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Abstract
Amethod to calculate the effective spinHamiltonian for a transitionmetal impurity in a non-
magnetic insulating host is presented and applied to the paradigmatic case of Fe inMgO. In the first
stepwe calculate the electronic structure employing standard density functional theory (DFT), based
on generalized gradient approximation (GGA), using planewaves as a basis set. The corresponding
basis of atomic-likemaximally localizedWannier functions is derived and used to represent theDFT
Hamiltonian, resulting in a tight-bindingmodel for the atomic orbitals of themagnetic impurity. The
third step is to solve, by exact numerical diagonalization, theN electron problem in the open shell of
themagnetic atom, including both effects of spin–orbit andCoulomb repulsion. Finally, the low
energy sector of thismulti-electronHamiltonian ismapped into effective spinmodels that, in addition
to the spinmatrices S, can also include the orbital angularmomentum Lwhen appropriate.We
successfully apply themethod to Fe inMgO, considering both the undistorted and Jahn–Teller (JT)
distorted cases. Implications for the influence of Fe impurities on the performance ofmagnetic tunnel
junctions based onMgOare discussed.

1. Introduction

Understanding the electronic properties ofmagnetic transitionmetals embedded in diamagnetic hosts plays a
central role in several branches of condensedmatter physics andmaterials science. The presence of transition
metal impurities is known tomodify the electronic properties of insulators [1], semiconductors [2] and
molecular crystals [3]. Thus, diluted semiconductors become paramagnetic and their optoelectronic properties,
such as the photoluminescence spectrum, become extremely sensitive to the application ofmagnetic fields,
resulting in the so-called giant Zeeman splitting [2]. In turn, the electronic and spin properties of themagnetic
atoms are very sensitive to their environment [1]. This permits inferring local information about the host by
means of spin probing techniques such as electron paramagnetic resonance [1].

Very often, the spin properties of amagnetic system are described in terms of effective single spin
Hamiltonians [1, 3] built in terms of atomic spin operators only.Whereas the symmetry of a given system
determines which terms are possible in an effective spinHamiltonian, prediction of the values of the various
parameters can be a difficult problem. Extraordinary progress in instrumentation techniquesmakes it now
possible to probe individualmagnetic atoms in a solid state environment [4, 5] using a variety of techniques,
such as scanning tunnelingmicroscope (STM) inelastic electron spectroscopy (IETS) [6, 7], and single quantum
dot photoluminescence [8, 9]. These techniques permit assessing the delicate interplay between spin properties
of the transitionmetal and electronic and structural properties of the local environment at the atomic scale
[7, 10] andmotivate the quest of quantitativemethods to address this interplay.

Conventional density functional theory [11, 12] provides an accurate description of the electronic properties
of the ground state of solids but it does not provide a direct route to describe the fine details of the low energy
spin excitations inherent inmagnetic atoms in insulating hosts. For instance, the ground state of the effective
Hamiltonian in conventional functionals inDFT is a unique Slater determinant with broken spin symmetry,
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which is fundamentally different from themultiplet nature of the real system. In this context, we find it
convenient to have a constructive theoretical approach to derive the effective spinHamiltonian, starting from an
atomisticDFT description of the electronic properties of the system, but describing the electronic properties of
the systemwith amulti-electron approach that captures themultiplet nature of the relevant electronic states.

Here we propose amethod to obtain an effective spinHamiltonian for amagnetic atom in an insulating host,
starting fromdensity functional calculations, in fourwell-defined steps. First, a density functional calculation of
the electronic properties of themagnetic atom inside the non-magnetic host is performed. The second step is to
represent the effective DFTHamiltonianwith a basis of localized atomic orbitals, which allows us to obtain the
crystal and ligandfields terms of the atomic orbitals of the relevant open shell of themagnetic atom, defining
thereby amulti-orbital HubbardHamiltonian. Since ourDFT approachmakes use of a plane–wave basis, we
implement this step bymeans of thewannierization [13] technique. Up to this point, themethodology is very
similar to previous work [14–21]. In the third stepwe add to theHubbardmodel the intra-atomic Coulomb
repulsion and the spin–orbit coupling for the electrons in the open-shell. Thefinal step is a symmetry analysis of
the spectrum andwave functions, obtained by numerical diagonalization of the effectiveHubbardmodel. The
resultingmulti-electron state analysis permits the construction of an effective spinHamiltonian for the system.

