International Congress On Architectural Technology

ICAT 2016
12th - 14th May, 2016
Organised by
University of Alicante
Dr. Antonio Galiano Garrigós – Chairman
Roberto T. Yáñez Pacios – Departamento de Construcciones Arquitectónicas
International Marjal Healthy Chair

Board Members

Dr. Niels Barrett
Copenhagen School of Design and Technology
Denmark
Chairman

Prof. Gareth Alexander
Ulster University
Northern Ireland

Prof. Elsbeth van Battum
Amsterdam University of Applied Sciences
Holland

Dr. Stephen Emmitt
University of Bath
England

Dr. Antonio Galiano Garrigós
University of Alicante
Spain

Prof. Malachy Mathews
Dublin Institute of Technology
Ireland

Prof. Tahar Kouider & Dr. Jonathan Scott
Robert Gordon University Aberdeen
Scotland UK

Prof. Norman Wienand
Sheffield Hallam University
England

International Scientific Committee

Dr. Kemi Adeyeye

Prof. Gareth Alexander
Dr. Niels Barrett

Prof. Elsbeth van Battum
Prof. Abram de Boer
Prof. Noel J. Brady
Prof. David Comiskey

Dr. Victor Echarri Iribarren
Dr. Stephen Emmitt
Prof. Emma Geoghegan

Dr. Ángel B. González Avilés
Prof. James Harty
Dr. Barry Haynes
Prof. Jakob Kruse
Prof. Liz Laycock

Dr. Carlos L. Marcos Alba
Prof. Shane O’Brien

Dr. M. Isabel Pérez Millán
Prof. Catherine Prunty
Dr Kevin Spence
Prof. Hans ten Voorde
CONTENTS

FORWARD .. 11

WORKGROUP SESSION: BIM AND INNOVATION 13

NUCLEAR ARCHITECTURE: Perceptions of Architectural Technology, Frances Robertson (Sheffield Hallam University, UK) and Stephen Emmitt (The University of Bath, UK) .. 15

THE VIRTUAL INTERACTIVE RELATIONSHIP BETWEEN BIM PROJECT TEAMS: Effective Communication to aid Collaboration in the Design Process, Emma Hayes and Noha Saleeb (Design Engineering and Mathematics Department, School of Science and Technology, Middlesex University, UK) .. 35

THE BIG BIM BATTLE: BIM adoption in the UK for large and small companies, Jake Loveday, Tahar Kouider and Jonathan Scott (The Scott Sutherland School for Architecture and Built Environment, Robert Gordon University Aberdeen, UK) ... 53

THE CONSERVATION OF OUR BUILT HERITAGE, IN PARTICULAR STATUES IN ABERDEEN, EVALUATED THROUGH A SOCIAL AND HISTORICAL CONTEXT AND THEIR IMPACT, THROUGH THE USE OF 3D SCANNING, Andrew Shaw, Marianthi Leon and Jonathan Scott (The Scott Sutherland School for Architecture and Built Environment, Robert Gordon University Aberdeen, UK) .. 67

ARCHITECTURAL TECHNOLOGY AND THE BIM ACRONYM 3: GETTING TO GRIPS WITH BIM, Tahar. Kouider, Graham Paterson (Robert Gordon University Aberdeen, UK) and James Harty (Copenhagen Technical Academy, Denmark) .. 95

SMES AND LEVEL 2 BIM, THE WAY FORWARD, Stephanie Mellon and Tahar. Kouider (Robert Gordon University Aberdeen, UK) 121

WORKGROUP SESSION: PROFESSIONAL APPROACH 137

HOW BUILDINGS VISUALISE CLIENT AND ARCHITECT: The problem that today’s user is typically not the client, Niels Barrett and Jakob Kruse (Copenhagen School of Design and Technology, KEA, Denmark) .. 139
IMPLEMENTATION FEASIBILITY OF A DIGITAL NERVOUS SYSTEM FOR THE CONSTRUCTION INDUSTRY: For Efficient and Effective Information Management across the Project Lifecycle, Rexter Retana and Noha Saleeb (Middlesex University, London, UK) _ 159

INTELLIGENT DECISION-MAKING SYSTEM FRAMEWORKS FOR A DIGITAL PLAN OF WORK: A Theoretical Investigation for the Construction Industry, Jack Dearlove and Noha Saleeb (Middlesex University, London, UK) ___________________________ 177

THE IMPACT OF BIM ON THE DISTRIBUTION OF COST AND RETURN ON INVESTMENT IN UK CONSTRUCTION PROJECTS, Lucas. Cusack and Noha Saleeb (Middlesex University, London, UK) __ 193

WORKGROUP SESSION: TEACHING ___________________________ 211

COMPARING COMMON DATA ENVIRONMENT PLATFORMS FOR STUDENT COLLABORATIVE WORKING: A Case Study from Ulster University, David Comiskey, Mark Mckane, Andrew Jaffrey (Ulster University, Northern Ireland) and Paul Wilson (Technical Director, Digital Project Delivery, AECOM) ___________________________ 213

