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ABSTRACT  19 

Concern for the environment has lately heightened awareness about the need for recycling in the 20 

construction industry. However, some standards, such as the Spanish standard, only accept the 21 

recycling of aggregates derived from concrete, which limits the extensive use of construction 22 

and demolition waste, which are produced in much bigger volumes. The aim of this work was to 23 

explore the possibility of using recycled mixed aggregates (RMA) in the preparation of precast 24 

non-structural concretes. To that end different percentages of natural aggregate were replaced 25 

by RMA in non-structural elements (25, 50, 75 and 100%). Contents of cement, water, and the 26 

dosages commonly used by companies were unchanged by the introduction of RMA. The 27 

characterization of the prepared elements has been done using the specific tests for each type of 28 
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non-structural element (terrazzo for indoor use, hollow tiles, kerbstones and paving blocks): 29 

compression and flexural strength, water absorption, dimensional tolerances, abrasion and 30 

slipping resistance. The paving blocks, kerbstones, and hollow tiles prepared were tested for 31 

360 days. The stability of the tested properties confirmed the possibility of using these wastes 32 

on an industrial scale satisfying the standard requirements. 33 

However, the surface of terrazzo with RMA is not as good as that prepared with natural 34 

aggregate. 35 

 36 

Keywords: Mixed recycled aggregate, non-structural concrete, precast concrete, mechanical 37 

properties, water absorption. 38 
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 58 

1. INTRODUCTION 59 

Recycling and reuse are becoming increasingly necessary in today’s world. The construction 60 

industry, one of the greatest offenders in terms of pollution, is starting to be concerned about the 61 

issue. One of the main environmental problems caused by civil work and building construction 62 

is the amount of construction and demolition waste material (C&DW) created every year, which 63 

is deposited mainly in dumps. In addition to that, for every new work huge amounts of 64 

aggregate are required. A current trend to avoid the accumulation and treatment of waste and to 65 

reduce the consumption of natural resources needed to produce the aggregate is the use of 66 

recycled aggregates which retain the required properties of concrete. C&DW were used to 67 

produce concrete and the mechanical properties, as well as the water absorption were measured 68 

at 28 days (Medina et al., 2014), reaching the conclusion that regarding those properties the 69 

produced concrete would be apt for housing construction, but no measurment in the long term 70 

was taken, and properties may change with time. Mefteh et al., (2013) studied the influence of 71 

the moisture in the recycled aggregates determining that using pre-wet or saturated surface-dried 72 

aggregates improves the mechanical properties measured at 28 days, but again no measurement 73 

is made in the long term. This works deal with laboratory prepared samples also, and no 74 

especific use is thought for the prepared concrete samples. Other works determine the 75 

mechanical properties after one year (Thomas et al., 2014) but samples are prepared in the 76 

laboratory and some factors, such as w:c ratio are changed, fact that could be a problem when 77 

trying to manufacture concrete at an industrial scale. The measurement of the evolution of the 78 

properties required for the constructive use of the prepared elements is very important, because 79 

it shows the tendency, tha in case of being a decreasing tendency will not guarantee the 80 

properties in the long term. 81 

Directive 2008/98/CE about wastes (European Parliament, 2008) states the necessity of 82 

reducing the use of natural resources and the need for recycling. It predicts that by 2020 70% of 83 

the C&DW generated should be reused, recycled and assessed.   84 
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By means of processing C&DW, recycled aggregates are obtained. Depending on their original 85 

waste material, recycled aggregates could be concrete, ceramic or a mixture (recycled mixed 86 

aggregate, RMA). RMA constitutes around 80% of C&DW(Regional government of Madrid, 87 

2012). It comes from building demolitions and contains a wide range of materials, such as 88 

concrete waste, pavement material, ceramic products, and, in lower quantity, other materials 89 

such as gypsum, glass, wood, etc. A paper recently published (Rodríguez et al., 2015) studies 90 

the real situation of the reusing of C&DW in Spain, focused on the work of the recycling plants, 91 

and on the role of the Spanish Goverment . One of the conclusions of the work is that the 92 

government’s role should be more active promoting the reusing of C&DW. Present work is 93 

focused to explore the possibility of using these wastes at industrial scale for some constructive 94 

elements, and could help to enhance the clean industries. 95 

Efforts have been made on the study of reusing C&DW to obtain different constructive 96 

elements. Some studies (Sousa et al., 2003; Yang et al., 2011) have shown that, in elements 97 

made of vibro-pressed precast concrete, such as blocks or pavement blocks, the use of concrete 98 

recycled aggregates, in fine fraction as well as coarse fraction, the substitition of natural 99 

aggregate  by RMA up to 50% or 60%, had no strong effect. Other studies have analysed the 100 

behaviour of concrete pavements made with ceramic recycled aggregates. It was observed that 101 

increasing the percentage of substitution decreases strength, density and abrasion resistance. 102 

However, these works show that, up to a substitution percentage of 32.5%,  the criteria 103 

established by Regulation EN 1338 on pavement blocks are fulfilled (Jankovic et al., 2012). 104 