Belowwe describe inmore detail themethod and apply it to the paradigmatic case of Fe2+ as a substitutional
impurity ofMg inMgO [1], a band insulator. The spin properties of this systemhave been studied in detail by
means of several techniques, including far infrared spectroscopy [22], acoustic paramagnetic resonance [23],
infrared spectroscopy [24], andXPS [25]. The interplay between atomic structure and spin properties is
beautifully illustrated in this system: we consider both the case of undistorted Fe/MgO,where the octahedral
symmetry does not quench completely the orbital angularmomentum L of Fe2+ as well as the systemwith a
Jahn-Teller distortion, inwhich case L is quenched, resulting in a very different type of effective spin
Hamiltonian.Ourfindingsmight shed some light on recent results [7] showing partial quench of the orbital
moment of a Co adatomonMgO, in contrast to the full quenching taking place on other surfaces like Cu2N [26].

In addition, we are interested in Fe as a possible impurity inMgO tunnel barriers inmagnetic tunnel
junctions with Fe based electrodes [27, 28] andwe discuss how it could reduce the spin–filter properties, when
compared to the ideal system.

The rest of thismanuscript is organized as follows. In section 2we study the Electronic Structure of Fe2+ as a
substitutional impurity ofMg inMgOusingDFT calculations. In section 3we discuss the derivation of the
single-particle part of themagnetic atomHamiltonian from theDFT calculation using thewannierization
approach. In section 4, we build and solve by numerical diagonalization the generalizedHubbardmodel and
derive the effective spinHamiltonians for two different geometries. In section 5we summarize the advantages
and shortcomings of this work and discuss the effect of Fe impurities inMgObarriers on themagnetoresistance
ofmagnetic tunnel junctions.

2. Electronic structure: DFT calculations

In this sectionwe describe ourDFT calculations, for pristineMgOaswell as calculations for super cells of
Mg31O32Fe. For the super cells, we consider two geometries, with andwithout Jahn–Teller distortion of the Fe
atom. In addition, and for reasons discussed below, we did both spin-polarized and spin-unpolarized
calculations.

Our calculations were done using the generalized gradient approximation (GGA) for exchange-correlation
energy [29], using plane–wave basis sets and ultrasoft pseudopotentialmethod forMg andO, and projector
augmented-wave (PAW) [30] for Fe as implemented inQuantumESPRESSO (QE) code [31]. Sincewe are
interested in the spin-unpolarized calculation, there is no need to include theDFT+U correction. Although a
properDFT calculation ofmagnetismwill requireDFT+Ucorrections [35], herewe do not include theU-term
at this level since, as discussed in sections 3 and 4, our approach to deriving an effective spinHamiltonian
requires us to start with a spin unpolarizedDFT calculation towhichwe should add themany-bodyCoulomb
repulsion between the d-orbital electrons in the Fe.

For the case of the super cells, the number of k points was taken to be × ×8 8 8 andwe used a Fermi–Dirac
smearingwith a broadening parameter of 0.0035 Ry. Finally we fixed the cutoff energies for thewave function
and charge density at 65 Ry and 700 Ry respectively. The calculation of themagnetic atom inMgO is done using
a 64 atoms supercell ofMg31O32Fe, with lattice parameter a2 . The supercell, including the Fe atom is shown in
figure 1(a).