THE INFLUENCE OF SPACE LAYOUT, TECHNOLOGY AND TEACHING APPROACH ON STUDENT LEARNING: An Architectural Technology Perspective, David Comiskey, Gareth Alexander, Diane Hazlett, Kenneth Mccartan and Louise O’Boyle (Ulster University, Northern Ireland) ___________________________ 233

TECHNOLOGY LANGUAGE AND FRANKENSTEIN STRATEGY, Manuel Pérez Romero (IE School of Architecture, Alcalá de Henares School of Architecture, Spain) ___________________________ 249

HOW TO MEASURE HEALTHINESS IN BUILDINGS: Experiences in teaching with BIM tools, Antonio Galiano-Garrigós, Víctor Echarri-Iribarren and Almudena Espinosa-Fernández (Departamento de Construcciones Arquitectónicas, Universidad de Alicante, Spain) ___ 263

ARE DRAWINGS DEAD? …and performance over aesthetics? James Harty (Copenhagen School of Design and Technology, KEA, Denmark) ___ 281

DETAILING FOR A RESEARCH CENTRE IN ANTARCTICA: An experiment to force students to be creative instead of copying standard solutions, Fatih Yazicioglu (Istanbul Technical University, Faculty of Architecture Taskisla, Turkey) ___________________________ 295
STRUCTURAL ANALYSIS WITH ANSYS ON STONE CONSTRUCTIONS IN THE HISTORICAL SPANISH HERITAGE, Antonio Luis Lopez Gonzalez (Departamento de Ingeniería Civil, Universidad de Alicante, Spain) 309

THE RELEVANCE OF HARMONISING THE TECHNICAL LEVEL OF SOCIAL HOUSING WITH THE URBAN LEVEL OF THE NEIGHBOURHOOD THROUGH THE EXAMPLE OF THE 500 DWELLINGS IN ALBACETE, Cristina Caro Gallego (Escola d’Art i Superior de Disseny de València) and M. Elia Gutiérrez Mozo (Departamento de Expresión Gráfica y Cartografía, Universidad de Alicante) 335

NO EVOLUTION BUT REVOLUTION: The future of the Dutch terraced house, Robin Beers and Mauric Bohle (Amsterdam University of Applied Sciences, Amsterdam) 353

BUILDING FROM BUILDING WASTE: The development of an instrument to determine the circularity of materials from the existing building stock in order to maximise high quality reuse, Elsbeth F. Van Battum (Amsterdam University of Applied Sciences) 369

TECHNOLOGIES FOR SEDUCTION: “Espacio Doméstico” VideoArt Center in Blanca, Enrique Nieto ((Departamento de Expresión Gráfica y Cartografía, Universidad de Alicante) 387
HOW BUILDINGS VISUALISE CLIENT AND ARCHITECT

The problem that today’s user is typically not the client

NIELS BARRETT AND JAKOB KRUSE
Copenhagen School of Design and Technology - KEA,
Copenhagen, Denmark
nib@kea.dk
jakk@kea.dk

Abstract. An article presented at the last ICAT- conference stated at the end that buildings at all times tend to picture the people who had them erected. This paper aims to show the correctness of that statement.
To this end, it will examine a number of typical residential buildings dating from the beginning of the seventeenth century up to today, investigate who had the buildings erected, and relate that to the performance of the buildings. This relation analysis will mainly use the scale but also the degree of diversity in function and appearance as factors. Furthermore, using economic data and data on the buildings to identify patterns, it will investigate how size of the property and relative size of the capital interest behind the building has developed.
Since the authors live in Copenhagen and Copenhagen is very typical in its historical development, buildings and environments in and around the centre of Copenhagen are used as examples.

Keywords: Scale, urbanity, prices, investors, expressivity, diversity, performance
1. Introduction

Previous papers (Barrett, 2014 and 2013) discuss the problem that recently built environments in most cities are not attractive to anyone else except people who live or work there. No one visits such areas just to stroll around and enjoy the neighbourhood because it is simply not a pleasant experience.

A number of factors are causing this:
1. The buildings are very big and out of human scale (Smithson and Smithson, 1970).
2. The buildings all attempt to be outstanding and spectacular in their appearance (Firley and Gimbal, 2011).
3. The buildings do not submit to common rules about creation of urban space (Gideon, 1967).
4. The space between the buildings is too big and tends to be windy and undefined to a degree causing uncertainty (Vidler, 1992; Gehl, 2006).
5. The buildings have nothing but arrogance to offer to visitors (Frampton, 1980).
6. Attraction points are simply too far from each other (Lynch, 1960).
7. Buildings in an area tend to host the same kind of function instead of a diversity of functions (Gideon, 1967; Kostof, 2004).