A comparison has been made between the performance of specimens of non-structural precast 105 

concrete for pavements (blocks), some of them with concrete recycled aggregates and others 106 

with ceramic recycled aggregates. The results show that with ceramic recycled aggregates 107 

density and compressive and tensile strength decrease, and the level of water absorption 108 

increases because of the higher absorption of water by ceramic materials used. The substitution 109 

of 25% of concrete aggregrates with ceramic recycled aggregates produces pavement which 110 

fulfils the Hong Kong regulation on traffic areas (Poon and Chan, 2006).  111 
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Soutsos et al. (Soutsos et al., 2011)  showed that it is possible to produce concrete for pavement 112 

blocks using concrete and ceramic recycled aggregates with similar mechanical properties to 113 

those of natural aggregrate, without any need to increase the amount of cement. Even tough 114 

some works replicated the industrial procedure in a laboratory (Soutsos et al., 2011), no one of 115 

these elements were produced at industrial scale, and the properties were measured at a given 116 

age (in general 28 days), leaving the uncertainty of the evolution of the behavior of the 117 

properties due to the presence of recycled aggregates.  118 

There are not many studies on the use of RMA in non-structural vibro-pressed precast concrete 119 

(López Gayarre et al., 2013; Poon et al., 2009). According to the results obtained in these 120 

studies, compressive strength, or resistance, in the case of vibro-pressed elements, decreases 121 

whenever the proportion of RMA increases, both for coarse fraction and for fine fraction. The 122 

loss of resistance is higher when the water/cement ratio is lower (Chen et al., 2003; Mas et al., 123 

2012b), or if concretes with higher strength are used (Mas et al., 2012a). Regarding the 124 

influence of recycled coarse and fine fraction, the addition of fine aggregates causes less loss of 125 

strength with low substitution percentages. Nevertheless, for higher substitution percentages, the 126 

loss of strength is equal . Other authors (Lovato et al., 2012) have found that a 100% recycled 127 

fine fraction substitution causes an 18% decrease in resistance. This decrease is lower with a 128 

100% coarse fraction substitution (24% decrease) , because of the difficulties of compacting 129 

when ceramic coarse aggregates are used. The use of fine fraction is also discussed by other 130 

authors (Evangelista and de Brito, 2007). However, other studies on recycled concrete with 131 

subtitutions of concrete fine recycled agreggate did not obtain satisfactory results (Etxeberria et 132 

al., 2007; González-Fonteboa and Martínez-Abella, 2008). Because of these differences, the use 133 

of fine fraction in the future should not be dismissed, but more research on it is needed.  134 

The results of flexural strength and tensile strength are contradictory. Some studies state that the 135 

addition of RMA causes a reduction of strength (Lovato et al., 2012; Mas et al., 2012a, 2012b), 136 

caused by a higher porosity of recycled aggregates and the presence of ceramic materials. 137 

Nevertheless, other researchers find that recycled aggregates does not have an important 138 

influence on tensile strength (de Brito et al., 2005). They state that their addition improves the 139 
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tensile strength in relation to the use of conventional concretes, except in the case of 100% 140 

substitution (Etxeberria et al., 2007), despite the fact that recycled aggregate is usually more 141 

fragile than natural aggregate.  142 

Because of the lower density of recycled aggregates, concretes made with RMA show lower 143 

densities than reference concretes. Recycled concrete absorbs more water, as can be expected 144 

from the density data. This property increases more if fine recycled aggregates are added than if 145 

the replacement is made by coarse recycled aggregates (Lovato et al., 2012; Sousa et al., 2003).  146 

Slipping resistance of recycled concretes presents contradictory results. Yang et al. found that, 147 

using recycled aggregates, mainly concrete waste, the slipping resistance improved with 148 

increasing substitution percentage (Yang et al., 2011). Conversely, Poon and Lam stated that 149 

using recycled aggregates from concrete and glass waste did not change the slipping resistance 150 

(Poon and Lam, 2008).  151 

The resistance to abrasion decreases with the percentage of substitution by ceramic recycled 152 

aggregate (Jankovic et al., 2012). The use of RMA presents the same tendency: it keeps its 153 

values with 20% substitution, and the resistance to abrasion decreases with 40% substitution 154 

(Mas et al., 2012b). Some researchers have observed that ceramic aggregate is harder than the 155 

rest (Mas et al., 2012b; Poon and Lam, 2008).  156 

This work is focused on the  possibility of using a coarse fraction of RMA in the production of 157 

elements made of vibro-pressed precast concrete: kerbstones, pavement blocks, terrazzo and 158 

hollow tiles. In order to study how RMA affects the properties of these items, different 159 

substitution percentages have been used, testing its influence in terms of resistance, bending 160 

strength, water absorption, density, abrasion, and slipping resistance. The results seem to be 161 

promising as regards the use of mixed recycled aggregates at industrial scale, since all elements 162 

were produced in real industries, with their technology and using the dossages provided and 163 

employed by the companies; few works cover this essential way to reuse big amounts of C&D 164 

wastes. Also, in this work several properties have been measured up to one year after their 165 

preparation. The measurements have been made to check the guaranty that these products have 166 

for using according to the Spanish and European mandatory Standards. These results guarantee 167 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
that changes in properties are not important and they still fulfil the required standards, 168 

independent of the age of the prepared element.  169 

2. MATERIALS 170 

Two different types of concrete were used, but with similar characteristics. For terrazzo and 171 

hollow tiles, CEM II A-LL 42,5 R concrete was used according to the Spanish Standard 172 

(AENOR, 2000). On the other hand, for kerbstones and pavement blocks, a CEM I 42.5 R 173 

concrete was used. No additive was used in any unit. 174 

As natural aggregate, crushed limestone was used. The aggregates used for terrazzo and hollow 175 

tiles were 2/6 mm coarse aggregate and 0/4 mm fine aggregate. For kerbstones and pavement 176 

blocks, the coarse aggregate was in the range of 5/12 mm and the fine aggregate in the range of 177 