MgO is an insulator with aNaCl-type crystal lattice (see figure 1). Using the experimental lattice constant
(a=4.22 Å), ourDFT calculations give a band gap of 5.4 eV, below the actual value 7.8 eV [32–34]. This
discrepancy is very common and quite close to otherDFT calculations forMgO (see for example [35]where the
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calculated gap is 5.85 eV). Our calculations show that the valence band of theMgO ismainly formed byO p2
orbitals and the conduction band byMg p3 and s2 orbitals.

Our calculations show that themain effect of the Fe impurity on theMgOband structure is the appearance of
10 in-gap very narrow bands that, as we show below, are associatedwith the d orbitals of the Fe atom; see
figure 2(a). Six of these levels are below the Fermi energy and, for spin-polarized calculations, correspond to 5
levels spin ↑ and 1 ↓ resulting in a spin S=2.

In the idealMgO-like bulk crystal, where the Fe substitutes aMg atom, the Fe is in an octahedral
environment surrounded by 6 oxygen neighbors. In this undistorted geometry, the Fe-d levels are expected to
split in a lower energy triplet, t g2 , and a higher energy doublet eg, due both to the interactionwith the charged
neighbour oxygens (crystal field contribution) and the hybridizationwith the oxygen atomic orbitals (ligand
field contributions).

In the undistorted octahedral environment, the Fermi energy lies exactly at the t g2 orbital triplet of the
minority spin, so that the systemhas an orbital degeneracy that leads to Jahn–Teller instability [1, 24, 25], which
wemodel by letting the system relax from an initial configuration inwhich Fe is slightly off the center of the
octahedron. The distorted solution so found has lower energy than the undistorted one. In both cases, distorted

Figure 1. Left panel: geometric structure for theMg31O32Fe unit cell used in theDFT calculation:Mg atoms in blue, O atoms in red, Fe
atom in green. Right panel shows the octahedral environment, with Fe surrounded by 6O atoms.

Figure 2.Projected density of states for the ground state of the distortedMg31O32Fe, computedwith spin-polarizedDFT. (a) Blue
curve: total density of states (DOS). Red curve: DOS projected over d-orbitals of Fe. Green and orange: DOS projected overO p-
orbitalsMg s-orbitals, respectively. Positive values correspond tomajority-spin and negative values correspond tominority-spin. (b)
DOS projected over eg orbitals. (c) DOSprojected over the t g2 orbitals.
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and undistorted, the relaxationwas performed until the forces acting on atomswere smaller than −10 3 a.u. In the
undistorted octahedral environment, theO surrounding atoms are all at 2.135 Å from the Fe atom. In order to
characterize the deformed configuration it is convenient to set Fe as the origin of coordinates and label oxygens
as in the right panel offigure 1, with coordinates ⃗ =R X Y Z( , , )i i i , i=1,.., 6 [36]. Distortions happen to be

symmetric, i.e., with δ δ⃗ = − ⃗R R1 4, andwe express them in terms of the normalmodes of the octahedron. It turns
out [36] that the computed distortion can be expressed as a linear combination of the breathingmode

= + +q X Y Z( )1
1

3 1 2 3 , which clearly preserves the octahedral symmetry, and the = − −q Z X Y(2 )3
1

6 3 1 2 ,

which singles out the z-axis symmetrywise and preserves the planar square symmetry of the xy-plane. The
obtained distortion can bewritten as +q q0.01 0.031 3, where q1 are expressed in Å and is said to be tetragonal
[36]. It should be emphasized thatwe have notmade a systematic attempt to study all possible Jahn–Teller
distortions in this system. Instead, we are testing ourmethod for a particular distortion, which is in linewith
previouswork [25].

The effect of the tetragonal distortion is apparent in both the spin-polarized, figure 2, and the spin-
unpolarized figure 3, cases. Thefinite width∼50 meVof theDOSpeaks,much smaller than the crystal field
splitting, is a finite size effect due to hybridization of d-orbitals between Fe atoms located at different unit cells. In
both cases the t g2 triplet degeneracy is split into a doublet and a singlet, and the eg doublet is also split.
Importantly, the tetragonal distortion does preserve the μ4 B magneticmoment (S=2).However, the very
different orbital arrangementwill result in important differences in the spinHamiltonian, as discussed below.