This paper bases itself on the premise that the described lack of attraction is negative to the well-being of people and affects the whole of society negatively (Alexander, 1976; Vidler, 1992; Barrett, 2014; Smithson and Smithson, 1970). Therefore, it is relevant to find out what causes the continuous activity to build in the manner described. When understood, it will probably be possible to point to solutions to the problem. The two following hypotheses suggest an explanation:

1. Back in time, most ordinary buildings were built on the initiative of the coming user, which lead to a decent scale and an expression based on individual taste. Thus, a diverse and entertaining fabric dominated the cities of Europe. The fabric also expressed how different citizens together shaped and created the public sphere.
2. Today, most recently built environments express the power of investors and building societies as if there was a want in society to be entertained
with stories about such factors instead of having society itself depicted. The buildings are out of human scale and they do not attempt to create urban space together.

A way to find out if this is correct is to analyse buildings and look at their size, how they behave, who erected them and for what purpose. That is what follows. What one sees when trying to understand an environment and its individual buildings is at an overall level the following factors (Alexander, 1976; Bacon, 1978; Gehl, 2006):

A. The size of the buildings.
B. The degree of architectural care invested and its aims.
C. The position of the buildings in relation to the other buildings.
D. The entrance to the buildings.
E. The readability or message about function, age, and architectural language.

These factors are used in a comparison schedule after the presentation of 18 individual buildings in Copenhagen. The period covered is 1616 – 2012. A brief account for the development of society in the period gives the background for the physical development of the buildings and the city.

2. Politics, Economics, Social conditions and Technology.

Any society reflects its Political, Economic, Social and Technological developments. The buildings reflect these developments as does the clothes that people wear. In the period when the buildings chosen as examples for this article were erected, the Danish society changed in several ways. In 1849, the first modern constitution was introduced. This moved the absolute power away from the King, and started a development towards a true democracy.

Shortly after, the Industrial Revolution (which came late to Denmark) caught on and transformed the Danish society, with the first steep rise in GDP. Even though the population also began to rise, the rise in the GDP per capita was substantial. The average growth of the population in the period from 1700 to 1850 was approximately 5.200 a year. From 1850 to
1970, the average population-growth rate was approximately 29,200 people a year. In the period from 1850 to 1950 the GDP per capita rose on average with 47\$ (1990 International Geary-Khamis dollars) a year, whereas the average yearly growth from 1950 to 2010 was almost 320\$ (University of Groningen, 2013; The World Bank, 2015).

From the beginning of the industrial revolution, the transition of the population from the rural areas to the cities also began. A transition that with shorter periods of counterrtrends, is still ongoing. The introduction of industrial based capitalism slowly outcompeted the feudal economy based on land ownership and created a huge proletariat in the cities. Many of these people had moved away from even worse conditions in the rural areas, but social progress was also made, thereby slowly reducing inequality in society. Capitalists and the cooperative organisations now accumulated capital that previously primarily was accumulated by the King and the nobility. Many of these cooperative organisations had their origin in the trade unions. Both capitalists and cooperatives invested in housing that was to be rented out to the growing population in the cities (Frampton, 1980). The City of Copenhagen was not allowed to expand outside the military fortifications until 1852, but after that, the development of the city outside the old city limits happened rapidly. Space had always been a constraint in Copenhagen due to the army constraining the city limits, but the relief from this constraint in 1852 was only temporary because of the huge migration to the city (Rasmussen 1974; Hartmann and Villadsen 1979).

Whereas the pervious limitations to city development were due to military restrictions and lack of capital, the rapid growth added a new constraint, namely transport (cost and time for transport to be more specific). The workers in the factories in the city could not travel long distances to work. The rail and road infrastructure to support suburban growth was only slowly being build, usually struggling to keep up. The combination of accumulation of capital, growing population and limited infrastructure made the cost of land go up, and the need to exploit the land to the maximum, created the economic foundation for erecting the larger
structures that we see in Copenhagen today. As we see it in most cities in the world. The graph “Trend in size over time” illustrates how the 18 buildings chosen as examples for this paper fit onto that pattern. The scale on the y-axis depicts the same as the size of the circles, being the number of square meters in the structure, and the x-axis shows the period.

As all real-estate agents will jokingly say, there are three things important for the price of real estate, being location, location, and location. This shows when the relationship between the price of property per square meter and distance to the city centre is analysed. It also shows how locations with buildings that in solidarity aimed to create a good urban environment became extra attractive when such attempts were replaced with “Uncanny” newer structures (Vidler, 1992; Smithson and Smithson, 1970).

