄n(an) = Rn(an), R̄n ∈ Ψ(an) for every n ∈ N,

and that limn→∞ R̄n = G0.

Indeed, since [xan , Rn] are associated solutions, from (3) we get that

πf (xan) = −πRn (an) ,

and thus,

R̄n(an) = J [Rn](an) = T̂−1TRn(an)− πf(xan) =

= T̂−1 TRn(an) + πRn (an) = Rn(an),

(14)

for every n ∈ N.

Moreover, since TRn = TJ [Rn] and

(G0 − J [G0])(z) = (G0 − T̂−1TG0)(z) + πf(xb0)β(b0)(z) ∈ Ker T, (15)

for every z ∈ Z, we get that

TR̄n = TRn (16)
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for every n ∈ N. Now, from (3), (14) and (16) we obtain that [xan , R̄n] are

T -optimal associated solutions and, therefore, R̄n ∈ Ψ(an) for every n ∈ N.

Finally, let us check that

lim
n→∞

R̄n = G0.

Indeed, from (13) we have that

lim
n→∞

R̄n = G0 − J [G0] + lim
n→∞

J [Rn]− lim
n→∞

(G0 − J [G0])(an)β(an). (17)

Let us consider now separately the two limits on the right-hand side of (17).

On one side we have that

lim
n→∞

J [Rn] = lim
n→∞

T̂−1TRn − lim
n→∞

πf(xan)β(an). (18)

Since TΨ is Fréchet differentiable at b0, and hence continue, the continuity of T̂−1 directly

yields that

lim
n→∞

T̂−1TRn = T̂−1TG0.

Furthermore, since TRn = TJ [Rn], taking into account that both Rn and J [Rn] are asso-

ciated solutions with xan , from (3) we have that Rn(an) = J [Rn](an) for every n ∈ N,

and thus, from (14) we get that {J [Rn](an)}∞n=1 converges to G0(b0). Likewise, since

TG0 = TJ [G0], from (3) it follows that G0(b0) = J [G0](b0). Hence {J [Rn](an)}∞n=1

converges to J [G0](b0), and therefore, since

‖J [Rn](an)− J [G0](b0)‖ =

=
∥∥∥T̂−1TRn(an)− πf(xan)β(an)(an)− (T̂−1TG0(b0)− πf(xb0)β(b0)(b0))

∥∥∥ ≥
≥
∣∣∣ ∥∥∥T̂−1TRn(an)− T̂−1TG0(b0)

∥∥∥− ∥∥πf(xan)− πf(xb0)
∥∥ ∣∣∣ ,

and

lim
n→∞

∥∥∥T̂−1 TRn(an)− T̂−1 TG0(b0)
∥∥∥ = 0,
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we obtain that

lim
n→∞

πf(xan) = πf(xb0).

Thus

lim
n→∞

πf(xan)β(an) = πf(xb0)β(b0),

and hence, from (18) we have

lim
n→∞

J [Rn] = T̂−1 TG0 − πf(xb0)β(b0) = J [G0].

On the other side,

lim
n→∞

(G0 − J [G0])(an)β(an) = (G0 − J [G0])(b0)β(b0) = 0.

Therefore, from (17), we obtain that

lim
n→∞

R̄n = G0 − J [G0] + J [G0] = G0.

�

The following example shows that, in the former result, the assumption of tangential

regularity on Ψ can not be dropped. Hence, we can claim that the former theorem is a

strengthening of Theorem 4 in [10].

Example 4.1 Let us define Σ : R+ ∪ {− 1
2i : i ∈ N}⇒ L(R, `2) by

Σ(t)(x) :=



(tx, 0, . . . , 0, . . . ), if t ≥ 0,

i-th coordinate

(0, . . . , 0,

︷ ︸︸ ︷
2
− i

2
x, 0, . . . ), if t = − 1

2i with i ∈ N,

for every x ∈ R. ThenΣ satisfies propertiesR and S at (0,0L),Σ is not tangentially regular

at (0,0L), and Σ̌ is not tangentially regular at (0,0`2) either.
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Proof It can easily be verified that Σ satisfies properties R and S at (0,0L) and