The spin-polarized calculations discussed so far provide amean-field-like description of themagnetism of
Fe inMgO.However, in order to determine the parameters for theHamiltonian in themultiplet configuration
interaction calculation, presented in section 4, we start from a spin-unpolarized calculation, a strategy used as
well in previous work [21]. Itmust be noted that, for spin-polarized calculations, the crystal field splittingΔ is
spin dependent, which is clearly a feature of ameanfield solution that breaks spin-rotational symmetry. In the
distorted case the sign of the splitting of the t g2 levels, as well as themagnitude of the splitting of the eg levels, are
spin-dependent. Since it is convenient to have a spin-independent crystal fieldHamiltonian, we have performed
a spin-unpolarized calculation of Fe inMgO. For the undistorted case we obtain a ground state configuration

e t(0 , 6 )g g2 where all d-electrons of Fe occupy the degenerate (orbital and spin) states dxy, dyz and dxz (see
figures 3(a) and (b)). The computed crystal field splitting isΔ=1.45 eV. For the tetragonal distortion, the spin
unpolarized calculation still shows that 6 electrons occupy the t g2 levels, but the dxy level is now split from dxy
and dyz, as shown infigure 3(c).

3. Calculation of the crystalfieldHamiltonian usingWannier functions

The discussion of the previous section shows that it is possible to describe Fe in terms of 6 electrons occupying
the in-gap levels, which are predominantly formed by Fe d-orbitals. To do so, wewould like to extract from the
DFT calculation a one-bodyHamiltonian projected over these d-orbitals that includes their interactionwith the
host crystal. However, theDFTHamiltonian is expressed in terms of Blochwaves that in our calculations are
expressed as linear combinations of planewaves. In order to go to an atomic-like description, we compute the
so-calledmaximally localizedWannier functions (MLWF) [13, 37–40] associatedwith the Bloch states of the
DFT calculation, using the packageWannier90. TheWannier functions form an orthogonal and complete basis

Figure 3. Spin-unpolarized calculations for the distorted and undistorted cases. (a) Schematic energy diagramof the d-orbitals with
(red lines) andwithout Jahn–Teller distortion (blue lines). (b) Total density of states of the undistorted case (blue line) and the
distorted one (red line). (c) Projected density of states over different d-orbitals for the distorted case.
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set that we use to express theHamiltonian. Interestingly, wefind 5 atomic-likeMLWFwith the same symmetry
as the real ℓ = 2 spherical harmonics. Therefore, we take the representation of theDFTHamiltonian in this
subspace, as the crystalfieldHamiltonianHCF (although it also contains ligandfield contributions).

This wannierization [13, 37–40] procedure is implemented as follows. First, we select the group of Bloch
bands from the spin unpolarized calculation forwhich theMLWF are calculated. For Fe/MgO,we take the
valence bands as well as the 10 (counting spin) in-gap states. These groups of bands do not overlap in energywith
the others, so that it is not necessary to perform the disentanglement procedure [13, 39]. Second, the Bloch
states ψ∣ 〉nk are projected over a set of localized functions. Based on the population analysis of theDFT
calculation, we project over the atomic-like d-orbitals centered around Fe and p-orbitals centered around
oxygens. In total, there are 96 p-orbitals (32 oxygen atoms) and 5 d-orbitals. After an iterative procedure, the
MLWFare determined. Expectedly, the calculation yields fiveMLWFs localized around the Fe atom that, in the
neighbourhood of the atom, have the same symmetry as the real spherical harmonics with ℓ = 2, as shown in
figures 4(a), (c) and (e). It is important to point out that theMLWF are not strictly identical to the atomic
orbitals, because the tails of thewave functions have a different symmetry, as shown infigures 4(b), (d) and (f).