Figure 7: Trend in size over time

Today, the price per square meter of the analyzed buildings falls on average with approximately 3.330DKK (486US$ with 6,85DKK per US$) per km one moves away from the centre of Copenhagen (Bolighed, 2013). Of course with significant variations due to very local differences and the
quality of each individual building. The trade-off between the cost of land + the cost of construction and the cost of transportation (time and money) has lead to support the trend of bigger structures. The cost of the land is mainly effected by location and macro economic factors. The cost of transportation is, with variance in individual preferences and an individual view on the trade off, out of the hands of the individual. Individuals operating under economic constraints will therefore have to value the utility of location over the utility of the quality of the urban space, thereby subordinating themselves to the economic priorities of the property developers, those being capitalist or cooperative, but definitely not people who are building for their own use. The variable that can be changed is the construction price of the building, thus leading the owner to optimize his cost for the building versus the short termed gains from the equation: location x number of square meters. This can happen by a real industrialisation of the industri as described by Kristensen (2015). The industrialisation of clothes have not limited the possibilities for the individual to express herself by dressing.

3. Analyses of Copenhagen buildings from the last 400 years

The first buildings below are all, like most buildings of the period, for private purposes. Public buildings or buildings owned by society deserve to stand out from the ordinary fabric of private buildings because of their special role. The main function of a building should be visible and in good accordance with the way it behaves in the urban fabric (Smithson and Smithson, 1970).

One of the wealthiest citizens of his time had the first building below made. The building behaves well by lining up with the other buildings to create a popular public space together with other not too big buildings (Bacon, 1978; Kostof, 2004). It was made for own use and has a very pleasant and professional Dutch renaissance design (Langberg a, 1978).
Address: Amagertorv 6
Land number: 3 of Frimands Kvart
Year of erection: 1616
Type of first building owner: Wealthy and powerful
Number of square meters: \(815 \text{ m}^2 \times 2357 \text{ m}^2 \times 109 = 3174 \text{ m}^2\)
Length of Facade: 17 m
What the building depicts:

Councillor Mathias Hansen had a fashionable building erected in the same style as the king's palaces and the stock exchange in Copenhagen: the Dutch renaissance style. Thus, he expressed his wealth and power while accommodating himself and his business.

Other characteristics:

The unknown Dutch architect also had a say. The building is one of the few buildings that survived the fires in 1728 and 1795 in central Copenhagen.

Present owner: Royal Scandinavian
Sales price: 103,000 kr per m²

Figure 1. Copenhagen 1616 single-family house. Sales price (Bolighed, 2013).

The next buildings are of a relatively modest kind dating from a hundred years later. Irrespective of their relatively humble appearance, all these buildings have paid their tribute to society all their lifetime. They create walls of entertaining diversity to the public space and constitute together with their like the most attractive or as real estate agents put it “sought after” areas of Copenhagen. The high square meter prices bear witness to this.

Address: Sankt Annæ Gade 8 – Wildersgade 52
Land number: 137 of Christianshavn
Year of erection: 1717
Type of first building owner: Ordinary
Number of square meters: 250 m² (Home and business)
Length of Façade: 6.4 m to Sankt Annæ Gade
What the building depicts:

The building depicts Brewer Niels Signelsen who had it designed and erected to accommodate his family and his small business. Private life and work were each other’s neighbours.

Other characteristics:

The only extra or more decorative thing to notice is the pediment dormer that shows submission to the baroque style of the time.

Present owner: The building serves as restaurant and home
Sales price: 40,000 kr per m²
<table>
<thead>
<tr>
<th>Address</th>
<th>Nybrogade 20</th>
<th>Image 3 Google earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land number</td>
<td>18 of Snarens Kvarter</td>
<td></td>
</tr>
<tr>
<td>Year of erection</td>
<td>1731</td>
<td></td>
</tr>
<tr>
<td>Type of first building owner</td>
<td>Ordinary</td>
<td></td>
</tr>
<tr>
<td>Number of square meters</td>
<td>425 m² (Home and business)</td>
<td></td>
</tr>
<tr>
<td>Length of façade</td>
<td>6 m</td>
<td></td>
</tr>
<tr>
<td>What the building depicts:</td>
<td>Obviously, the building expresses that one owner wanted a house for himself and his family plus a place from where to manage his business. It is facing the channel to ease the latter activity for Bargeman Ole Hansen.</td>
<td></td>
</tr>
<tr>
<td>Other characteristics:</td>
<td>The masonry in nicely executed brickwork and with a cross-pitched roof to meet the neighbour buildings and to allow hoisting of goods to a door to the attic.</td>
<td></td>
</tr>
<tr>
<td>Present owner</td>
<td>Private ownership</td>
<td>Sales price: 45.000 kr. per m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Wildersgade 15 - 19</th>
<th>Image 4 Google earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land number</td>
<td>62, 63, and 64 of Christianshavn</td>
<td></td>
</tr>
<tr>
<td>Year of erection</td>
<td>1778, 1689 and 1787-88</td>
<td></td>
</tr>
<tr>
<td>Type of first building owner</td>
<td>Ordinary people</td>
<td></td>
</tr>
<tr>
<td>Number of square meters</td>
<td>351 m², 129 m², and 114 m²</td>
<td></td>
</tr>
<tr>
<td>Length of façade</td>
<td>10, 5.2, and 5.1 m</td>
<td></td>
</tr>
<tr>
<td>What the buildings depicts:</td>
<td>Number 15 shows us an investor who had a number of flats for tenants arranged in a building of four levels. The half-timbered number 17 tells about one owner who wanted a place for himself and his family. Number 19 made a hundred years later than the neighbour building in number 17 tells almost the same story.</td>
<td></td>
</tr>
<tr>
<td>Other characteristics:</td>
<td>The almost same appearance of number 17 and 19 indicates that the erector of number 19 liked the neighbour building and wanted to copy it.</td>
<td></td>
</tr>
<tr>
<td>Present owner</td>
<td>The State of Denmark (for members of Parliament when they stay in Copenhagen.)</td>
<td>Sales price: 45.000 kr. per m²</td>
</tr>
</tbody>
</table>

