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Abstract In many classification problems, it is necessary to consider the spe-
cific location of an n-dimensional space from which features have been calcu-
lated. For example, considering the location of features extracted from specific
areas of a two-dimensional space, as an image, could improve the understand-
ing of a scene for a video surveillance system. In the same way, the same
features extracted from different locations could mean different actions for a
3D HCI system. In this paper, we present a self-organizing feature map able
to preserve the topology of locations of an n-dimensional space in which the
vector of features have been extracted. The main contribution is to implicitly
preserving the topology of the original space because considering the locations
of the extracted features and their topology could ease the solution to certain
problems. Specifically, the paper proposes the n-Dimensional constrained Self-
Organizing Map Preserving the Input Topology (nD-SOM-PINT). Features
in adjacent areas of the n-dimensional space, used to extract the feature vec-
tors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the
neural network structure and learning. As a study case, the neural network
has been instantiate to represent and classify features as trajectories extracted
from a sequence of images into a high level of semantic understanding. Experi-
ments have been thoroughly carried out using the CAVIAR datasets (Corridor,
Frontal and Inria) taken into account the global behaviour of an individual in
order to validate the ability to preserve the topology of the two-dimensional
space to obtain high performance classification for trajectory classification in
contrast of non-considering the location of features. Moreover, a brief example
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has been included to focus on validate the nD-SOM-PINT proposal in other
domain than the individual trajectory. Results confirm the high accuracy of the
nD-SOM-PINT outperforming previous methods aimed to classify the same
datasets.

Keywords Self-organizing feature map · Topology preservation · human
behaviour analysis

1 Introduction

For most pattern recognition and machine learning applications, the original
input data is transformed to a different space of variables in order to easily
solve the problem. Applications process the original input data, calculating
features from them, in order to extract valuable information that will be used
by the clustering or classification step. Usually, this feature extraction step
considers a transformation from the input data space to another one consid-
ering the input space as a whole. For example in computer vision, considering
the recognition of animals from colour images, features (corners, edges, colour
histograms, etc.) are calculated from the two-dimensional space (the image)
in order to transform it to a n-dimensional space of features (SIFT - Scale-
invariant feature transform, SURF - Speeded Up Robust Features, etc.) that
could categorize easier the animals . In this example of image classification, the
location of the features in the input space, the image, could be irrelevant for
the main objective of the computer vision system that is to properly identify
animals.

However depending on the application purpose, sometimes it is important
to consider the location from which the features have been calculated. Using
the above same example, if the application requires not only to know if there
exist an animal but also the position of it in the image, the location of the
extracted features from the image become to be part of the transformed space
used by the computer vision method in order to provide the correct solution.
Moreover, regarding the location of a feature in the input space, the meaning
of it could be different. For example, consider now a surveillance system of a
metropolitan railway network andwalking as a feature extracted from the video
system to describe the movement of a person. The meaning of the action of
a person walking close or crossing a safety line at the edge of a platform is
very different that the meaning of the action of a person walking in the hall.
In order to detect the intrusion of the first person, the location again could
become to be part of the transformed space of variables.

Finally, the relationships between locations of features as the topology of
the input space could be very important to solve a pattern recognition prob-
lem. For example in computer vision, relationships among keypoints (points of
interest in the image) are a very important mechanism to solve different prob-
lems including identification, recognition and image registration [17], [9], [36].
Usually, these methods detect and extract some features in the image (e.g.
SIFT or SURF) considering the specific location (keypoint) of them in the
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image. The features and the locations are used by pattern recognition meth-
ods (e.g. k-NN, SVM, SOM, etc.) to find matches between them (e.g. from an
image in a database and an image query for image retrieval or from two images
for image registration). Finally, a model based method (e.g. RANSAC) is used
to reject inconsistent matches and provide a good solution. In this case, the
relationships between topology, location, distances, etc. in the input space in
which the features has been extracted are the key aspect to solve the problem.

In this paper, we are interested in considering the location of the extracted
features from the input space and its topology as an important feature. Hence,
we are interested in representing features extracted from a n-dimensional space
for a posterior classification but preserving the topological relations of the in-
put space in which the features have been extracted. Although, there exist
different definitions and topology preserving measures, in general terms, a net-
work preserves the topology if it preserves the input neighbourhood. It means
that adjacent variables in the feature vector space are adjacent in the net-
work as well [41]. In consequence, we propose the n-Dimensional constrained
Self-Organizing Map Preserving the Input Topology (nD-SOM-PINT) map.
It is a variant of the self-organizing feature map that is able to preserve the
topological information of the original space from which the feature vector
has been extracted. Features in adjacent areas of the n-dimensional original
space are explicitly in adjacent areas of the self-organizing map preserving the
input topology. The structure and the learning algorithm is constrained to the
topology of the input space. The nD-SOM-PINT is evaluated in this paper
by a case of study aimed to represent and classify trajectories of people from
video sequences into high level of semantic understanding: human behaviour
analysis. The neural network is able to deal with the big gap between human
trajectories in a scene and the global behaviour associated to them preserving
the spatial information about trajectories.

A Self-Organizing Map (SOM) is one of the most popular and used arti-
ficial neural network model. It was introduced by Kohonen in 1982 [20] and
nowadays it remains been used and applied in many areas. It mainly converts
a high dimensional input into a low dimensional map of features, being the
two-dimensional map the most used representation. The map structure varies
in some characteristics (lattice shape, neighbourhood connections, etc.) but
generally it conforms a grid of interconnected neurons with a specific neigh-
bourhood. This interconnection assures a topological preservation in the map
space. The SOM uses a unsupervised learning algorithm based on a competi-
tion where nodes of the grid compete to become the winning neuron (the most
similar neuron to the input vector) in order to adjust its vector components
and those of the nearest neighbour neurons. This competition allows to project
the input space into the map.

Different variants have been proposed to the classical SOM for many years
[18]. For example, variants proposed by Fritzke as the Growing Cell Structure,
GC [13] and Growing Grid, GG [14] are able to automatically find a suitable
network structure and size by a controlled growth process, while maintain the
network topology. Other networks as Neural Gas, NG [25] and Growing Neu-
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ral Gas, GNG [15] are able to reconfigure the neighbourhood relationships to
avoid a predefined network topology. They are able to make explicit the impor-
tant topological relations in a given distribution of input data. Moreover, the
Growing Neural Gas eliminates the need to predefine the network size in the
similar way as the Growing Cell Structure. In consequence, the above neural
networks are able to transform high-dimensional input data manifolds (the
input space) onto elements of a low-dimensional array (the projection space).
The SOM, GG and GC preserve the topological constraints in the space con-
formed by the map (the projected space)[40]. That is, they are always able
to preserve the neighbourhood relations in the map but although nearby data
vectors in the input space are mapped onto neighbouring locations in the out-
put space, they are not always able to preserve the input space topology as
GNG and NG due to the fixed predefined topology of the map. For example,
if we consider in a 2D input space a distribution of points composed by two
unconnected circles, the SOM, GG and GC are not able to preserve the topol-
ogy of the unconnected points pertaining to the two different circles. However,
since GNG and NG can adapt their topology, they are able to properly adapt
to the unconnected circle distribution. Finally, although both GNG and NG
can preserve the topology of the input space, they are not able to preserve the
topology of the original space used to extract the feature vectors unless they
become part of the input space of the network. Following the above examples
about computer vision, consider that some SIFT descriptors have been ex-
tracted from an image to recognise animals using a GNG. The topology of the
input space of the network, composed by the SIFT space, could be preserved
by the GNG but it is not necessarily able to preserve the topology in the origi-
nal space (the image) because it is not explicitly considered. We are interested
in implicitly preserving the topology of the original space (the image in the
previous example) in order to ease the solution to certain problems.