0/4 mm.  178 
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Fig. 1. Granulometric analysis of fractions 0/4, 5/12, 2/6 from natural aggregate and RMA. 179 

 180 

The natural aggregates were replaced by recycled mixed aggregate (RMA) in different 181 

percentages. Fraction 5/12 mm was used in kerbstones and pavement blocks, whereas fraction 182 

2/6 mm was used in terrazzo and hollow tiles. Fig. 1 shows the granulometric distribution of 183 

both RMA fractions, as well as the amount that replaced natural aggregate. It can be observed 184 

that fraction 2/6 mm has a higher content in both coarse particles (4-6 mm) and fine particles as 185 

compared with natural aggregate and 5/12 mm recycled aggregates show a lower content of 186 
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particles between 6 and 10 mm as compared with natural aggregate. The use of fine recycled 187 

aggregate was ruled out at the beginning of the study. Some studies state that the use of this 188 

aggregate increases the water absorption from recycled concrete more than the use of coarse 189 

aggregate (Lovato et al., 2012; Sousa et al., 2003). The value of this parameter is limited for 190 

kerbstones, pavement blocks and terrazzos (AENOR, 2005, 2004a, 2004b). 191 

Results of RMA characterization tests are shown in Table 1. Comparison of the results with 192 

Spanish Standard EHE-08 limitations for concrete recycled aggregates shows that the main 193 

properties are not fulfilled by sulphates and fine content. Both aggregate fractions presented a 194 

similar composition, as they came from the same C&DW material supply. The composition 195 

determination test (Table 2), performed according to UNE EN 933-11, shows that 74.3% of 196 

RMA used was made of unbound aggregate or natural stone. The rest, 25.7%, was made of 197 

other materials.  198 

Table 1. Results of RMA characterisation. 199 

Test 5/12 mm 
2/6 

mm 
EHE-08 

Density (UNE-EN 1097-6) 2.37 g/cm3 
2.4 

g/cm3 
- 

Absorption (UNE-EN 1097-6) 4.70% 4.10% 

Recycled 

aggregate + 

Natural 

aggregate ≤ 5% 

Resistance to fragmentation (UNE EN 1097-2) 29 29 ≤40 

Flakiness index (UNE EN 933-3) 12 14 <35 

 Sulphur content (UNE EN 1744-1) 0.18% 0.25% ≤1% 

Acid soluble sulphates (UNE EN 1744-1) 0.52% 0.81% ≤0.8% 

Water-soluble sulphates (UNE EN 1744-1) 0.22% 0.28% - 

Organic matter content (UNE 103204) 0.31% 0.31% 1%1 
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Fines content  (UNE-EN 933-1).  4% 8% ≤1.5% 

1 Coarse aggregate UNE-EN 1744-1 200 

 201 

Table 2. RMA components. Fractions 2/6 mm and 5/12 mm. 202 

Test components UNE EN 933-11 (%) 

Floating particles  0.6% 

Other 0.5% 

Concrete 11.8% 

Unbound aggregate 74.3% 

Masonry 5.6% 

Asphalt 4.9% 

Glass 0.1% 

Gypsum 2.2% 

 203 

In addition to the characterisation of fractions 5/12 mm and 2/6 mm, during the year before the 204 

tests samples were periodically taken from the Astesa GR waste treatment plant in Cartagena 205 

(Spain). The objective was to study the content of certain contaminants (Table 3), such as 206 

sulphates or organic substances, which could affect concrete properties negatively.  207 

The content of organic matter causes some problems in the hardening process and loss in terms 208 

of resistance values. Results obtained in the samples show low values.    209 

SO3 content is limited to 0.8% in the EHE-08 standard (Concrete, 2008). This amount 210 

corresponds to 1.72% of gypsum in the stoichiometric range. It was observed that all samples 211 

presented a lower gypsum content than this maximum accepted value. Nevertheless, some 212 

researchers (Mas et al. 2012a), who collected samples for three years (2007 to 2010), found that 213 

the main properties which were not fulfilled were water absorption and sulphate content.  214 

Table 3. RMA content. 215 
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Test Standard 

Sample 11/06/2010 Sample 08/10/2010 
Sample 

13/06/2011 

0/3 mm 
0/40 

mm 

0/3 

mm 

0/40 

mm 

0/80 

mm 
0/40 mm 

Total amount of soluble 

salts, including gypsum 
NLT 114 1.14% 0.47% 1.78% 0.80% 0.52% 0.02% 

Gypsum content 
NLT-

115/99 
1.13% 0.46% 1.41% 0.78% 0.51% 0.02% 

Organic matter content 
UNE 

103204 
0.59% 0.15% 0.60% 0.17% 0.19% 0.36% 

 216 

3. EXPERIMENTAL SET-UP 217 

3.1. Products and dosages 218 

Four different types of elements were prepared: terrazzo for indoor use, kerbstones, pavement 219 

blocks and hollow tiles.  220 

Terrazzo tiles were prepared as a two-layer unit measuring 40x40x3.5 cm. Hollow tiles 221 

measured 60x25x50 cm. Kerbstones measuring 9x12x25 cm dimensions and 50 cm long were 222 

prepared. Lastly, paving blocks measured 20x20x6 cm. Kerbstones and paving blocks were also 223 

prepared with the two-layer system. 224 

A 2/6 fraction of RMA was used for terrazzos and hollow tiles. In terrazzos, it was used only in 225 

the surface layer, whereas in hollow tiles it was used in the whole unit. A 5/12 fraction of RMA 226 

was used for kerbstones and pavement blocks. A layer 23 cm thick was used in kerbstones, 227 

whereas a 5 cm layer was used in the case of pavement blocks.  228 

For all products, the initial dosage used was the one commonly used by the manufacturing 229 

companies. It was used as a reference dosage and the rest of the dosages were obtained just 230 

changing of 25%, 50%, 75% or 100% of the volume of natural aggregate by RMA. An 231 

exception was the case of indoor terrazzos, where RMA replacements accounted for only 25%, 232 