Figure 2. Copenhagen 1717 – 1788 single-family houses. Sales prices (Bolighed, 2013).

The following buildings of the next period are parts of the same old attractive area of Copenhagen. They behave fairly well though made to more wealthy investors - the first for own use and the next two for tenants.
Address: Overgaden Neden Vandet 11
Land number: 166 of Christianshavn
Year of erection: 1785-1786
Type of first building owner: Wealthy
Number of square meters: 1082 m² + buildings to the rear = 4,248 m²
Length of Façade: 30.5 m
What the building depicts: Captain Hans Pedersen Kofod was obviously a wealthy and successful trader with ships in the sea. The simple fact that he had one of the largest private buildings made for himself and his business indicates this.
Other characteristics: Decorations are modest but somehow elegant and there is a fine balance between window and gate arrangements in the facade and the dormer arrangements in the roof.
Present owner: The Nordea Fond
Sales price: 45,000 kr per m²

Address: Ny Kongensgade 9
Land number: 232 of Vester Kvarter
Year of erection: 1808
Type of first building owner: Well situated investor
Number of square meters: 2312 m² inclusive buildings to the rear
Length of Façade: 16.4 m
What the building depicts: Head of section Christian Nicolai Lautrup had this almost palace-like building erected to attract well-situated tenants. It depicts him and his architect. It is clearly the trendy classicism of the time. It is a more joyful version of it than what the dominant professor C.F. Hansen at the royal academy taught his students and used himself.
Other characteristics: Looking at the kinds of tenants who lived in the building during its lifetime one can conclude that the vision of the investor came true.
Present owner: Hans Frobst Ejendomme
Sales price: 45,000 kr per m²

Address: Studiestræde 10
Land number: 95 of Nørre Kvarter
Year of erection: 1801
Type of first building owner: Well situated investors
Number of square meters: 563 m²
Length of Façade: 11.5 m
What the building depicts: Master Carpenter Christopher Crane and Henrik Keyser had the same intentions with their building as Christian Nicolai Lautrup with his in Ny Kongensgade. It is also in the trendy classicistic style but without the colossal columns that belonged to it at that time. As in Ny Kongensgade, the building depicts the investors and not the individual tenants who would live in it.
Other characteristics: The classicistic demand for symmetry has in this situation lead to an odd framing of windows at basement and ground floor to the right to mirror with the real gate to the left. Thus, it displays a discrepancy between form and function.
Present owner: University of Copenhagen
Sales price: 37,500 kr per m²

Figure 3. Copenhagen 1785 – 1808 tenement buildings with one main stair. Sales prices (Bolighed, 2013).
The next buildings are situated in the so-called “bridge quarters” outside the old fortification ring. They are all tenement buildings but still behave in a relatively decent way. Being bigger than those originally erected in the old city centre they are each just one of more buildings that together create streets and squares of the city by shaping the needed urbanising blocks (Langberg b, 1978; Kostof, 2004).