The remainder of the paper is organized as follows. Section 2 presents
the novel Constrained Self-Organizing Map Preserving Topology (nD-SOM-
PINT). In Section 3, the nD-SOM-PINT is instantiated and evaluated by a
case of study aimed to represent and classify trajectories of people from video
sequences into human behaviour analysis. Experimental results of the case of
study are presented in Section 4. They are discussed and compared to other
approaches in the same Section. Finally, conclusions about the research are
presented in Section 5.

2 N-Dimensional Constrained Self-Organizing Map Preserving the
Input Topology

The n-Dimensional constrained Self-Organizing Map Preserving the Input
Topology (nD-SOM-PINT) is a novel neural network able to represent fea-
tures and classify them preserving the input space topology. It is based on the
classical SOM. Briefly, a SOM neural network involves two phases: a train-
ing/learning and a classification process. For the training phase using a se-
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quential learning, in each step, one sample (a vector) is selected from the
input data set to calculate a distance measure between the sample and each
neuron (the corresponding reference vector for the neuron). The neuron whose
reference vector is closer to the input sample is selected as the winning neuron.
The neighbourhood of the winning neuron is adapted to the input sample. In
this paper, self organizing basis are considered to represent features preserving
the n-dimensional input space in a map with the same dimensions. The whole
map is used in classification tasks. Some variants have been introduced in the
learning and classification process to constrain them to the input topology
preserving it in the network.

Specifically, the nD-SOM-PINT uses as input data a collection of features
F extracted from an n-dimensional space S (the space in which the topology
is preserved). As we are interested in preserving the topological information,
an n-dimensional matrix, Feature Matrix (FM), is the specific collection of
features (see Fig. 1). Note that not necessarily all elements of the matrix
FM must have a value different to zero. The matrix suits the input space
S. However, features could be calculated only for a subset of the space S.
Moreover, we assume that the input space S could be discretized into cells C
that represent a subset of S. Hence, each component of the FM, represents
a region of the input space S, a specific cell of C, by means of the feature F
calculated in that region of the space.

The network structure is completely related to the Feature Matrix (FM)
and is specified as (see Fig. 2):

– A set N of neurons that represent cells of the grid C in which the input
space S has been discretized. Each neuron ν ∈ N stores an associated
reference vector wν ∈ Rn. The reference vectors are related to the features
extracted from the discretized space C of the region assigned to the neurons.

– A structure about connections between adjacent neurons. It defines the
topological structure of the map that represents the geometry of the in-
put space. For example, if the input space is an image, a two-dimensional
regular grid of neurons.

The size of the map is related with the number of cells in C. Specifically,
a nD-SOM-PINT establishes a subset of neurons Ni to represent a specific
cell Ci. Each Ni contains a master neuron and a neighbourhood of neurons
within a radius rc. The number of neurons in Ni depends on the lattice shape,
neighbourhood connections, etc. The connections between adjacent neurons
pertaining to different Ni follow the same structure that the connections be-
tween adjacent neurons representing the same cell.

It is important to highlight that the nD-SOM-PINT is based on SOM
because the network requires to adapt to the specific characteristics of the
input space using a fixed number of neurons, related to the number of cells in
C, and a fixed topology, closely related to the space S used to extract features.
However, other self-organizing networks as GG or GC could be considered in
order to reduce the number of neurons in Ni used to represent a specific cell
Ci.
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Input space (S) Cells (C)

Feature map (FM)nD-SOM-PINT

Fig. 1: The input space S is discretized into a set of cells C. For each cell in
C, features are extracted to calculate the feature map (FM). The FM is the
input data for the nD-SOM-PINT.

2.1 Learning process

Although we are interested in an unsupervised learning, nD-SOM-PINT con-
siders specific labels for classification purposes. The label is the higher level of
semantic that a FM represents. Hence, a different nD-SOM-PINTb is trained
for a specific label b. In order to train the maps, the input dataset X =
{FM1, FM2, . . . , FMn, } is divided into different groups according to samples
pertaining to a single label Xb ∈ X. The training process for each nD-SOM-
PINTb considers a set of winning neurons as opposite of a winner for an input
FMi (as in the original SOM). Each set of features corresponding to a specific
cell activate a winning neuron in the corresponding Ni associated to it. The
neuron is not necessarily the master neuron. In consequence, the whole map is
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Fig. 2: nD-SOM-PINT structure. Each set of neurons Ni for each cell in C is
composed by a master neuron and a neighbourhood of neurons within a radius
rc.

adapted considering all winning neurons (one for each Ni) in nD-SOM-PINTb
to represent the FM for a specific label.

The learning algorithm for a single nD-SOM-PINTb having an input dataset
Xb = {FM1, FM2, . . . , FMn, } of a specific label is as follows (see Fig. 3):

1. Initialize each neuron ν ∈ nD-SOM-PINTb with random values wν in Rn.
2. Choose randomly a sample pattern FMi from the input data set X.
3. For each element Fj in the FMi matrix, find the nearest neuron, winning

neuron, sj in the corresponding Nj set of neurons associated to the cell
Cj . In consequence, a set of winning neurons S ∈ nD-SOM-PINT will be
associated to the sample pattern FMi. The size of the winning neuron is
the same that the number of cells in which the space S was discretized.

‖wsj − Fj‖2 = min
ν∈Ni

{
‖wν − Fj‖2

}
(1)

4. Update the map
– Determine the adapted neighbours and the strength of the adaptation

by the neighbourhood function h(d, t) for each winning neuron sj . It
depends on the distance d of each neuron in nD-SOM-PINT to the
winning neuron and on the training time t.

asj = hsj (d, t) ∗ ‖wsj − Fj‖ (2)

– Update the reference vector wν for each ν ∈ nD-SOM-PINT according
to all adapted neighbours asj . A neuron ν could be affected by the
adaption of different neighbourhoods. Finally, the strength of the up-
date for each reference vector w is established by the learning rate α.
It depends also on the training time t.

wν(t+ 1) = wν(t)− α(t) ∗
∑
∀sj∈S

asj (3)

5. If the training time t is not yet achieved, go to step 2.
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2.2 Classification process

For classification purposes, each nD-SOM-PINTb is compared to a new input
FM to establish the minimum distance for the whole map. The classification
process (see Fig. 4) of a new input data FM , for a set of k labels represented
by the set B = {nD-SOM-PINT1,nD-SOM-PINT2, . . . ,nD-SOM-PINTk} is
as follows (see Fig. 4):

1. Determine the distance η from the FM to each nD-SOM-PINTi ∈ B
– For each element Fj in the FM matrix, find the nearest neuron, winning

neuron, sj in the corresponding Ni set of neurons associated to the cell
Ci as in the step 3 of the training process.

‖wsj − Fj‖2 = min
ν∈Ni

{
‖wν − Fj‖2

}
(4)

– Determine the sum of distances of the winning neurons in S

ηnD-SOM-PINTi
=
∑
|wsj − Fj‖2 (5)

2. Select the nD-SOM-PINTi with minimum distance ηnD-SOM-PINTi
as the

label associated to the FM input

label = min
∀nD-SOM-PINTi∈B

(ηnD-SOM-PINTi
) (6)

nD-SOM-PINT
Nj

Winningwneuron

 

Samplewfeaturewmapw4FMi)

min

Featureswvectorw4Fj)

...