50% and 75% of the volume of natural aggregate.  233 
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All dosages are displayed in Table 4. The nomenclature used to identify each concrete makes 234 

reference to its type:  concrete with recycled aggregates (HR), or traditional concrete (HT), 235 

which is the non-structural type, kerbstones (KERB), pavement blocks (P), hollow tiles (H) or 236 

terrazzo for indoor use (T). Lastly, substitution percentages of RMA are also displayed (0%, 237 

25%, 50%, 75%, or 100%). 238 

Table 4. Dosages used for the preparation of the different elements. 239 

Mixture 
Slump Cement  

Effective 

water   

Nat. Agr. 

5/12 

Nat. Agr. 

4/8 

Nat. Agr. 

0/4 

Nat. Agr. 

0/3 

Rec. Agr. 

5/12 

Rec. Agr. 

4/8 

(cm)  (kg/m3) (kg/m3) (%)1 (%)1 (%)1 (%)1 (%)1 (%)1 

HT-KERB-0% 0 360 162 33.00   67.00       

HR- KERB-25% 0 360 162 24.75   67.00   8.25   

HR- KERB-50% 0 360 162 16.50   67.00   16.50   

HR- KERB-75% 0 360 162 8.25   67.00   24.75   

HR- KERB-100% 0 360 162     67.00   33.00   

HT-P-0% 0 360 162 33.00   67.00       

HR-P-25% 0 360 162 24.75   67.00   8.25   

HR-P-50% 0 360 162 16.50   67.00   16.50   

HR-P-75% 0 360 162 8.25   67.00   24.75   

HR-P-100% 0 360 162     67.00   33.00   

HT-H-0% 0 320 120   40.00 60.00       

HR-H-25% 0 320 120   30.00 60.00     10.00 

HR-H-50% 0 320 120   20.00 60.00     20.00 

HR-H-75% 0 320 120   10.00 60.00     30.00 

HR-H-100% 0 320 120     60.00     40.00 

HT-T-0% 15 360 276   56.00   44.00     

HR-T-25% 15 360 276   42.00   44.00   14.00 

HR-T-50% 15 360 276   28.00   44.00   28.00 
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HR-T-75% 15 360 276   14.00   44.00   42.00 

1 The percentages shown are for the total aggregate. 240 
 241 

Dosages were calculated with the same quantity of effective water used in the original dosages 242 

from companies. The amount of water was modified according to the difference of the water 243 

absorption level between RMA and natural aggregate.  244 

During the production, it was checked that all the mixes had the same slump cone as the 245 

reference concrete. Once all the products were made, they were sent directly to the curing 246 

concrete areas from companies, where they remained for 28 days before being tested.    247 

Terrazzos are formed by two layers: one from the surface and the one from the base. Both of 248 

them are subjected to a process of vibration first and then a process of pressure. To produce the 249 

surface layer, a fluid concrete is made (Fig. 2). This concrete is poured into a mould, and later 250 

the base surface is added. The base surface is a dry material with a rough finish. The difference 251 

of water content level between both layers allows their union. The reason is that the base 252 

absorbs the water excess from the surface layer in the processes of pressing and hardening. The 253 

aggregate used for the production of the base layer is a 0/3 sand. Fractions used for the surface 254 

layer are a 0/3 sand and a 2/6 coarse fraction. As the use of a recycled aggregate fine fraction 255 

was ruled out at the beginning of the study, 2/6 RMA was used only in the surface layer.  256 

 257 

Fig. 2. Manufacture of terrazzos. Fluid concrete for surface layer. 258 
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 259 

Fig. 3. Manufacture of kerbstones. 260 

 261 

Fig. 4. Manufacture of pavement blocks. 262 

 263 

Fig. 5. Manufacture of hollow tiles. 264 

 265 
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In order to produce kerbstones, pavement blocks and hollow tiles, concrete was subjected to a 266 

process of vibration and pressure at the same time, inside some metallic moulds. The 267 

manufacture of the materials is shown in Figs. 2, 3, 4 and 5.  268 

 269 

3.2. Tests 270 

During the preparation of the elements in every company, tests were made to determine the 271 

consistency of concrete according to the UNE EN 12350-2 standard (AENOR, 2009). In the 272 

case of indoor floor tiles, samples were taken to determine the compressive strength at 28, 90, 273 

180 and 360 days, according to the UNE EN 12390-3 standard (AENOR, 2001). The objective 274 

was to study the effects of the addition of RMA on the strength of the weakest layer of the floor 275 

tiles.  276 

Mechanical properties of kerbstones, pavement blocks, terrazzos and hollow tiles were 277 

determined by resistance and flexural strength tests at 28, 90, 180 and 360 days, according to 278 

the UNE EN 1340 (AENOR, 2004b), UNE EN 1338  (AENOR, 2004a), UNE EN 13748-1 279 

(AENOR, 2005) and UNE EN 15037-2 (AENOR, 2011) standards, respectively.  280 

In addition, tests were made on day 360 in order to determine the water absorption of pavement 281 

blocks, kerbstones, terrazzos and hollow tiles according to the UNE EN 1340, UNE EN 13748-282 