<table>
<thead>
<tr>
<th>Address: Gøthersgade 135 – Linnégade 28</th>
<th>Image 8 Google earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land number: 68 of Nørrevold Kvarter</td>
<td></td>
</tr>
<tr>
<td>Year of erection: 1875</td>
<td></td>
</tr>
<tr>
<td>Type of first building owner: Investor</td>
<td></td>
</tr>
<tr>
<td>Number of square meters: 4,143 m²</td>
<td></td>
</tr>
<tr>
<td>Length of Façade: 27 + 30 m</td>
<td></td>
</tr>
<tr>
<td>What the building depicts:</td>
<td></td>
</tr>
<tr>
<td>Depicted is the investment to attract more wealthy tenants who would like to live in this palace like building with many flats. It is the taste and power of the investor we see and not that of the tenants. An architect might also have had his say.</td>
<td></td>
</tr>
<tr>
<td>Other characteristics:</td>
<td></td>
</tr>
<tr>
<td>It is a typical Danish version of the style that the British call Victorian but the Danish name is “klunkestil” or in English ‘tassel style’.</td>
<td></td>
</tr>
<tr>
<td>Present owner: Private owned individual flats</td>
<td>Sales price: 35,000 kr per m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address: Ægirsgade 3-5</th>
<th>Image 9 Google earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land number: 3205 of Udenbys Klædebo</td>
<td></td>
</tr>
<tr>
<td>Year of erection: 1902</td>
<td></td>
</tr>
<tr>
<td>Type of first building owner: Investor</td>
<td></td>
</tr>
<tr>
<td>Number of square meters: 1176 m²</td>
<td></td>
</tr>
<tr>
<td>Length of Façade: 21 m</td>
<td></td>
</tr>
<tr>
<td>What the building depicts:</td>
<td></td>
</tr>
<tr>
<td>The investor and the investment are depicted. The investor depiction is seen in the building design and the investment in that it is obviously meant for tenants who remain anonymous.</td>
<td></td>
</tr>
<tr>
<td>Other characteristics:</td>
<td></td>
</tr>
<tr>
<td>The red brick has now become trendy again.</td>
<td></td>
</tr>
<tr>
<td>Present owner: Private cooperative</td>
<td>Sales price: 32,000 kr per m²</td>
</tr>
</tbody>
</table>
In the period just shown, the buildings successively grew and created less pleasant but still urban environments. There are still streets and squares but some of the diversity and liveliness have disappeared (Rasmussen, 1974; Hiorns, 1956). Would the further development continue to go from better to less good or less attractive environments? A look at the buildings from the following period will tell.
Address: Holtegade 14 + Søllerødsgade 41-49 + Stefansgade 15

<table>
<thead>
<tr>
<th>Land number: 5530 + 5531 + 5532 of Udenbys Klædebo Kvarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of erection: 1932</td>
</tr>
<tr>
<td>Type of first building owner: Investor</td>
</tr>
<tr>
<td>Number of square meters: 5987 m² in one building (the half block)</td>
</tr>
<tr>
<td>Length of Façade: 85 m to Søllerødsgade</td>
</tr>
</tbody>
</table>

What the building depicts:

Again, the investor and the investment are depicted. A little less monotonous than “Hornbækhus” that was just described. Two kinds of windows to the flats and another window position to the staircase is making the building a little less militaristic.

Other characteristics:

When the building of Kay Fisker was classicism in its most puristic version, this building possesses small modernistic attempts.

Present owner: **Private cooperative** | Sales price: **37,500 kr per m²**

Address: Ryparken – Lyngbyvej 114

<table>
<thead>
<tr>
<th>Land number: 1014 – 1029 + 1046 of Emdrup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of erection: 1933</td>
</tr>
<tr>
<td>Type of first building owner: Investor organisation</td>
</tr>
<tr>
<td>Number of square meters: 50,980 in 25 buildings</td>
</tr>
<tr>
<td>Length of Façade: Buildings in park area</td>
</tr>
</tbody>
</table>

What the building depicts:

What can be seen here is one majestic demonstration of power on behalf of the investors and with the tenants as victims. Even if it is meant to give the families better circumstances than the common standard for ordinary people in the city the multiplication of not only the same features in facades but also of the blocks becomes a humiliation of the individual.

Other characteristics: **Not worth mentioning**

Present owner: **Private cooperative** | Sales price: **32,500 kr per m²**

Figure 5. Copenhagen 1922 – 1932 the block as one building. Sales prices (Bolighed, 2013).

When the block became one very big building it created a rather boring environment not attractive to others than people living there (Rasmussen, 1974). Of the initially mentioned seven negative factors number one, five, and seven applies to such buildings. The result of the fact that the investors do not build for their own private use is that they are automatically lead to show their power in one monstrous building (Frampton, 1980; Vidler, 1992).

What now happened was even worse. The habit to create urban space stopped and was replaced with the idea of building-in-a-park environments.
Buildings and Visualisation

Athensvej - Grejsvej

- **Address:** Athensvej - Grejsvej
- **Land number:** 10a of Sundbyøster
- **Year of erection:** 1949
- **Type of first building owner:** Investor organisation
- **Number of square meters:** 18,208 m² in 14 buildings
- **Length of façade:** Buildings in park area

What the building depicts:

The investor is again the one mainly depicted whereas the number of balconies visualise the number of tenants. However, all balconies are identical and thus stating that the tenants are identical.

Other characteristics:

The blocks are placed with different orientation creating a less boring outdoor park environment.

Present owner: Public social housing

Sales price: 25,000 kr per m²

Bellahøj

- **Address:** Bellahøj
- **Land number:** 1359 of Utterslev
- **Year of erection:** 1956
- **Type of first building owner:** Housing Association
- **Number of square meters:** 24,950 in 7 buildings
- **Length of façade:** Buildings in park area

What the building depicts:

An investor with a certain fantasy and daring to build differently and his architect are depicted here. The park area is absolutely one of the better of its kind. As always, the unknown tenants are not depicted and they are not allowed to make any changes to the exterior later on.

Other characteristics:

The flats here have always been popular because of the nice elevated position and the relative exclusivity.