Nj

Setwofwwinningwneuronsw4S)
 

Adaptedwneighbourswandwthewstrength

nD-SOM-PINT

Updatewthewreferencewvector

 

Nj

 

Stepw3.wFindwthewnearestwneuron Stepw4.wUpdatewthewmap

Fig. 3: Learning process. Each feature vector (Fi) in the Feature Map (FM) is
compared in parallel with its corresponding set of neurons Ni to establish the
set S of winning neurons (step 3). The whole map is adapted with respect to
the set S (step 4)
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Feature map (FM)

min

nD-SOM-PINTn

nD-SOM-PINT2

nD-SOM-PINT1

...

...

Winner
nD-SOM-PINTi

Fig. 4: Classification process. Each nD-SOM-PINTb is compared to a new input
FM to establish the minimum distance for the whole map and to determine
the winner nD-SOM-PINT.

3 Case of study: individual human behaviour analysis

The research in analysing human behaviour from video sequences is not just
a consolidated topic but it is also an increasing area according to the number
of research works related with it. The behaviour can be studied from different
levels of understanding, as single movements such as a step or a hand displace-
ment in the lowest level, to complex activities or behaviours in the highest. A
classification of those levels can be found in [27] where four levels are proposed:
motion, action, activity and behaviour from lower to upper. The terms activity
and behaviour can be found interchangeable depending on the authors or the
purpose of the research in the literature. We refer to the following papers, [21,
28,12], for general reviews of human behaviour studies.

In this paper as a case of study of the nD-SOM-PINT proposal, we are
focused in the behaviour level using video sequence data. Interesting surveys
could be found in [38] and [4]. The methods can be grouped in state models
(e.g. Bayesian, HMM), pattern recognition (e.g. Neural Networks, SVM), and
semantic models (e.g. Petri Nets, grammars) following the survey by Lavee et
al. [21]. Pattern recognition methods use the actual data to cluster the space
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of solutions, being more flexible than state and semantic models which have
to predefine a model and rules. Regarding the previous aspects, this paper is
focused in pattern recognition techniques, concretely in Self-Organizing neural
networks, in order to analyse global people behaviour by means of the trajec-
tory described by them in a scenario. The trajectory provides very interesting
data for a wide rage of activities, and it is also easy to obtain due to the large
number of cameras available nowadays, mainly CCTV.

Self-Organizing networks have been widely used in Computer Vision. Con-
cretely, in trajectory analysis, various studies are present in the state-of-the-
art. Morris and Trivedi [29] present a framework for live video analysis in
which the behaviours are described using motion patterns, for real-time char-
acterization and prediction of future activities, as well as the detection of
abnormalities. Trajectories are utilized to automatically build activity models
in a 3-stage hierarchical learning process. Owens et al. [33] use a flow vec-
tor to sample the track information to train a Self-Organizing Map (SOM).
Martinez-Contreras et al. [26] use SOMs only for motion (trajectory) sam-
pling. A SOM is trained with different motions, and then a new motion is
classified and the template is used in a Hidden Markov Model to determinate
the action. Schreck et al. [37] developed a framework to classify trajectories
using SOMs, scaling the paths into unit square values and sampling them in
a predefined number of parts. Saul et al. [35] compared map-based trajectory
analysis with SOM to detect unusual behaviour of traffic objects, where the
network achieves better results in abrupt avoidance detection. Andrew et al.
[22] explore the use of a SOM to visualize patterns of urban social change.
They were able to visualize geospatial patterns of socio-economic change and
the magnitude and direction of change. Hu et al. [16] use the whole trajec-
tory as an input to the fuzzy Self-Organizing network to learn the trajectory
model of real world pedestrians and toy cars. Madokoro et al. [24] extracts
typical behaviour patterns and specific behaviour patterns from human tra-
jectories quantized using One-Dimensional Self-Organizing Maps (1D-SOMs).
Subsequently, they apply Two-Dimensional SOMs (2D-SOMs) for unsuper-
vised classification of behaviour patterns. A hierarchical SOM is presented in
[34] to detect abnormal human activities based on trajectories, body features
and directions, showing accurate results in different scenarios and sensors.

Normally, raw trajectories are not studied directly using pattern analysis
due to the varying in length of data (same trajectory pattern can be done
slower or making small variations of the path). Therefore, a normalization of
data has to be done. Hu et al. [16] propose a normalization by using a maxi-
mal length component vectors, filling the empty data of shorter paths with no
movement. In [1–3] PCA is used to sample trajectories. Meanwhile, Xi et al.
[23] proposed a Trajectory Directional Histogram (TDH) to describe the statis-
tic directional distribution of one trajectory. In [32], on the other side, they
use a Discrete Fourier Transform to reduce the components of the trajectories.
In our previous works [5,7], we proposed a descriptor of the behaviour using
the trajectory information. As the trajectory classification needs a normaliza-
tion technique to equalize the length of the data, the the Activity Description
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Vector (ADV) was proposed to equally divide the scene in cells, and estimates
the up, down, left, right and frequency of the person in each cell. We evaluated
this using different pattern recognition techniques obtaining high accuracy in
classification. Moreover, this descriptor has been proved to obtain prediction
capabilities for early recognition [7]. The ADV descriptor is able to represent
the behaviour by means of trajectories in a very efficient way. It is capable of
outperform state-of-the art methods as it summarizes the activity in a specific
region of the scene without taking into account the neighbourhood. However,
it lacks from topological relationships preservation between cells in which the
ground plane is divided. The activity is constrained to a specific region of the
scene and relations between adjacent areas of the scene are not considered.
However, it is more likely to have similar behaviours in adjacent areas of the
scene than in not connected areas. For example, if a person is walking in a
specific region of the scene, it is more likely that he or she be walking in an
adjacent areas of the scene. Otherwise, the division in cells of the scene could
be more critical.

This paper proposes the use of the nD-SOM-PINT to represent and clas-
sify high level of semantic understanding from video sequences. The neural
network is able to deal with the big gap between human trajectories in a scene
and the global behaviour associated to them. This map is able to preserve the
topological information about the scene which is very important when the spa-
tial information is treated. In this case of study, the nD-SOM-PINT proposal
uses the ADV descriptor as inputs of the network, the Feature Map (FM),
in order to incorporate the trajectory information and to preserve topological
information about trajectories of the people according to adjacent cells.

3.1 Feature map: Activity description vector

As we stated before, the Activity description vector (ADV) has been selected
for this case of study as the Feature Map (FM). The ADV is a trajectory-
based feature presented in previous works to describe global human behaviour
[5] and was used as the input of an early prediction method [7,6]. For the
sake of completeness, the ADV is presented but we refer you to [5] in order to
obtain further details about its calculation.

The ADV descriptor is invariant to the point of view of the camera due to
the trajectory is represented using the ground where people are moving as the
basic geometric model. Therefore, the space of values has to be perpendicular
to the point of view of the camera. If the camera is not on the roof, any
information contained on the image plane captured from a static camera has
to be transformed to the corresponding plane that fits the ground by means of
a Homography, H (7). The projective transformation allows us to consider the
whole space of movements of the people in the Euclidean space (see Figure 5).
Then, any point pi on the image is transformed to a point pg on the ground
plane G.
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pg = H · pi (7)

Fig. 5: Projective transformation to obtain the basic geometric model able to
represent the trajectory of a person in the scenario.