TGraphΣ(0,0L) = {(t,0L) ∈ R× L(R, `2) : t ≥ 0},

while CGraph Σ̌(0,0`2) = {(0,0`2)}. Thus, Σ is not tangentially regular at (0,0L). Since

Σ̌ : R+ ∪ {− 1
2i : i ∈ N}⇒ `2 is defined by

Σ̌(t) := Σ(t)(t) =



(t2, 0, . . . , 0, . . . ), if t ≥ 0,

i-th coordinate

(0, . . . , 0,

︷ ︸︸ ︷
−2

− 3
2
i

, 0, . . . ), if t = − 1
2i with i ∈ N,

then

TGraph Σ̌(0,0`2) = {(t,0`2) ∈ R× `2 : t ≥ 0},

while CGraph Σ̌(0,0`2) = {(0,0`2)}. Thus, Σ̌ is no tangentially regular at (0,0`2). �

Theorem 4.2 Let (b0, f(xb0)) ∈ GraphΥ. If Ψ is lower semicontinuous on V, tangentially

regular at (b0, Gxb0
), and TΨ is continuously Fréchet differentiable at b0, then Υ is lower

semicontinuous at b0, tangentially regular at (b0, f(xb0)), and

CΥ (b0, f(xb0))(u) = −Gxb0
(u)− πCΨ(b0, Gxb0

)(u)(b0), (19)

for every u ∈ Z.

Proof Let Ψ̌ : V ⇒ Y be the set-valued map defined as Ψ̌(b) := Ψ(b)(b) for every b ∈ V.

Since

Υ (b) = ψ(T, Ψ(b))− Ψ̌(b), (20)

for every b ∈ V, we have

TΥ (b) = ϕ(T, TΨ(b))− T Ψ̌(b), (21)
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for every b ∈ V. The proof 2 of Lemma 2 in [10] yields that TΥ is continuously Fréchet

differentiable at b0, and thus, by Theorem 5 and Theorem 10 in [5] we obtain that

(TΥ )′(b0, u) = −TΨ(b0)(u), for every u ∈ Z.

Now, from Lemma 11 of [5], we get that T Ψ̌(b) is continuously Fréchet differentiable at b0

and

(
T Ψ̌
)′

(b0, u) = TΨ(b0)(u) + (TΨ)′(b0, u)(b0),

for every u ∈ Z. Therefore, setting ϕ̃(b) := ϕ(T, TΨ(b)) for every b ∈ V , from (21) it

follows that

−TΨ(b0)(u) = ϕ̃′(b0, u)− TΨ(b0)(u)− (TΨ)′(b0, u)(b0),

for every u ∈ Z. Consequently, ϕ̃ is continuously Fréchet differentiable at b0 and

ϕ̃′(b0, u) = (TΨ)′(b0, u)(b0),

for every u ∈ Z. Hence, taking ψ̃(b) := T̂−1ϕ̃(b) = ψ(T, Ψ(b)) for every b ∈ V , we get

that ψ̃ is continuously Fréchet differentiable at b0. Furthermore, since Ψ is tangentially regu-

lar at (b0, Gxb0
), from Theorem 4.1, we have that Ψ̌ is tangentially regular at (b0, Gxb0

(b0)).

Therefore, applying Propositions 5.1.2 and 5.2.2 of [13] to (20), we obtain that Υ is tangen-

tially regular at (b0, f(xb0)).

To finish the proof, let us note that (19) immediately follows from Theorem 6 in [10],

since every tangentially regular set-valued map is derivable and its circatangent and contin-

gent derivatives coincide.

The lower semicontinuity of Υ at b0 directly follows from (20), taking into account the

continuity of ϕ̃ at b0 and Theorem 4.1. �

2 The proof of Lemma 2 in [10] contains a misprint, the equality [TΥ ]′(b0, u) = TGi(b0, u) must be

replaced by [TΥ ]′(b0, u) = −TGi(b0, u) for i = 1, 2.
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Remark 4.2 Note that the scalar case is included in Theorem 4.2 as a particular case.

Indeed, taking Z := W := R and T as the identity map, the set-valued map Υ becomes a

conventional continuously Fréchet differentiable point-to-point map, and then, Theorem 4.2

takes the form

Υ ′(b0, u) = CΥ (b0, f(xb0))(u) = −Gxb0
(u) ∀u ∈ IR,

since Ker T = {0}, and the circatangent derivative and the Fréchet differential coincide.