1 and UNE EN 1338 standards, respectively (this procedure was also used to determine the 283 

absorption of hollow tiles).  284 

Resistance to abrasion and slipping were determined in kerbstones, pavement blocks, and 285 

terrazzos at 360 days, following the procedure described in the UNE EN 1340, UNE EN 1338, 286 

UNE EN 13748-1 standards, respectively. In the case of kerbstones and pavement blocks, wear 287 

resistance (abrasion), as well as slipping resistance, was determined in the inner face where 288 

recycled aggregates had been used. The outer surface was not tested since RMA were not used 289 

in that part. Concrete density was determined according to the UNE EN 12390-7 standard 290 

(AENOR, 2001). 291 

Dimensional tolerances were determined at 28 and 360 days, according to the UNE EN 1340, 292 

UNE EN 13748-1 and UNE EN 1338 standards.  293 
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Each test was performed on four samples at 28, 90 and 180 days, and on six samples at day 360. 294 

The presented results are the mean values of all the measurements. 295 

Lastly, mercury intrusion porosimetry (MIP) was used to analyse porosity and the pore network 296 

structure of some of the samples. This technique was only used in concretes used for the 297 

terrazzos, in order to explain the differences between the results of the water absorption test and 298 

the results for the rest. An AUTOPORE IV porosimeter from Micromeritics was used. It has 299 

been widely explained in the literature (Cabeza et al., 2002).  Two samples were tested to check 300 

the repeatability of the measurement. 301 

 302 

4. RESULTS AND DISCUSSION 303 

In this section the main results obtained using all the procedures described before are presented 304 

and analysed. In some plots, a discontinuous line appears. It indicates the minimum value 305 

required by the UNE EN 1338 and UNE EN 13748-1 standards for pavement blocks and 306 

terrazzos for indoor use. In the case of kerbstones, they are classified as Class 2, according to 307 

the UNE EN 1340 standard. 308 

 309 

4.1. Compressive and flexural strength 310 

The results of resistance for pavement blocks, kerbstones, hollow tiles and terrazzos for indoor 311 

use are displayed in Figs. 6-9.  312 
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 313 

Fig. 6. Time evolution of the resistance of pavement blocks. 314 

As could be expected, the increase of recycled aggregate causes a loss of resistance. However, 315 

in the case of pavement blocks and kerbstones, produced with 5/12 coarse fraction, strength 316 

decreases only when more than 50% of the aggregate is replaced by RMA.  317 

In the case of pavement blocks, the resistance decreases at day 90 is 25%, 21% and 29.5% for 318 

substitutions of 50%, 75% and 100%, respectively (Fig. 6). For a 25% replacement of natural 319 

aggregate by RMA, values show an increase of strength at some stages (day 28, 180, and 360). 320 

This could be because of a higher percentage of hydrated cement, caused by higher water 321 

content. Vibro-compressed concretes usually have very low water content, and a small excess of 322 

water could affect the strength positively. As regards pavement block cross-sections (Fig. 10), 323 

the higher compaction of the elements, and the lower porosity for HR-P-25% is visible at naked 324 

eye.  325 

Minimum values of compressive resistance, required by UNE EN 1338 for pavement blocks 326 

(3.5 MPa), are only fulfilled by the reference concrete and the substitution of 25% of RMA. No 327 

similar studies were found about the use of mixed recycled aggregates in this context.        328 

The data analysis shows that the loss of flexural strength is, in the case of kerbstones, about 329 

12% for substitutions by RMA of 50% and 75%, and 31.6% for a 100% substitution (Fig. 7). 330 
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However, 25% substitution does not cause any loss of resistance. The same was observed in 331 

another study (Guzmán, 2010), where substitutions up to 50% of RMA (5/10 fraction) caused 332 

loss of resistance below 10%. The main composition of RMA used in that study consisted of: 333 

51% unbound aggregate, 18.5% ceramic materials, 25% concrete. In another study (López 334 

Gayarre et al., 2013), 0/12 fraction of RMA (composition: 1.33% asphalt, 17.67% ceramic 335 

material, 9.33% concrete, 69% unbound aggregate, 2.67% other components) was used to 336 

produce kerbstones. In that study, flexural strength was only affected with RMA substitutions 337 

beyond 70%. A loss of 34% in strength with a 100% RMA substitution was observed, which is 338 

similar to the value obtained in our study. In another study (Kou et al., 2011), a loss in strength 339 

of 35.7% for a 100% substitution of natural aggregates by RMA coarse fraction was seen. RMA 340 

composition was 74.6% concrete, 8.6% unbound aggregate, and 16.1% ceramic material.    341 
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Fig. 7. Results for flexural strength of kerbstones. Time evolution. 343 

 344 

The comparison of the obtained results shows that the unbound aggregate is the component of 345 

the RMA that has the most positive influence regarding maintaining the mechanical resistance 346 

of the elements. Concrete recycled aggregate causes slightly higher losses of strength than the 347 

unbound aggregate. The use of ceramic recycled aggregates substituting for concrete recycled 348 
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aggregates shows losses of strength because of the higher weakness of ceramic aggregates. This 349 

result that had been obtained in laboratory tests could be expected. 350 

A recent work also produced paving blocks and kerbstones (and concrete pipes) at industrial 351 

scale but only measured the resistance lost at 28 days (Özalp et al., 2016). In that paper authors 352 

reach a maximum replacement of 40% of natural aggregate by only coarse, or both coarse and 353 

fine recycled aggregates. The nature of the C&DW is not given. Authors report a decrease of 354 