Trajectories are described dividing the scene in regions and compressing
the data in cumulative values. It is interesting to highlight that ADV inte-
grates the trajectory information without length and sequential constraints,
what makes it appropriate for predictive purposes. Specifically, ADV uses the
number of occurrences of a person in a specific point of the scenario and the
local movements performed in it. This method divides the scenario, G, in cells,
C, to discretize it. Each cell of the grid has information about the movements
performed it including up (U), down (D), left (L), right (R) and frequency
(F) data. The four former values are extracted from the local displacement
between two consecutive points of a trajectory. It assumes a local Cartesian
coordinate system with origin in one of the points. Points of the trajectory are
extracted according a person is tracked in the scene. In consequence, U and R
are the movements in the positive axis y and x respectively. D and L are the
corresponding coordinates for the negative axis. The displacement is calcu-
lated as the dot product of the displacement vector between two consecutive
tracked points on, pgi and pgi−1

, and the corresponding normal vector for each
axis. For example, if we focus on the U movement, Eq. 8 explains how this
value is extracted:

Ui =

{
(zi − zi−1) · (0, 1)T if (zi−zi−1)·(0,1)T

‖(zi−zi−1)‖ > 0

0 otherwise
(8)
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U is assumed to be a displacement in the positive vertical y axis. This
formula is similar for the other three displacements. These four particular
movements have information about the direction of the trajectory and the
velocity of the group in a specific point on the scenario G. Additionally, we
consider the frequency, F, as the number of occurrences of the centroid is in
a specific point of G. That is, the number of frames that the centroid of the
group has been in a specific location. F contains information about the spatial
trajectory of a group but not considering the movements itself.

For each cell Ci,j , the specific ADVi,j is calculated as the accumulative
histograms of the movements U, D, L, R and frequency F for the points on G
discretized in the cell. Let u x v the actual size of the scenario, mxn the cells
it has been split and pk,l the point located in the position k and l of the G
space, each ADV in a cell is:

∀ci,j ∈ C ∧ ∀pk,l ∈ G/i =
⌊
kxm
u

⌋
∧ j =

⌊
kxn
v

⌋
ADVi,j =

(∑
F (pk,l),

∑
U(pk,l),

∑
D(pk,l)∑

L(pk,l),
∑
R(pk,l)

)
(9)

Finally, the ADV that describes a person trajectory uses a collection of the
ADVi,j for each cell. In Fig. 6, we can see an example of different behaviours
from the CAVIAR database [12]. The trajectories of different people in the
image is transformed to the ground plane G of the corridor. The components
of the ADV for a single trajectory in a discretized cell of 5x7 is represented as
well.

3.2 nD-SOM-PINT to describe and classify human activity

The generic nD-SOM-PINT explained in Sect. 2 will be particularized to de-
scribe and classify human activity in a sequence of images. In this case, the
nD-SOM-PINT uses as input an ADV collection extracted from a sequence
of two-dimensional spaces, a sequence of images. In previous works [5,7,6], a
vector concatenating all ADVi,j was used as the collection of ADVs describing
a person trajectory. Hence, for a scenario space of uxv, split in mxn cells, the
ADV will contain mxnx5 elements as:

ADV = (ADV1,1, ADV1,2, ADV1,3, ..., ADVm,n) (10)

However, as we are interested in preserving the topological information, a
two-dimensional matrix is the collection of ADVs that conform the Feature
Map (FM). The two-dimensional matrix contains exactly the same elements as
the cells in which the scenario G has been divided. For coherence, the Activity
Descriptor Vector would be named as the Activity Descriptor Map (ADM):

ADM =


ADV1,1 ADV1,2 . . . ADV1,n
ADV2,1 ADV2,2 . . . ADV2,n

...
...

...
...

ADVm,1 ADVm,2 . . . ADVm,n

 (11)
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Fig. 6: Examples of CAVIAR trajectories in image space and ground plane G.
U, D, L and R movements and frequencies F of the ADV representation for a
specific sample.

The network structure is completely related to the two-dimensional ADM,
instantiating the nD-SOM-PINT as the 2D-SOM-PINT to describe and clas-
sify human activity. In consequence, the set N of neurons represent cells of
the grid C in which the ground plane G has been discretized. Each neuron
ν ∈ N stores an associated reference vector wν ∈ R5. The reference vectors
are related to ADVs (movements Up, Down, Left, Right and Frequency) of the
region assigned to the neurons. The topological structure of the 2D-SOM-PINT
represents the geometry of the ground plane G. Hence, a two-dimensional reg-
ular grid of neurons (sheet shape) with a rectangular lattice is proposed for
the 2D-SOM-PINT.

The size of the map is determined by the number of cells in C and a subset
of neurons Ni,j to represent a specific cell Ci,j . As the generic nD-SOM-PINT,
each Ni,j in the 2D-SOM-PINT contains a neuron and a neighbourhood of
neurons within a radius rc. For example, Fig. 7 represents the structure of
a 2D-SOM-PINT with rc = 1 and 35 (5x7) subsets Ni,j of 9 neurons for a
ground plane divided into a 5x7 grid cells.

For learning process, a different 2D-SOM-PINTb is trained for a specific be-
haviour b. In consequence, the input dataset X = ADM1, ADM2, . . . , ADMn,
is divided into different groups according to samples pertaining to a single
behaviour Xb ∈ X. As we stated before, the training process for each 2D-b
considers a set of winning neurons as opposite of a winner for an input ADMi

(as in the original SOM). Each ADV in ADMi activate a neuron. In conse-
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Fig. 7: Example of the structure of the nD-SOM-PINT for a 5x7 grid cell with
a rc = 1 for a trajectory extracted from a sequence of images.

quence, the whole map is adapted considering all winning neurons to represent
the ADM for a specific behaviour. For classification purposes, each 2D-SOM-
PINTb is compared to a new input ADM to establish the minimum distance
for the whole map.

4 Experiments

Experiments have been carried out using the CAVIAR database [12]. It con-
tains two datasets: Inria and Shopping Centre. The first dataset was recorded
in the entrance lobby of the INRIA Labs at Grenoble, France (see Fig. 8a)
a image sequence of 384x288 pixels at 25 frames per second. The Shopping
Centre dataset contains different clips (at the same resolution and frame rate
as before) from a shopping centre in Portugal recorded from two points of
view: Corridor view (see Fig 8b) and Frontal view (see Fig 8c).

The Inria dataset contains 28 clips of people. In total, it has 26.419 frames
capturing 139 individuals at 25 frames per second. Although the Shopping
Centre dataset was recorded at the same time from 2 different views, the
total number of people and the labelled behaviours are different. The Corridor
dataset contains information about behaviours and trajectories performed in a
long corridor with different stores. In total, 235 persons were labelled in the 26
labelled clips performing 255 different trajectories. However, the Frontal view
dataset contains information about just a specific part of the corridor (a store)
having, in consequence, less people and trajectories for the same behaviours:
144 samples.

Each sequence was labelled frame-by-frame by hand and each individual
is tracked using a unique identifier in the sequence. Therefore, each frame has
a set of tracked individuals visible in that frame that are surrounded by a
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(a) Inria frame (b) Corridor view frame (c) Frontal view frame

Fig. 8: Frames from the different image datasets

bounding box and labelled according to the situation in which the individual
is involved.

Each tracked individual has a set of labels that describe different levels
of understanding (from bottom level as active, inactive or walking to high
level containing human behaviours). As we are interested in the high semantic
level, experiments just take into account the context label of the CAVIAR
sequences. This information is subjective and depends on the observer. More-
over, the labelled individuals in the clips could have different contexts during
a sequence. The Inria dataset contains four different behaviours: Walking (73
samples), Browsing (11 samples), Inmobile (51 samples) and Drop down (4
samples). The Corridor dataset perform 255 different trajectories: shop enter
(55 samples), windowshop (18 samples), shop exit (63 samples), shop reenter
(5 samples), browsing (10 samples), immobile (22 samples) and walking (82
samples). Finally, the Frontal dataset contains the same contexts but with
different samples. The samples are imbalanced. Thus, the Synthetic Minority
Over-Sampling Technique (SMOTE) [31] has been applied to obtain the same
number of samples for each context. Also, for the contexts with more samples,
a subset of samples is randomly taken. The objective was to use exactly the
same number of samples per behaviour. All these samples have been used for
training and classification steps.