Consequently, our approach extends the classical result from scalar to vector optimization

by means of the circatangent derivative, providing a set-valued extension of this.

Definition 4.2 Let p ∈ R\{0}, it is said that (1) is p-homogeneous when the two following

properties hold

i) D is a convex cone,

ii) f(tx) = tpf(x) and g(tx) = tpg(x) for every x ∈ D and t > 0.

Note that linear problems are a very important particular case of 1-homogeneous pro-

blems. The following result is a particularization of Theorem 4.2 for p-homogeneous pro-

blems.

Corollary 4.1 Assume that Problem (1) is p-homogeneous for every b ∈ V and the hypothe-

sis of Theorem 4.2 hold. Then Υ is lower semicontinuous at b0, tangentially regular at

(b0, f(xb0)), and

CΥ (b0, f(xb0))(u) = −Gxb0
(u)− CΨ(b0, Gxb0

)(u)(b0), (22)

for every u ∈ Z.

Proof From Theorem 3.2 of [15] it follows that
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Υ (b) = −Ψ(b)(b),

for every b ∈ V. Thus, applying Theorem 4.1 to the previous equality, we get that Υ is lower

semicontinuous at b0, tangentially regular at (b0, f(xb0)), and

CΥ (b0, f(xb0))(u) = −Gxb0
(u)− CΨ(b0, Gxb0

)(u)(b0),

for every u ∈ Z. �

Remark 4.3 Note that, under the assumptions of Corollary 4.1, we have that

CΨ(b0, Gxb0
)(u)(b0) = πCΨ(b0, Gxb0

)(u)(b0),

for every u ∈ Z. This is a direct consequence of (19) and (22).

The following example shows how Theorem 4.2 works.

Example 4.2 Let us define µ({n}) := e−n ∀n ∈ N = {0, 1, 2, . . . }, and the Hilbert space

L2(µ) := {(λn)n ∈ IRN :
+∞∑
n=0

λ2
ne
−n < +∞}.

Let us consider D := X := L2(µ), Y := R3, Z := W := R, V := ( 9
10 ,

11
10 ) ⊂ R,

T := (1, 1,
√

2), and the problem

Min (−
∑
n u3n+2e

−3n−2 +
∑
n

√
2u3n+1e

−3n−1 −
∑
n u3ne

−3n,

−
∑
n u3n+2e

−3n−2 −
∑
n

√
2u3n+1e

−3n−1 −
∑
n u3ne

−3n,

∑
n

√
2u3n+2e

−3n−2 −
∑
n

√
2u3ne

−3n);

cosh
([∑

n u3ne
−3n

]2)− 1
2 ≤ b, (un)n ∈ D.

(23)

Let us define φ(b) := argcosh(b+ 1
2 ) for every b ∈ V . Solving Problem (23) we obtain the

T -optimal solution set-valued map

Υ (b) = {(−
√
φ(b) +

√
2µ− λ,−

√
φ(b)−

√
2µ− λ,−

√
2φ(b) +

√
2λ) : λ, µ ∈ IR}.
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Let us study the sensitivity of (23) at b = 1, x1 = (
√

argcosh 3
2 , 0, 0, · · · ), and so

f(x1) =

(
−
√

argcosh 3
2 ,−

√
argcosh 3

2 ,−
√

2 argcosh 3
2

)
. For short, we will denote

a =
√

argcosh 3
2 . We first analyse the sensitivity by calculating

CΥ (1, f(x1))(u) =

=
{(
−
√

5
5a u+

√
2µ− λ,−

√
5

5a u−
√

2µ− λ,−
√

10
5a u+

√
2λ
)

: λ, µ ∈ IR
}
.