Present owner: Public social housing

Sales price: 27,500 kr per m²

Strandgade 37

- **Address:** Strandgade 37
- **Land number:** 555 of Christianshavn
- **Year of erection:** 1979
- **Type of first building owner:** Housing Association
- **Number of square meters:** 14681 in 4 buildings
- **Length of façade:** Buildings in semi park area (half urban area)

What the building depicts:

The Housing Association together with the architect are depicted and nothing else.

Other characteristics:

The neighbourhood to the old colourful Christianshavn makes the flats attractive to many.

Present owner: Public social housing

Sales price: 45,000 kr per m²
Figure 6. Copenhagen 1933 – 2012 buildings in “parkland”. Sales prices (Bolighed, 2013).

The areas created by the shaping, size, and placing of this last group of buildings are as a rule not urban and not attracting people from outside. They are so deprived of positive outdoor characteristics that they are not creating urban space at all, nor are they furnishing a pleasant countryside. They just create “Uncanny” areas (Vidler 1992). The main factors causing this are:

A. The size of the buildings. (Importance Factor 3)
B. The degree of architectural care invested and its aims. (Factor 1)
C. The position of the buildings in relation to the other buildings. (Factor 3)
D. The entrance to the buildings (Clery, 1979). (Factor 1)
E. The readability or message about function, age, and architectural language.

(Factor 1)

<table>
<thead>
<tr>
<th>Year</th>
<th>A Factor 3</th>
<th>B Factor 1</th>
<th>C Factor 3</th>
<th>D Factor 1</th>
<th>E Factor 1</th>
<th>Result max 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decent 3</td>
<td>Advanced 1</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Excellent 1</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Decent 3</td>
<td>Modest 0.5</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Good 8.3</td>
</tr>
<tr>
<td>3</td>
<td>Decent 3</td>
<td>Good 0.8</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Good 8.3</td>
</tr>
<tr>
<td>4</td>
<td>Decent 3</td>
<td>Modest 0.5</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Good 8.3</td>
</tr>
<tr>
<td>5</td>
<td>Big 1.5</td>
<td>Good -0.8</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Uncertain 0.2</td>
<td>Fair 6.5</td>
</tr>
<tr>
<td>6</td>
<td>Moderate 2.5</td>
<td>Advanced 1</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Uncertain 0.2</td>
<td>Fair 7.7</td>
</tr>
<tr>
<td>7</td>
<td>Moderate 2.5</td>
<td>Advanced 1</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.6</td>
<td>Good 8.1</td>
</tr>
<tr>
<td>8</td>
<td>Big 1</td>
<td>Advanced 1</td>
<td>Fine 3</td>
<td>Uncertain 0.5</td>
<td>Good 0.8</td>
<td>Less fair 6.3</td>
</tr>
<tr>
<td>9</td>
<td>Moderate 2.5</td>
<td>Modest 0.5</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Fair 7.8</td>
</tr>
<tr>
<td>10</td>
<td>Big 1.5</td>
<td>Good 0.8</td>
<td>Fine 3</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Fair 7.1</td>
</tr>
<tr>
<td>11</td>
<td>Monstrous 0</td>
<td>Advanced 1</td>
<td>Less good 2</td>
<td>Clear 1</td>
<td>Excellent 1</td>
<td>Unfair 5</td>
</tr>
<tr>
<td>12</td>
<td>Monstrous 0</td>
<td>Good 0.8</td>
<td>Less good 2</td>
<td>Clear 1</td>
<td>Fair 0.8</td>
<td>Unfair 4.6</td>
</tr>
<tr>
<td>13</td>
<td>Monstrous 0</td>
<td>Modest 0.5</td>
<td>Not urban 1</td>
<td>Uncertain 0.5</td>
<td>Good 0.8</td>
<td>Bad 2.8</td>
</tr>
<tr>
<td>14</td>
<td>Big 1</td>
<td>Modest 0.5</td>
<td>Not urban 1</td>
<td>Uncertain 0.5</td>
<td>Good 0.8</td>
<td>Bad 3.8</td>
</tr>
<tr>
<td>15</td>
<td>Big 1</td>
<td>Advanced 1</td>
<td>Not urban 1</td>
<td>Clear 1</td>
<td>Good 0.8</td>
<td>Unfair 4.8</td>
</tr>
<tr>
<td>16</td>
<td>Very big 0.5</td>
<td>Modest 0.5</td>
<td>Bad 1</td>
<td>Less good 0.5</td>
<td>Good 0.8</td>
<td>Bad 3.2</td>
</tr>
<tr>
<td>17</td>
<td>Very big 0.5</td>
<td>Modest 0.5</td>
<td>Bad 1</td>
<td>Less good 0.5</td>
<td>Good 0.8</td>
<td>Bad 3.2</td>
</tr>
<tr>
<td>18</td>
<td>Monstrous 0</td>
<td>Advanced 1</td>
<td>Bad 1</td>
<td>Unclear 0.2</td>
<td>Uncertain 0.2</td>
<td>Bad 2.4</td>
</tr>
</tbody>
</table>

Figure 7: Authors’ Assessment of the behaviour of the eighteen buildings

Looking at the characteristics above one can notice four stages in relation to how well the 18 selected buildings behave in the urban fabric. The stages are 1-4, 5-7, 8-10, 11-15, and 16-18. It is interesting whether these four stages are equivalent to what the buildings say about the people who made them.
Buildings 1-4 are characterised by the fact that they were erected on the initiative of one owner to serve as his private home and business. They are single-family houses as were most buildings in Copenhagen in those days.