Additionally, we use the bounding box positions to calculate the ADV of
each region in the scene. These positions have some errors due to the labelling
was done by humans. In order to avoid the errors, a data sampling has been
carried out at a sampling frequency of 1 Hz (i.e. we take into account the
position data each 25 frames). Finally, a SPLINE curve is calculated from the
sampled data to obtain the trajectories included in each context.

According to the 2D-SOM-PINT training, all samples in X have been nor-
malized to the range (0,1) dividing each component of the ADV vector by the
maximum value for each component. All experiments uses the same parame-
ters that were selected experimentally for the map: the radius rc of neighbour-
hood in Ni, j is 1 conforming 9 neurons for each cell Ci, j being the minimum
number of neurons in the neighboorhood for a specific cell. The method will
be validated with the minimum number of neurons in the experiments. The
learning rate is established in range (0.5, 0.1). The neighbourhood function
hsi,j(d, t) in Eq. 12 to determine the strength of the adaptation radius is a
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Gaussian function, being σ = rn = 2, and dci the distance from the neuron wc
to wi on the map grid:

hsi,j(d, t) = exp−d
2
wi/2σ

2

(12)

4.1 Results and discussion

S
H

E
N

Up Down Left Right Frequency

W
IS

H
S

H
E

X
S

H
R

E
B

R
O

W
IM

M
O

W
A

LK

(a) 1x1

S
H

E
N

Up Down Left Right Frequency

W
IS

H
S

H
E

X
S

H
R

E
B

R
O

W
IM

M
O

W
A

LK

(b) 3x5

S
H

E
N

Up Down Left Right Frequency

W
IS

H
S

H
E

X
S

H
R

E
B

R
O

W
IM

M
O

W
A

LK

(c) 5x7

S
H

E
N

Up Down Left Right Frequency

W
IS

H
S

H
E

X
S

H
R

E
B

R
O

W
IM

M
O

W
A

LK

(d) 9x13

Fig. 9: 2D-SOM-PINTs calculated for the Corridor dataset considering the
different behaviours and grid sizes

Experiments have been performed for different 2D-SOM-PINTs (see Figure
9) calculated from ADMs with different grid sizes: 1x1, 3x5, 5x7 and 7x11 and
9x13. The objective is to evaluate the ability of the 2D-SOM-PINT to represent
information extracted from the scene and classify human behaviour.

For each grid selection, a 10-fold cross validation has been performed to
analyse the classification performance of the 2D-SOM-PINT proposal. Table 1
shows the results of classification accuracy of the 2D-SOM-PINT with different
grid sizes for the different datasets considered for human behaviour analysis.
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Columns present the values of Sensitivity (correctly classified positive samples
/ true positive samples), Specificity (correctly classified negative samples / true
negative samples), and Accuracy (correctly classified samples / total samples).
The performance of the 2D-SOM-PINT increases with the number of neurons
and grid sizes. The 2D-SOM-PINT gets the best performance using a grid
cell of 9x13 and, in consequence, 27x39 neurons for the different datasets.
Moreover, the best performance for Inria is achieved using a 5x7 grid. These
results show that, for human behaviour analysis, even a 1x1 (no sampling)
grid size, the 2D-SOM-PINT provide good results. For the Frontal dataset, the
neural network is able to detect the 91% of the action performed in the scene.
Hence, our representation is able to recognize the behaviour of the people in
the CAVIAR database (Corridor, Frontal and Inria) with great accuracy.

Table 1: Classification performance for different grid sizes and datasets

Dataset Grid Neurons Sens. Spec. Acc.
1x1 3x3 0.7333 0.9556 0.9238
3x5 9x25 0.8333 0.9722 0.9524

Corridor 5x7 15x21 0.8548 0.9758 0.9585
7x11 21x33 0.8619 0.9770 0.9605
9x13 27x39 0.8786 0.9798 0.9653
1x1 3x3 0.9167 0.9873 0.9782
3x5 9x25 0.9381 0.9897 0.9823

Frontal 5x7 15x21 0.9333 0.9889 0.9810
7x11 21x33 0.9333 0.9849 0.9741
9x13 27x39 0.9476 0.9913 0.9850
1x1 3x3 0.7375 0.9125 0.8688
3x5 9x25 0.7688 0.9229 0.8844

Inria 5x7 15x21 0.7813 0.9271 0.8906
7x11 21x33 0.7813 0.9271 0.8906
9x13 27x39 0.7813 0.9271 0.8906
1x1 3x3 0.7958 0.9518 0.9236
3x5 9x25 0.8467 0.9616 0.9397

Average 5x7 15x21 0.8565 0.9639 0.9434
7x11 21x33 0.8588 0.9630 0.9418
9x13 27x39 0.8692 0.9661 0.9470

In order to study in depth the classification accuracy according to the be-
haviour, confusion matrices are presented in Tables 2, 3 and 4 for the Corridor,
Frontal and Inria datasets respectively and for the different number of stud-
ied neurons. Matrix columns represent the true classes, and rows represent the
classifier prediction. The ideal classifiers will have only non-zero numbers in the
main diagonal. In general, as shown in the confusion matrices, 2D-SOM-PINT
has a high accuracy in classifying for each behaviour and dataset. Specifically,
the 2D-SOM-PINT results for the Corridor dataset (Table 2) show that SHRE
(shop reenter) is the best classified irrespectively the grid size because it is the
most different trajectory among the whole possible tested paths. WISH (win-
dow shop) and BROW (browsing) have a high classification rate using a small
grid size (from 3x5). Using a grid size greater or equal 5x7 assures a high
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accuracy for all behaviour except for WALK (walking). Walking is the worst
behaviour classified for all grid sizes. Although, using a grid size of 9x13, in
which the 2D-SOM-PINT is able to classify more than 50% of samples, the
problem is that all trajectories, except immobile, have walking component.
Then, the classifier is not able to distinguish properly between the generic
walk and a specific walk for another action. Moreover, WISH and BROW are
a priori similar behaviours but 2D-SOM-PINT is able to correctly represent
both.

The results of the 2D-SOM-PINT for the Frontal dataset (Table 3) are
very similar to those for the Corridor dataset (both belong to the Shopping
Centre dataset). As in the Corridor, SHRE (shop reenter) is the best classified
irrespectively the grid size because it is the most different trajectory. WISH
(window shop) has the highest probability of detection regardless the grid size.
However in this dataset, BROW (browsing) has a classification rate slightly less
than for the Corridor (in average, it is 7% below). In the same way, the SHEX
(shop exit) is classified better using this dataset achieving the best results
for 3x5, 5x7 and 9x13 grid sizes, being in average a 13% better than in the
Corridor dataset. Regardless the grid size, the 2D-SOM-PINT assures a high
accuracy for all behaviours (close to 90%) except for WALK (walking). Againg,
Walking is the worst behaviour classified for all grid sizes but is classified
about 30% better in average than in the Corridor dataset. For grid size of
9x13, the 2D-SOM-PINT is able to classify more than 77% of samples. The
problem for this behaviour is the same as detailed before: the classifier is
not able to distinguish properly between the generic walk and a specific walk
for another action. Finally, the INMO (Inmobile) behaviour achieves the best
classification rate for this dataset, outperforming about 10% in average the
Corridor dataset. In general, the performance results of the 2D-SOM-PINT
obtained for Corridor and Frontal datasets, recognising specific behaviour, are
very similar but not the same. The use of the ground plane, in which people
are moving, to extract descriptors minimizes the effect of the point of view of
the camera. However, the ground plane used in the experiments (and in the
datasets) are different. The Frontal dataset is a subset of the space and people
considered in the Corridor dataset.