(24)

Let us now apply Theorem 4.2 to verify (24). Since Ker T is the linear space generated

by {(−1,−1,
√

2), (1,−1, 0)}, we have Gx1(u) =
(√

5
5a u,

√
5

5a u,
√

10
5a u

)
, and the T -optimal

dual solution set-valued map of (23) is

Ψ (b) =

{(
2

ξ(b)
+

√
2µ− λ
b

,
2

ξ(b)
−
√

2µ+ λ

b
,
2
√

2

ξ(b)
+

√
2λ

b

)
: λ, µ ∈ IR

}
,

where ξ(b) :=
√
φ(b)
√

4b− 2
√

4b+ 6 and b ∈ V . Thus, for every u ∈ IR, we have that

CΨ (1, Gx1) (u)(1) = {(η(a)u+ κ(a)u−
√

2µ+ λ,

η(a)u+ κ(a)u+
√

2µ+ λ, η(a)u+
√

2κ(a)u−
√

2λ) : λ, µ ∈ IR},

where η(a) := − 1
5a3 and κ(a) := −6

√
5

25a . Hence

πCΨ (1, Gx1) (u)(1) = {(−
√

2µ+ λ,
√

2µ+ λ,−
√

2λ) : λ, µ ∈ IR}.

Finally, we obtain that

−Gx1(u)− πCΨ(1, Gx1)(u)(1) =

=

{
−
(√

5

5a
u,

√
5

5a
u,

√
10

5a
u

)
− (−

√
2µ+ λ,

√
2µ+ λ,−

√
2λ) : λ, µ ∈ IR

}
=

= CΥ (1, f(x1))(u),

for every u ∈ R, as Theorem 4.2 states.

Before ending this section we will particularize the obtained results for the case of a

linear VOP in a finite-dimensional Euclidean space. For that, we will review some notation



24 F. García, M. A. Melguizo Padial

and terminology. Now, f and g are linear maps, f : D ⊂ IRn → IRp and g : D ⊂ IRn →

IRm. Our problem is again,

Min f (x) s.t. x ∈ D, g(x) ≤ b,

for every b ∈ V . We fix W = IR, and consider λ : IRp → IR a linear map, i.e.,

λ = (λi) ∈ IRp, such that λi ≥ 0 for all i ∈ {1, · · · , p} and
∑
i λi = 1. Now let

Γλ = {µ ∈ IRm+ : {λT f(x) + µT g(x) : x ∈ D} is bounded from below},

ϕ(λ, µ) = Inf {λT f(x) + µT g(x) : x ∈ D} with µ ∈ Γλ,

and

ψ(λ, µ) =
1∑
i λ

2
i

ϕ(λ, µ)λ.

Then, the dual problem has the form

Max (ψ(λ,GTλ)−Gb) s. t. G ∈ IRp×m and GTλ ∈ Γλ.

Now, Corollary 4.1 applies, and (22) is again obtained, i.e.,

CΥ (b0, f(xb0))(u) = −Gxb0
(u)− CΨ(b0, Gxb0

)(u)(b0), ∀u ∈ IRm.

5 Conclusions

The objective of this article is to analyse the sensitivity of a convex multiobjective optimiza-

tion program with inequality constraints. Fixed a positive, linear, and continuous map T ,

the T -solution set-valued map is defined as the correspondence that assigns to each value
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of the parameter (the right-hand side), the set of the Pareto minimal points of its associa-

ted program on which T takes a minimum value. The behavior of the T -solution set-valued

map is quantitatively analysed by using the circatangent derivative. The use of this deriva-

tive transmits to the obtained results its characteristic stability. The main result of the paper

is Theorem 4.2, which states that the sensitivity of the program is measured by a Lagrange

multiplier, solution of the dual program introduced in [5], plus the projection of its derivative

onto the kernel of T . This theorem extends the classical result from scalar to vector program-

ming by means of the circatangent derivative, providing a set-valued extension of this. As

a particular case, a simpler version of Theorem 4.2 has been obtained for p-homogeneous

problems. The study has been developed in the context of arbitrary Banach spaces. There-

fore, the results are quite general and may be applied to many particular situations such as

static, dynamic, or semi-infinite problems.

Finally, let us remark that Theorem 4.2 can be regarded as a first step in solving a more

general problem in which the map T is not considered fixed, but varies among all the possi-

ble linear, continuous and positive maps. In this case, under some reasonable conditions, the

set of all the T -minimal points becomes dense in the efficient set, and thus, the study of its

sensitivity turns out to be particularly interesting.
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