Buildings 5-7 are a mix of owners’ private home and a tenement. Thus, they create an uncertain understanding based on the access and size.

Buildings 8-10 are obviously tenement buildings erected as a business in its own right.

Buildings 11-15 are tenement buildings of an appearance that speaks about social housing associations using architects to express what class in a class society they appeal to.

Buildings 16-18 are appealing to slightly different groups of tenants and owners in society. Social housing associations and some investors all appealed to well of people who wanted to settle and live as tenants in modified kinds of cooperatives. The final building is a big structure by “BIG” with flats to be sold for maximum profit.

Of course, it is not surprising that buildings depict the people who had them erected. Their motives are rather clear in how the buildings are arranged as shown in the schedule above. The history tells how ownership of buildings from being for own use became a clear business matter in its own right. It also shows how pure profit and/or the odd mentality of social housing associations that tried to express class identities together with organisational power resulted in monstrous structures. Such buildings result in built environments of poor quality that tell the sad story of a society lacking solidarity despite its democracy. It is just business or mistaken solidarity with a “working class” that barely exists anymore. It does not serve a modern western society well. Thus, the seven mentioned factors are present everywhere in the newer areas and the two hypotheses are very well underpinned.

4. Discussion

The article does not state that it is impossible to find a decent behaving building made for the profit from tenants or from sale to buyers but the
authors do not know such a building. However, what is important is the
typical behaviour of modern buildings (Vidler, 1992). In this context the
term, “decent behaving,” means depicting the individual user and his/her role as political subject in the stated democracy (Rasmussen, 1974). This involves the performance in the local and the wider environment and the degree to which the building contributes to create and define a nice urban space and support the existing local order (Barrett, 2014). In new areas where this might come true new technical problems have to be solved. These involve how to build right up to existing buildings leaving a wall surface that later on can be displayed both technically and visually. New basements going deeper than the foundation of the neighbour building require new smart technical solutions.

This has very little to do with how good looking the building is. Of course, it is very nice if a good-looking person is not arrogant and self-promoting but “jolly good company.” It is a known assumption that people tend to understand buildings and built environments as symbolizing people and society (Smithson and Smithson, 1970; Clery, 1979; Gideon, 1967, Alexander, 1976). Thus, many travel just as much to experience built environments as to experience the people living in them. Some places are famous and attract tourists mainly because of their pleasant environments.

The buildings of Copenhagen are different from buildings in other cities outside Denmark but they are not much different when it comes to their behaviours in the different historic periods. The same stages of development affected most places. In the UK, the single-family house went out of city later than other places. Investors made huge areas of urban terraced building blocks for working class tenants and better ones to be sold to well-to-do people in the existing class society (Hiorns, 1956). This was in principle less bad because it, despite the relative uniformity of the repeated designs, kept the direct private door access to street and a private courtyard or garden to the rear. However, it is very apparent that the individual tenant or owner did not have his/hers democratic say but that the one investor dominates a whole area.
5. Conclusion

Based on the analyses above, it seems clear that the buildings and the built environments in their scaling depict those who invested in them and in their details, their chosen architects (Abrahamse et al., 2006). The hypotheses stated the same and, if thinking about it, most people might reach the same conclusion. However, people in general do not think about it. Therefore, one can fear that the characteristics of new built environments of the future will not change but will continue to be much less successful than they could be.

If society wants environments in human scale depicting the individual and her role and behaviour in society a much higher level of awareness is required. Realisation of the fact that a building depicts who had it built is necessary. That will lead to rules and guidelines for the new to be build that once again will cause it to mirror the democratic society instead of powerful organisations or investors. What about them? Will they not have a place in a future society? They have to realise that if they want acceptance by an observant society they must begin to create true value in the build environment, which might be the same as all aspects of sustainability. Otherwise, they will have no place. Who are the first to realise and to inform society about this if not its educated experts? As the Smithsons stated in 1970: “Our portable comforts have blinded us to the fact that our houses have long been ridiculously misshapen for our lives and needs: that a public convenience has degenerated from a city to a hole in the ground (Smithson and Smithson, 1970).”

References

HOW BUILDINGS VISUALISE CLIENT AND ARCHITECT

GEHL, J., 2006. Life between Buildings, Copenhagen: Arkitektens Forlag

GOOGLE EARTH, 2014. Images from Copenhagen, Downloaded by the author.