Finally, the 2D-SOM-PINT results for the Inria dataset (Table 4) show that
DRDO (Drop down) is the best classified irrespectively the grid size because
it is the most different trajectory compared to the others. For a 5x7 grid size,
BROW achieves the high classification rate. However the classification rate
decreases from this point. Similar performance results are obtained for the
WALK (walking) behaviour having the high classification rate for a 1x1 grid
size (73%) and decreases for bigger sizes. Finally, INMO (inmobile) is the worst
classified behaviour, even below 50% for 1x1 and 3x5 grid sizes. In average,
the 2D-SOM-PINT achieves only the 53% for this behaviour. These results are
determined for the characteristics of this dataset: it only contains 4 behaviours
and they are very unbalanced.

Additonally, the results are presented using the ROC space in Figures
10, 11 and 12 to analyze the effect of the grid size on the performance for
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the different behaviours for the Corridor, Frontal and Inria datasets. The 2D-
SOM-PINT is able to improve the performance on classifying the behaviours
according the increasing the number of cells of the grid. The results in the
ROC space confirm visually this fact. The greater the size, the better the
classification performance: jointly increasing the probability of detection and
decreasing the probability of false alarm. For the Shopping Center datasets,
the probability of false alarms are very low, less than 7% for the Corridor
and less than about 4% for the Frontal dataset. According to the specific
behaviours, for SHEX and WALK in the Corridor and Frontal and also for
SHEX in Frontal dataset the trend is to increase the sensitivity but increasing
the probability of false alarm. Increasing the grid cell, the WALK behaviour is
labelled as SHEX increasing the false alarm of this. In the same way, mainly
SHEN and SHEX behaviours are labelled as WALK incresing the fase alarm
of the latter. This occurs due to the SHEN and SHEX is close to the WALK
behaviour differing is just a part of the trajectory close to the doors of the
shop. Fig. 12b shows the trends for the Inria dataset. BROW and DRDO
reflect the general performance (the greater the size, the best the classification
performance). However, the trends for INMO and WALK is to increase the
sensitivity but increasing the probability of false alarm (achieves about 16%
for WALK).
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Fig. 10: Performance of the 2D-SOM-PINT in the ROC space for each be-
haviour according to different grid sizes using the Corridor dataset. The range
for the probability of false alarm is represented in (0,1) (a) and in (0,0.2) (b)

In order to compare the advantages of preserving the topology for the
extracted features, the 2D-SOM-PINT proposal has been compared with the
results obtained by a SOM and a NG approach (see Table 5). The original
SOM is the basis of the 2D-SOM-PINT proposal. It is able to preserve the
topology in the map but it is not able to preserve the input topology. The
NG is able to preserve the space defined by the feature vectors. Specifically,
the parameters for the SOM and NG are the same, having 225 neurons with a
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Table 2: Confusion matrices for each trained 2D-SOM-PINT for Corridor
dataset. Columns represent the actual class and rows the predicted class

Grid size 1x1
SHEN WISH SHEX SHRE BROW INMO WALK

78% 3% 2% 5% 3% 13%
7% 78% 2% 5% 3%

77% 10% 15%
100% 7%

3% 3% 5% 67% 7% 17%
3% 5% 5% 12% 83% 15%
8% 10% 12% 5% 2% 30%

Grid size 3x5
SHEN WISH SHEX SHRE BROW INMO WALK

75% 2% 18%
8% 100% 2% 10% 3%

82% 2% 13%
2% 100% 2% 2%

3% 98% 2% 15%
5% 2% 83% 3%
8% 12% 3% 45%

Grid size 5x7
SHEN WISH SHEX SHRE BROW INMO WALK

80% 2% 2% 2% 13%
5% 97% 10%
2% 85% 2% 20%

3% 100%
3% 2% 2% 100% 7%
2% 95% 8%
8% 8% 2% 42%

Grid size 7x11
SHEN WISH SHEX SHRE BROW INMO WALK

82% 2% 2% 2% 10%
5% 95% 2% 12%
2% 88% 2% 3% 25%

100%
5% 97% 3%

93% 2%
7% 3% 10% 2% 48%

Grid size 9x13
SHEN WISH SHEX SHRE BROW INMO WALK

83% 2% 13%
3% 97% 2%
2% 88% 2% 30%

100% 2%
100%

2% 93%
10% 3% 12% 3% 53%

Average
SHEN WISH SHEX SHRE BROW INMO WALK

80% 2% 2% 5% 2% 14%
6% 93% 2% 2% 8% 6%
2% 84% 4% 2% 21%

3% 100% 2% 3%
4% 3% 3% 92% 4% 10%
3% 5% 3% 12% 90% 7%
8% 6% 11% 5% 2% 44%

Table 3: Confusion matrices for each trained 2D-SOM-PINT for Frontal
dataset. Columns represent the actual class and rows the predicted class

Grid size 1x1
SHEN WISH SHEX SHRE BROW INMO WALK

90% 3%
3% 100% 3%

87%
3% 100%

77% 7%
3% 7% 3% 100%
3% 3% 13% 93%

Grid size 3x5
SHEN WISH SHEX SHRE BROW INMO WALK

90% 13%
7% 100%

100% 7% 10%
100%

87% 3%
3% 100%

3% 3% 73%

Grid size 5x7
SHEN WISH SHEX SHRE BROW INMO WALK

97% 17%
3% 100% 3% 7%

100% 7% 3%
100%

87% 3%
100%

3% 70%

Grid size 7x11
SHEN WISH SHEX SHRE BROW INMO WALK

83% 3% 17%
17% 100% 10%

97% 7% 17%
100%

3% 87% 3%
100%

3% 53%

Grid size 9x13
SHEN WISH SHEX SHRE BROW INMO WALK

93% 3%
7% 100% 3% 7%

100% 7% 7%
100%

87%
100% 7%

3% 77%

Average
SHEN WISH SHEX SHRE BROW INMO WALK

91% 3% 13%
7% 100% 3% 8%

97% 7% 9%
3% 100%
3% 85% 4%

3% 7% 3% 100% 7%
3% 3% 5% 73%
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Fig. 11: Performance of the 2D-SOM-PINT in the ROC space for each be-
haviour according to different grid sizes using the Frontal dataset. The range
for the probability of false alarm is represented in (0,1) (a) and in (0,0.2) (b)
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Fig. 12: Performance of the 2D-SOM-PINT in the ROC space for each be-
haviour according to different grid sizes using the Inria dataset. The range for
the probability of false alarm is represented in (0,1) (a) and in (0,0.2) (b)

Gaussian neighbourhood function to preserve the topological properties. The
SOM has a map grid size of 1515 using a toroidal shape. They are trained
for 50 epochs. Moreover, SOM has an additional fine-tuning for 500 epochs.
The features used to train the maps are the same: the ADV. In this case, a
vector concatenating all ADVi,j was used as the collection of ADVs describing
a person trajectory (Eq. 10).