The representation of theDFTHamiltonian in the basis of theMLWF yields a tight-bindingHamiltonian
whose energy bands are identical to the valence and in-gap bands obtained fromDFT. For the purpose of this
work, we are interested in the intra-cell Hamiltonian:

=H
H V

V H
, (1)DFT

dd dp

pd pp

⎛
⎝⎜

⎞
⎠⎟

whereHdd has dimension 5, corresponding to the d-orbitals of Fe, andHpphas dimension 96, corresponding to
the 3 p-orbitals of the 32 oxygen atoms in the unit cell. TheHdd part describes the crystalfield splitting of the d-
levels. For the undistorted case, it describes the t g2 triplet and eg doublet, separated by a crystalfield splitting ΔCF .

Figure 4.Contour-surface plot of the dz
2 ((a), (b)), −dx y2 2 ((c), (d)) and dxy ((e), (f)) for different isovalues of theMLWF. Figure

prepared using XCRYSDEN [42].
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Interestingly, diagonalization ofHdd yields, for the undistorted case, Δ = 0.83CF eV,much smaller than theDFT
splitting 1.45 eV, that is only recovered if thewholeHDFTmatrix is diagonalized. Thus, we see that this approach
permits us to quantify the ligand and crystal field contributions to the splitting.Wefind that almost half of the

−t eg g2 splitting comes from the so-called [1] ligandfield contribution, described byVdp, the hybridization
between the d-like orbitals and the p-states that form the valence band ofMgO.

In order to preserve a small dimension of theHilbert space, so that the number ofmulti-electron
configurations can be handled numerically, it is convenient toworkwith a truncatedHamiltonian for the d-
electrons only, but that includes their hybridization to the p-levels. Such aHamiltonian could be produced using
degenerate second order perturbation theory for the different degeneratemanifolds within the 5 d-levels,
discussed below:

 ∑= +
−′ ′

′
H

V V

E E
. (2)dd dd

p

dp pd

d p

This second orderHamiltonian yields eigenvalues within 10 percent of the exact ones. It is possible to do
better by realizing that the projection of the exact eigenstates ofHDFT over the the d-likeMLWF is always higher
than 80 percent, and inmost cases higher than 90 percent.More important, the spectrum andwave functions
projected over theMLWFof the 5 in-gap states can be describedwith:

ℓ ℓ ℓ= + + + +( )H a d l d l , (3)CF X Y z z z
4 4 4

2
2

4
4

where la are the ℓ = 2 angularmomentummatrices, and d2, d4 and a are obtained by fitting.Herewe
approximate theMLWFby the real spherical harmonics centered in the Fe ion. The same approximation is used
in the calculation of spin–orbit and on-site Coulomb integrals later on. Thismethodology has been used before
[41]with good qualitative results.

In order tofit a, d2 and d4 we employ the analytical expressions of the eigenvalues ofHCF:
+ + + + + + + +a d d a d d a d d a a d d18 , 18 , 18 4 16 , 24 , 24 4 162 4 2 4 2 4 2 4. For the undistorted case, the in-

gap d-levels obtained fromdiagonalization of equation (3) feature a triplet (t g2 ) and a doublet (eg), and arefitted
with = =d d 02 4 , as expected from the octahedral symmetry. The −t eg g2 splitting is thus given by a6 , which
yields a=0.241 eV. For the JT distorted case, the t g2 triplet is split into a singlet and a doublet; see figure 3(a),
while the eg doublet is also split. Thefitting yields a=0.250 eV, d2 = 0.461 eV and = −d 0.14 eV. The difference
between the fitted and computed energy levels are always smaller than 2 meV.

4. Effective few electronHamiltonian

In the previous sectionwe have demonstrated that, starting from aDFT calculation for Fe in a supercell ofMgO
we are able to derive a crystal fieldHamiltonian for the in-gap d-levels, including both crystal and ligandfields
contributions, expressed in a basis of localized atomic-like orbitals provided by themaximally localizedWannier
functions.