39% of the resistance when using 40% of coarse recycled aggregates, while in this work less 355 

than 15% was lost for paving blocks or kerbstones with a 50% of coarse recycled aggregate, and 356 

the resistance of the elements with this percentage of C&DW increased slightly with time. The 357 

reason might be the nature of the recycled aggregates (high percentage of unbound aggregates) 358 

or the compaction method used for the elements produced in this work (vibro-compressed). 359 

Comparing results obtained with limits established in the UNE EN 1340 standard, all concretes 360 

produced fulfil Class 1 (minimum resistance 3.5 MPa), and only the reference concrete and the 361 

concrete with 25% RMA substitution fulfil Class 2 (minimum resistance 5.0 MPa).    362 

Results obtained for the flexural strength of hollow tiles show reductions, at 90 days, of 14%, 363 

17%, 23% and 36% for 25%, 50%, 75% and 100% substitutions, respectively (Fig. 8). A linear 364 

loss of resistance is shown as the proportion of RMA of substitution increases. This has been 365 

observed in other studies (Guzmán, 2010; Kou et al., 2012; Leiva et al., 2013; Martínez-Lage et 366 

al., 2012; Mas et al., 2012b; Sousa et al., 2003). Sousa et al. (2003) used 2.4/9.6 mm RMA 367 

fraction, with a composition consisting of 75% concrete and mortar, 15% bricks, 10% soil. The 368 

objective was to produce concrete bricks, and strength losses of about 23% were obtained with 369 

RMA substitutions of 40%.  370 
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Fig. 8. Results for mechanical resistance in hollow tiles. Time evolution.  372 

 373 

According to article 36 of the EHE-08 standard on beam filling elements for floor slabs, light 374 

concrete hollow tiles must have a flexural resistance higher than 1.0 kN. This value was reached 375 

in this study, regardless of the percentage of RMA used. This result is promising, and it could 376 

signal a suitable use for RMA. In another study (López Gayarre et al., 2013), where RMA was 377 

also used to produce hollow tiles, the authors concluded that hollow tiles can be obtained by 378 

100% recycled agreggate, since the requirements described in the UNE EN 15037-2 standard 379 

are fulfilled.    380 

In terrazzos for indoor use, the flexural strength after 90 days decreased on a percentage of 12%, 381 

14% and 25.5%, for substitution degrees of 25%, 50% and 75%, respectively (Fig. 9). 382 
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Fig. 9. Results for flexural strength in terrazzos. Time evolution. 384 

 385 

Fig. 10. Pavement block cross-sections. 386 

 387 

Some samples were also prepared for compressive strength testing, and the results obtained 388 

showed a higher resistance loss compared with flexural strength results (Fig. 11). The decrease, 389 

in percentage terms, on day 90 was 34%, 35% and 44%, corresponding to the substitution 390 
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percentages of 25%, 50% and 75%, respectively. These differences among results are justified 391 

because the most resistant part of the terrazzos is the base layer, which is formed by dry 392 

concrete. Thus, the surface layer, made with fluid concrete and where RMA were used, has less 393 

influence on flexural strength in terrazzos.  394 
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Fig. 11. Results for compression strength in terrazzo samples. Time evolution. 396 

 397 

If the evolution of strengths for different precast elements is analysed, it can be observed that 398 

decrease of strength caused by the use of RMA is higher after 28 than after 360 days, for 399 

substitution percentages of 75% and 100%, in the case of pavement blocks. In kerbstones, the 400 

compressive resistance decreases more after 28 days than after day 360 for RMA substitutions 401 

of 25%, 50% and 100%. The same result is observed for all substitution percentages in the case 402 

of hollow tiles and terrazzos, with the exception of substitution of 75% in terrazzos. This 403 

confirms that the acquisition of strength is slower if RMA is used. This phenomenon was 404 

observed by other authors (Mas et al., 2012a, 2012b). As regards the fine content of recycled 405 

fractions of 2/6 (hollow tiles and terrazzos) and 5/12 mm (pavement blocks and kerbstones), the 406 

2/6 mm fraction has a content of fines 4% higher than the 5/12 mm fraction (8% against 4%). 407 

According to the results obtained by Mas et al. (2012b), the evolution of strength of concrete 408 
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produced with RMA fine fractions is slower, because it could retain some non-hydrated cement 409 

mixed with fine. The same result was reported in Evangelista and de Brito (Evangelista and de 410 

Brito, 2007), where concrete recycled fine aggregates were used, and it was observed that the 411 

mixtures with substitution percentages of 30 and 100% showed increasing resistance after 28 412 

days, whereas the reference concrete stabilised the value of the resistance. In another study (Kou 413 

et al., 2011), where concrete recycled aggregates were mainly used, increases in compressive 414 

strength and tensile strength after five years were higher for recycled aggregate concretes than 415 

for natural aggregate concretes. According to the authors, recycled aggregate from concrete 416 

enhances the microstructure of the aggregate-mortar joint area. This effect has been recently 417 

reported by studying the microstructure of concrete produced using C&DW (Bravo et al, 2016). 418 

The work shows the influence of the nature of the recycled aggregate on the microstructure, and 419 

the water absorption of concretes, and in the case of using fine aggregates. On the other hand, 420 

coarse aggregates can, during the mixing process, absorb water. It is well known that the self-421 

curing mechanism in concrete has some relation with the absorption and gradual liberation of 422 

water (Dhir et al., 1998; El-Dieb, 2007), the hydration level increases. It is possible that the 423 

excess of water absorbed by the recycled aggregate included in the mix was released gradually. 424 