Table 5 shows the sensitivity and specificity of the compared artificial neu-
ral neworks for the different grid sizes and datasets used in the experiments.
Moreover, in Fig. 13, the average sensitivity and specificity for the different
datasets are graphically presented. It is important to highlight that the min-
imum probability of detection of the 2D-SOM-PINT is about 73% using a
1x1 grid (this means the whole ground plane was sampled in 1 ADV) for the



Title Suppressed Due to Excessive Length 23

Table 4: Confusion matrices for each trained 2D-SOM-PINT for Inria dataset.
Columns represent the actual class and rows the predicted class

Grid size 1x1
WALK BROW INMO DRDO

73% 8% 30%
13% 73% 18%
13% 8% 43%
3% 13% 10% 100%

Grid size 3x5
WALK BROW INMO DRDO

68% 10% 40%
13% 75% 13%
18% 13% 45%
3% 3% 3% 100%

Grid size 5x7
WALK BROW INMO DRDO

63% 3% 25%
13% 93% 18%
23% 3% 58%
3% 3% 100%

Grid size 7x11
WALK BROW INMO DRDO

58% 8% 23%
15% 85% 20%
23% 58%
5% 8% 100%

Grid size 9x13
WALK BROW INMO DRDO

65% 3% 25%
13% 88% 15%
20% 60%
3% 10% 100%

Average
WALK BROW INMO DRDO

65% 6% 29%
13% 83% 17%
19% 8% 53%
3% 7% 6% 100%

Table 5: Classification performance of 2D-SOM-PINT compared to SOM and
NG

Dataset
Corridor Frontal Inria Average

ANN Grid Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

2
D

-S
O

M
-P

IN
T 1x1 0.7333 0.9556 0.9167 0.9873 0.7375 0.9125 0.7958 0.9518

3x5 0.8333 0.9722 0.9381 0.9897 0.7688 0.9229 0.8467 0.9616
5x7 0.8548 0.9758 0.9333 0.9889 0.7813 0.9271 0.8565 0.9639

7x11 0.8619 0.9770 0.9333 0.9849 0.7813 0.9271 0.8588 0.9630
9x13 0.8786 0.9798 0.9476 0.9913 0.7813 0.9271 0.8692 0.9661

S
O

M

1x1 0.6714 0.9429 0.8762 0.9794 0.7167 0.9056 0.7548 0.9426
3x5 0.6714 0.9670 0.9286 0.9881 0.7167 0.9056 0.7722 0.9536
5x7 0.7143 0.9571 0.8905 0.9817 0.7750 0.9250 0.7933 0.9546

7x11 0.6571 0.9381 0.9238 0.9873 0.8167 0.9389 0.7992 0.9548
9x13 0.6300 0.91 0.9286 0.9881 0.7667 0.9222 0.7751 0.9401

N
G

1x1 0.7429 0.9643 0.8952 0.9825 0.7417 0.9139 0.7933 0.9536
3x5 0.7857 0.9643 0.9571 0.9929 0.7417 0.9139 0.8282 0.9570
5x7 0.7714 0.981 0.9095 0.9849 0.7750 0.9250 0.8186 0.9636

7x11 0.7000 0.9667 0.9190 0.9865 0.8000 0.9333 0.8063 0.9622
9x13 0.6700 0.9445 0.9190 0.9865 0.7667 0.9222 0.7852 0.9511

Corridor dataset. This case uses just 3x3 neurons (see Figure 9a) to represent
each behaviour. In total, the 2D-SOM-PINT scheme uses 63 neurons (9 by the
7 behaviours) and 84 connections (12 by the 7 behaviours) to achieve these
results. Comparatively, 2D-SOM-PINT is 6% better than SOM in sensitivity
and 1% in specificity for this dataset. However, for this structure, the 2D-
SOM-PINT is about 1% worst than NG in sensitivity and in specificity. To
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achieve these results the NG is using 162 neurons and 523 synapses more than
2D-SOM-PINT. The minimum probability of detection of the 2D-SOM-PINT
for the Frontal and Inria datasets are about 91% and 73% using a 1x1 grid.
This means 4% better compared to SOM and 2% to NG using the Frontal
dataset and 4% better compared to SOM and less than 1% worse compared
to NG using the Inria dataset.

The SOM and NG classifiers are able to achieve the best results for a
5x7 (71.43% sensitivity and 95.71% specificity) and 3x5 (78.57% sensitivity
and 96.43% specificity) grid size respectively for the Corridor dataset. For the
Frontal dataset, a grid size of 3x5 provide the best results for SOM and NG,
being the 7x11 the best size for the Inria dataset However, the 2D-SOM-PINT
achieve the best results using the biggest grid size (9x13).

In average (see Fig. 13) SOM performance increases up to a 7x11 grid
size. However, the performance decreases for the biggest grid size 9x13. Com-
paratively to 2D-SOM-PINT, the performance gap is about 6% and 1% for
sensitivity and specificity respectively up to 7x11, being about 10% and 2.5%
for sensitivity and specificity respectively using the 9x13 grid size. In the NG
case, the performance decreases as grid size increases even before (from 3x5
grid size), being the gap for a 9x13 grid about 8% in sensitivity and 1.5% in
specificity. The problem is that the SOM and NG are not able to preserve the
topological information about cell grids as they are converted to a vector for
training and classification. The neighbourhood for a cell is not preserved due to
each component of the vector reference associated to each neuron is compared
to corresponding component of the input vector. Learning process for the SOM
and NG takes into account the neighbourhood close in the space Rnxmx5 but
does not take into account the neighbourhood in the ground space. However,
the structure of the 2D-SOM-PINT assure the neighbours for a specific neuron
are close to adjacent cells in the ground plane.

The 2D-SOM-PINT proposal has been compared to other contemporary
methods in order to show the accuracy of the proposed representation and clas-
sification method to include behaviour information. Sensitivity and specificity
results of context classification have been calculated from reported success
rates in [11], [39] and [21] of comparable experiments on the Corridor dataset
(results for the other datasets are not available). These methods are grouped
as state and semantic models using predefined models and rules to evaluate
behaviours. Additionally, 2D-SOM-PINT has been compared to our previous
work [5] in order to show the advantages of the topology preservation using
the self-organizing proposal.

In [11], a rule-based approach, used semantic rules on both the role and
movement classifications to evaluate the context from video sequences. The
work in [39], used an extension of the HMM, specifically, to interpret the con-
text, hidden semi-Markov model (HSMM). HSMMs extend the standard Hid-
den Markov model with an explicit duration model for each state [12]. Finally,
in [21] Lavee et al. proposed the use of Petri Nets (PN) for recognition of event
occurrences in video. The Petri Net was used to express semantic knowledge
about the event domain as well as for recognizing events as they occur in a
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Fig. 13: Comparative performance between 2D-SOM-PINT, SOM and GNG
for different grid sizes

particular video sequence. In our previous work, the ADV was used as a vector
input for different classic classifiers including SOM, Supervised SOM, Neural
Gas, Linear Discriminant Analysis and K-nearest neighbour and multiclassfier
(MC) taking into account the output behaviour of each individual classifier.
Table 6 shows results for the above four methods (Rule-based, HSMM, PN,
and the previous multiclassifier (MC)) for the ADV representation using a 5x7
grid. Results for the proposed 2D-SOM-PINT with 5x7 and 9x13 grid size has
been included in the comparison.

Table 6: Classification performance comparison for the Corridor dataset

Method Sensitivity Specificity Dif. Sens Dif. Spe
Rule-based [12] 0,570 N/A 31% N/A

HSMM [39] 0,651 0,987 23% -1%
PN [21] 0,809 0,968 7% 1%

MC 5x7 [5] 0,814 0,988 6% -1%
2D-SOM-PINT 5x7 0,855 0,976 2% 0%

2D-SOM-PINT 9x13 0,879 0,980

As it is shown in Table 6, the 2D-SOM-PINT approach achieves a sig-
nificant improvement over both the Rule-based and the HSMM results for
sensitivity. Also, for PN the improvement is close to 8%. Additionally, com-
pared to the MC our novel proposal can achieve an extra 6% more due to pre-
serving input topology. The 2D-SOM-PINT representation and classification
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outperform the results without having semantic knowledge about behaviour
and preserving input topology.