In this sectionwe derive an effective spinHamiltonian that accounts for the low energy spectrumof a
magnetic impurity within theMgO. This is done in two stages.Wefirst build and solve aHamiltonian for the 6
electrons in the d-levels or Fe, including the effect of crystal and ligand field as described at theDFT level, and
adding theCoulomb and spin–orbit coupling interactions. This few-electron problem can be diagonalized
numerically. In the second stagewe analyze the symmetry and properties of the low energy levels and propose an
effective spinHamiltonian that accounts for them. This is done for the undistorted and distorted configurations
studied in section 2. By so doing, we arrive at effective spinmodels in agreement with the literature [1, 24, 25].

4.1.Multiplet calculation
Weconsider aHamiltonian for theN= 6 electrons in the d orbitals of Fe inMgO that includes four terms,
electron–electron, crystal-field and ligand field, spin–orbit andZeeman interactions:

= + + +H H H H H , (4)Coul CF SO Zeem

TheCoulomb term reads:

∑ ∑=
σσ

σ σ σ σ
′

′

′ ′
′

′ ′ ′ ′H V d d d d
1

2
, (5)

m m
n n

mnm n m n n mCoul
,
,

† †

where σdm
† ( σdm ) denotes the creation (annihilation) operator of an electronwith spin σ in the ℓ ℓ= = m2, z

state of themagnetic atom, denoted by ϕ ⃗r( )m , assumed to be equal to the product of a radial hydrogenic function
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(with effective chargeZ and a effective Bohr radius μa ) and a spherical harmonic. Thus, we are only considering

d6 configurations and leaving out pd7 configurations.
It turns out that the Coulomb integrals ′ ′Vmnm n scale linearly with the value of ≡V U0000 . Explicit

expressions for the on-site Coulomb integrals are given in the appendix. Specifically,U could be computed using
equation (A.7). Another option, followed here, is to considerU as an adjustable parameter. In this workwe take
U=19.6 eV, which yields the correct splitting between the 3P2 excited state and the 5D ground state of the free
ion,measured [43] to be 2.41 eV. Although this un-screened value of theCoulomb interaction is certainly
reduced in the solid, the only role ofU in the low energy spectra of our single electronic configuration, Fe-d6, is to
avoid themixing of the 5D and 3P2 states.

The second term in equation (4) corresponds to the crystal and ligandfieldsHamiltonian discussed in the
previous section:

∑= ′
σ

σ σ
′

′H m H m d d
1

2
, (6)CF

m m

m m

, ,

CF
†

with 〈 ∣ ∣ ′〉m H mCF derived fromDFTusing the procedure described above and a very good approximation, is
given by equation (3).

The last term in theHamiltonian describes spin–orbit coupling:

∑ζ σ ℓ σ= ⃗ ⃗ ′ ′
σσ

σ σ
′ ′

′ ′H m S m d d· , (7)
mm

m mSO

,

†

where ζ is the single particle spin–orbit coupling of the d-electrons. It is also very frequently expressed as λ ⃗ ⃗L S·
with ⃗L the total angularmomentum. For the case of Fe2+, both parameters ζ and λ are related by λ ζ= − S2 [1],
with ζ = 50.1meV and S=2.

The last term in equation (4) corresponds to the ZeemanHamiltonian:

∑μ σ σ= ⃗ ⃗ + ⃗ ′ ′
σσ

σ σ
′ ′

′ ′( )H B m l gS m d d· , , (8)B
mm

m mZeem

,

†

where g=2. So, if we assume that theCF term is given by equation (3), themultiplet Hamiltonian (4) depends on
five energy scales:U, a, d d,2 4 and ζ aswell as themagnetic field.