This would increase the amount of hydrated cement, and, therefore, allow concrete to have a 425 

slower gradual acquisition of mechanical resistance. Both hypotheses are possible but it is 426 

difficult, given the present results, to decide which is the more accurate. The determination of 427 

the mechanism that causes this resistance increase should be studied with other techniques and 428 

was not an objective of this study.             429 

Once all the mechanical resistance have been analysed, it is possible to say that using C&DW 430 

with higher quantity of unbound aggregates can be used at industrial scale, and no important 431 

loose of resistance will happen in most elements excepting terrazzo until one year. The result is 432 

very promising because it opens the field of the massive used (industrial scale) of C&DW in 433 

non-structural elements with all the guaranties during time. 434 

 435 

4.2. Water absorption 436 
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In Fig. 12, results of water absorption obtained after 360 days are presented. According to the 437 

figure, water absorption in recycled concrete increases with substitution percentage of RMA. An 438 

increase of 10%, 16.5%, 14% and 27% was measured for substitutions of 25%, 50%, 75% and 439 

100%, respectively and in the case of pavement blocks.  440 
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Fig. 12. Results for water absorption in pavement blocks, kerbstones, terrazzos for indoor use 442 

and hollow tiles. 443 

 444 

Water absorption in such precast elements is related to their climatic resistance. According to 445 

the UNE EN 1338 standard for pavement blocks, all concretes can be tagged as number 2 ((≤6% 446 

water absorption), except for those that contain 100% of recycled aggregate that should be 447 

tagged as number 1. It has to be pointed out that the requirement of some climatic resistance for 448 

pavement blocks depends on the country where the standard is used.  449 

In kerbstones, a higher increase is produced for substitutions which are above 50%. Results 450 

show an increase of 12%, 12.5%, 26% and 41% for substitution percentages of 25%, 50%, 75% 451 

and 100%, respectively.  452 

These results are concordant with the ones obtained by Guzman et al. (Guzmán, 2010). They 453 

worked with an RMA 5/10 fraction (RMA main composition: 51% natural or unbound 454 

aggregate, 18.5% ceramic materials and 25% concrete aggregate) to produce kerbstones with 455 
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substitution percentages of about 30% and 50%. Results obtained were very similar, with an 456 

increase of about 15% of water absorption for both substitution percentages. Medina et al. 457 

(Medina et al., 2014) obtained similar results. The use of RMA (RMA main composition: 28% 458 

natural or unbound aggregate, 5.30% ceramic materials, 19.33 asphalt material and 45.64% 459 

concrete aggregate) in concretes at the replacement ratio of 50% resulted in sorptivity of the 460 

recycled concretes being 10 to 20% higher than the reference concrete. Sousa et al. (2003) 461 

reached the same conclusion, using a RMA 2.4/9.6 fraction with a composition consisting of 462 

75% mortar and concrete, 15% ceramic materials and 10% soil. They obtained an increase of 463 

15% of water absorption for 40% substitution percentages. In this study a fine RMA 0/2.4 464 

fraction was also used. It increased water absorption considerably, reaching values twice as 465 

large as the ones taken as reference, for RMA substitution percentages of 60% and 70%. 466 

The UNE EN 1340 standard for kerbstones makes the same classification as the one for 467 

pavement blocks. Therefore, kerbstones with substitution percentages of 25%, 50% and 75% 468 

can be tagged as number 2 (≤6%). In another study (López Gayarre et al., 2013), when the 469 

substitution percentage of RMA was above 50%, values of water absorption were higher than 470 

the established values of the EN 1340 standard for kerbstones (tagged as number 2).  471 

The results on hollow tiles tests showed an increase of water absorption of 16%, 17%, 26% and 472 

37.5% for substitution percentages of 25%, 50%, 75% and 100%, respectively (Fig. 12).  473 

Results for terrazzos show a different behavior from the rest of the precast elements. The 474 

increase of water absorption in terrazzos is only noticeable in substitution percentages higher 475 

than 75%. In order to analyse the reason for these results, porosimetry measurements were made 476 

of samples obtained from the layer of terrazzos prepared with RMA. The surface layer was 477 

analysed, as it is the one that can absorb water. In this case, it was also the surface layer that 478 

contained RMA (Fig. 13). 479 

The obtained results are coherent with water absorption results. It can be observed that 480 

concretes produced with 25% of RMA have lower total porosity and a higher amount of pores 481 

of smaller size. Reference concretes and 50% RMA concretes present a higher quantity of pores 482 

of a larger size. There is a peak in pores whose diameter is around 1000 nm, which was not 483 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
found in the porosimetry of concrete with 25% RMA. Concretes with RMA substitution 484 

percentages of 75% clearly show a higher number of larger pores.  485 

The difference among terrazzos and the rest of the precast elements, where an increase of water 486 

absorption was observed with increasing RMA substitution, could be caused by better 487 

compression (during production) and higher fluxing in the case of 25% RMA. A decrease in the 488 

number of pores with diameters between 300 and 2000 nm, approximately, if HR-T-25% is 489 

compared with the reference one (HT-T-0), can be seen. This could be caused by a small excess 490 

of water, which facilitated the development of a more compact microstructure, as indicated by 491 

the slightly lower total porosity. 492 
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Fig. 13. Mercury porosimetry: terrazzos. Surface layer with RMA. 494 

 495 

Lastly, if UNE EN 13748-1 is revised, the maximum absorption from terrazzos must be 8%. 496 