Finally, the last experiment is focused on validate the 2D-SOM-PINT pro-
posal in other domain than the individual trajectory interpretation and to
conduct experiments with descriptors different to the ADV. In this case, recog-
nising group activities has been selected as another domain of study. Under-
standing small group behaviour, interacting with the environment (moving
to a specific place), with other people (fighting), or group changes (split) are
a very challenging problem. It shares with the previous domain the activity
recognition and the trajectories as basic input to calculate descriptors but in
this case is based on groups of interacting people. In consequence, we would
like to show how the 2D-SOM-PINT is able not only in the learning and classi-
fication process to include topological relations between the points or regions
where features were extracted but also the relationships among them using
other descriptors than those extracted from single trajectories.

In this experiment, we make use of the trajectory described by the group
and by the individuals who form it as basic input to describe the group activity.
Specifically, the features describes the group activity by using three different
components: the trajectory described by the centroids of the group over time
(calculated as the ADV), the coherence of the movements of each person with
respect to the movement of the centroid in a specific group (IntraGD) and, fi-
nally, the movement relationships in terms of directions among different groups
in the scene (InterGD). This descriptor consider the regions where features
are extracted in order to incorporate the topological relations among them.
Specifically, for this experiment, the grid sizes of the cell C considered are 1x1,
3x3, 5x5, 7x7 and 9x9.

Experiments have been carried out using the public BEHAVE [8] and the
group characteristics of the previous used CAVIAR dataset. For the INRIA
sequences, three different behaviours have been labelled: Walking, Browsing,
Inmobile and DropDown. In the case of Shopping Center, the trajectories
have been used as samples classified into 4 contexts or activities: ShopEnter,
ShopExit, Meeting and Walking. The BEHAVE public dataset provides the
group information in images of 640x480 pixels at a frame rate of 25 fps. Kim
and Cho et al. [19,10] have demonstrated a very good performance using this
dataset. In order to be able to compare with them, we have used the same
activities they do. Specifically, six activities: Approach, Split, WalkTogether,
RunTogether, Fighting, and InGroup.

Table 7 presents the average Sensitivity and Specificity according to the
classifier (columns) and each dataset (rows) for the different grid sizes and
classifiers. In this case, the 2D-SOM-PINT, which preserves the topological
information of the input data, gets the best results. It is important to highlight
that the NG also offer a good performance rate.

Finally, we compare the 2D-SOM-PINT results with the methods pro-
posed in [10,43,30,42] considering the seven classes of the Behave. Only [10]
considers the seven classes as well. The rest of the works consider a subset of
four classes. Table 8 shows the Sensitivity of the comparison. As we can see,
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Table 7: Classification performance for different classifiers

2D-SOM-PINT SOM NG

Dataset Sens. Spec. Sens. Spec. Sens. Spec.

Behave 0.837 0.967 0.836 0.966 0.837 0.967
Corridor 0.790 0.930 0.783 0.928 0.788 0.929

Frontal 0.783 0.928 0.783 0.928 0.782 0.927
Inria 0.843 0.922 0.839 0.919 0.840 0.920

TOTAL 0.813 0.937 0.810 0.935 0.812 0.936

our proposal achieves a performance better than [30]. For the comparison of
[43] and [42], the 2D-SOM-PINT shows slightly lower performance for Walk-
Together and InGroup and better for the others. The comparison with the
state-of-the-art method [10] shows the better performance of our method for
all activities except for InGroup (6% lower). In average, the 2D-SOM-PINT
classifier outperforms all compared methods.

Table 8: Comparison with other state-of-the-art methods for the Behave
dataset

2D-SOM-PINT [10] [43] [30] [42]
Approach 100 83.33 71 60

Split 100 100 79 70 93.1
WalkTogether 86.67 91.66 88 45 92.1

InGroup 86.67 100 88 90 94.3
Fight 90 83.33 95.1

RunTogether 100 83.33

Average 93.89 90.275 81.5 66.25 93.65

5 Conclusion

In this paper a constrained self-organizing neural network nD-SOM-PINT has
been proposed to preserve the location of the extracted features from an n-
dimensional space and its topological information. It is able to represent and
classify features preserving the topological relations of the input space in which
the features have been extracted. The nD-SOM-PINT is a variant of the self-
organizing feature map in which the learning and the training process is con-
strained by the topology of the n-dimensional space used to extract the input
features. Extracted features in adjacent areas of the n-dimensional space are
explicitly in adjacent areas of the nD-SOM-PINT map. This self-organizing
scheme contains specific neurons for specific regions of the input space. Each
input to the map is able to activate a neuron of each area associated to the
cell at the same time. It allow us to adapt the whole map according to an in-
put sample. After training, a specific nD-SOM-PINT represents a higher level
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of understanding, a label. In classification, a sample is compared in parallel
to each nD-SOM-PINT to establish the winner map and, consequently, the
associated high-level of understanding.

The nD-SOM-PINT is evaluated in this paper by a case of study aimed to
represent and classify trajectories of people from video sequences into high level
of semantic understanding: human behaviour analysis. The instantiated neu-
ral network, 2D-SOM-PINT, is able to deal with the big gap between human
trajectories in a scene and the global behaviour associated to them preserv-
ing the spatial information about trajectories. It uses our previous Activity
Description Vector (ADV) [5] as features to describe the activity happened in
each region of the scene (cells). The network is able to learn the behaviour by
means of learning activities happening in each specific area of the scene. The
2D-SOM-PINT contains specific neurons for each cell preserving the topology
of the scene. Experimental results show how 2D-SOM-PINT proposal is able
to classify input ADVs into human behaviour in complex situations with great
accuracy outperforming the original SOM and the NG (as network preserving
input space topology). Moreover, it is able to outperform previous methods
that uses the same dataset (Corridor in CAVIAR). Moreover, a brief example
of use of the 2D-SOM-PINT for another domain than the individual trajec-
tory interpretation has been presented. Specifically, a experiment to broadly
show how the 2D-SOM-PINT is able not only in the learning and classification
process to include topological relations between the points or regions where
features were extracted but also the relationships among them using other
descriptors than those extracted from single trajectories has been included.
All experiments show that the 2D-SOM-PINT is able to improve the results
obtained with other self-organizing neural networks using the same descriptor
and, also, outperforms the results obtained with other descriptors and state-
of-the-art methods using the same datesets.

As future research lines, we plan to establish a hierarchical scheme for clas-
sification purposes in order to improve the performance of the nD-SOM-PINT.
Instead of compare each input with the maps of the same size corresponding
to each label and selecting the map of minimum distance, we propose com-
paring the input through different levels increasing the size of the grid cell
until the difference of distances between the winner map and the second one
be enough (could be a threshold). For example in the case of study of this
paper, a map for a grid size of 1x1 is enough to detect a shop re-enter (SHRE)
behaviour, having to increase the size to properly detect other behaviours. In
the same way in order to decrease the number of neurons associated to each
region of the n-dimensional space, we propose a growing scheme (as GG or
GC) to associate different neurons depending on the information contained in
each region of the space. For example in the case of study, if the space (image)
is discretized using many cells, there are regions with the same characteristics
than the neigbourhood, even areas with no-activity. Finally, we propose to
extend the experiments in order to explore the feasibility of nD-SOM-PINT to
represent and recognize the 3D space. We plan to use the map to represent and
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analyse 3D trajectories extracted from RGB-D cameras in order to classfify
different actions in a 3D human-computer interaction system.
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