This value is fulfilled for every substitution percentage of recycled aggregate (Fig. 12).  497 

 498 

4.3 Abrasive resistance 499 
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Abrasive resistance of pavement blocks and kerbstones is similar to the resistance of reference 500 

concretes up to substitution percentages of 75%. Resistance to the abrasion decreases for 501 

substitution percentages of 100% (Table 5). However, no change in this parameter for any 502 

substitution percentage in the case of terrazzos was observed. Other researchers found that the 503 

use of RMA modifies abrasive resistance with substitution percentages above 40% (Mas et al. 504 

2012b).  505 

Low abrasion resistance in kerbstones and pavement blocks is justified: this test was made in 506 

their base layer, because it was the one with RMA.  507 

 508 

Table 5. Density, slipping resistance and abrasive resistance after 360 days 509 

Mixture Density Slipping resistance Abrasive wear  

 
g/cm3   mm 

HT-KERB-0% 2.30 82 30 

HR- KERB-25% 2.28 71 30 

HR- KERB-50% 2.24 64 31 

HR- KERB-75% 2.21 70 31.5 

HR- KERB-100% 2.13 75 36.5 

HT-P-0% 2.15 91 29 

HR-P-25% 2.15 95 26 

HR-P-50% - 87 31.5 

HR-P-75% 2.02 94 34 

HR-P-100% 2.01 89 33 

HT-H-0% 2.25 - - 

HR-H-25% 1.96 - - 

HR-H-50% 2.01 - - 

HR-H-75% 1.90 - - 

HR-H-100% 1.93 - - 
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HT-T-0% 2.26 110 19 

HR-T-25% 2.32 96 17 

HR-T-50% 2.31 101 21.5 

HR-T-75% 2.29 99 17 

 510 
4.4 Slipping resistance 511 

Slipping resistance of recycled concretes does not present significant differences in relation to 512 

reference concretes in kerbstones, pavement blocks, hollow tiles and terrazzos. Therefore, 513 

recycled aggregates seem to have no influence on this property (Table 5). The same conclusions 514 

were drawn in another study (Poon and Lam, 2008), although in that case recycled aggregates 515 

from concrete and glass waste were used. In another study, where recycled aggregates from 516 

concrete waste were mainly used, slipping resistance improved with substitution percentage 517 

(Yang et al., 2011).  518 

 519 

4.5 Density 520 

Because of the lower density of RMA in comparison with natural limestone aggregates used in 521 

the study, density from kerbstones, pavement blocks and hollow tiles is reduced with the use of 522 

recycled aggregate. This was observed in other studies (Bravo et al., 2015; Jankovic et al., 523 

2012). Nevertheless, density in terrazzos is similar for every concrete produced (Table 5).  524 

 525 

4.6 Dimensional tolerances  526 

Although results obtained for terrazzos are promising, the use of RMA in the surface layer 527 

presents a very significant issue because of the high percentage of defects which produce weak 528 

zones in the surface layer. The surface in RMA terrazzos is not as good as the surface of 529 

terrazzos with natural aggregate. It would be interesting to study its incorporation in the base 530 

layer. However, a coarse fraction of aggregate, which has not been used yet, would be needed in 531 

order to accomplish it. 532 
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In general, the results obtained are promising, and they show that non-structural precast 533 

concrete wall units, such as pavement blocks, kerbstones and hollow tiles, can be made by 534 

adding RMA and using the same techniques and procedures as the ones used with these kinds of 535 

products. In kerbstones, pavement blocks and terrazzos, dimensional tolerances were fulfilled 536 

on days 28 and 360. After day 360, no superficial cracks appeared. This aspect is essential, since 537 

elements produced at industrial scale seem to have good properties even after one year. This 538 

means that RMA could be introduced in the industry, being able to guarantee the performance 539 

of the elements. 540 

 541 

5. CONCLUSIONS 542 

The following conclusions can be drawn from this experimental study:  543 

- RMA presents higher water absorption than natural aggregates. This influences the 544 

production methodologies, the water absorption in produced concretes and the mechanical 545 

resistance.  546 

- Essential properties of pavement blocks, kerbstones and hollow tiles are retained until an 547 

RMA substitution percentage of 25% is reached. The surface of terrazzos with RMA is not 548 

as good as the surface of natural aggregates.  549 

- Generally, the increase of recycled aggregate ratio causes a decrease of mechanical 550 

resistance for both 2/6 and 5/12 fractions.  551 

- These losses of resistance because of the use of RMA are higher at day 28 than day 360 for 552 

most of the substitution percentages. This confirms that acquisition of resistance is slower 553 

with the addition of RMA. This is possibly because of the presence of non-hydrated cement 554 

mixed with RMA fine aggregates. Another hypothesis is that a self-curing effect could be 555 

produced because of the initial water absorption that recycled aggregates commonly suffer.   556 

- Water absorption in recycled concretes increases with the RMA substitution percentage. In 557 

terrazzos for indoor use, the increase of water absorption is only appreciable with 558 

substitutions of about 75%.  559 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
- Slipping resistance of recycled concretes does not present considerable differences in 560 

relation to slipping resistance of reference concretes.  561 

- Abrasion resistance in the case of kerbstones and pavement blocks (recycled 5/12 fraction) 562 

presents the same values in relation to abrasion resistance in reference concretes with 563 

substitution percentages of up to 75%. Nevertheless, in terrazzos where 2/6 fraction is used, 564 

no significant resistance reduction for any substitution percentage was observed.     565 
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