ForN=6 electrons, the total number of d6 configurations is 210. Therefore, numerical diagonalization of the
Hamiltonian is straightforward. In agreement withHund’s rules, we obtain a ground statemultiplet that
maximizes S and L. Thus, the ground state, denoted by 5D, has a degeneracy of + ∗ + =L S(2 1) (2 1) 25, with

= =L S 2. This low energymany-body spectrum is fully independent ofU provided that the crystal field is not
high enough tomix the 5Dwith the 3P2multiplet. This could change if d p7 configurations are included.

In order to analyze the results, it is convenient to add the different terms in theHamiltonian one by one, in
order of importance: CoulombU, the crystalfield (a, d2, d4), and spin–orbit coupling (ζ). Thus, in afirst step the
problem is solved considering only HCoul. In this case theHamiltonian commutes with S2 and L2, the square of
total spin and orbital angularmomentum.

4.2. Undistorted Fe/MgO
Wediscuss first the case of Fe2+ inMgOwithout Jahn–Teller distortion. The effect of the octahedral component
(a) of the crystal field on the = =L S 2 multiplet is shown in figure 5. As a result of the breaking of the orbital
rotational symmetry, L is no longer a good quantumnumber and the +L2 1degeneracy is partially lifted. Aswe
turn on a, see equation (3), the 5D levels of iron splits into two, an orbital Γ5 triplet ground state, with total
degeneracy 15, and an orbital doublet excited state, 10 times degenerate (seefigure 5(a)).

The 15-fold degeneracy of the ground statemultiplet of the Fe in the octahedral environment ofMgO can be
interpreted as if the ground statemultiplet had a L=1 orbitalmomentum. Actually, the representation of the ℓ ⃗
operator on the subspace of the t g2 orbitals is isomorphic to the ℓ = 1operatorsmultiplied by−1 [1].When
SOC is added to theHamiltonian, the 15-fold degenerate ground state splits into a triplet, a quintuplet and a
septuplet, in ascending energy order (seefigure 5(b)). This pattern can be rationalized in terms of the following
effectiveHamiltonianwhere the total spin is coupled to the pseudo-angularmomentum  = −1 [1]:

  λ δ= ⃗ ⃗ +S· , (9)eff1 eff1

where λ ζ= − S2 . Thefirst termnaturally leads to a spectrumwithmultiplets associatedwith = ⃗ + ⃗J S˜ ( )2 2:
=J̃ 1 (ground), =J̃ 2 (first excited) and =J̃ 3 (third excited), with degeneracies + =J2˜ 1 3, 5 and 7

respectively. The result of the calculation of the expectation values ψ ψ〈 ∣ ∣ 〉Sz forψ in the ground state triplet
with =J̃ 1, backs up the idea that the S=2 spin is coupled to an pseudo-angularmomentumwith  = −1. In
figures 5(d) and (e) we plot the expectation values of Sz and Lz for the 3 states of the ground state triplet as a
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function of themagnetic field.Notice that the = ±J̃ 1z and =J̃ 0z values are recovered by subtracting ψ ψ〈 ∣ ∣ 〉Sz

and ψ ψ〈 ∣ ∣ 〉Lz , in contrast with the common case of a total angularmomentum.
TheCI calculation for the 15 lowest energy states for Fe2+ in the undistorted environment has some fine

structure not captured by thefirst term in equation (9). In particular, themultiplets with =J̃ 1and 2 have some
fine structure (see figure 5(b)), which can be accounted forwith the second term in the effectiveHamiltonian

δ = + +( )a J J J˜ ˜ ˜ ˜ . (10)x y zeff1
4 4 4

This operator does not break the triple degeneracy of the ground state, but breaks the =J̃ 2 into a triplet and a
doublet (being isomorphic to the problemof the octahedral crystalfield splitting of the ℓ = 2 orbitals), and the

=J̃ 3 into a singlet and two triplets.
In summary, in the undistorted case, our calculation portrays Fe2+ as a systemwith S= 2 and pseudo-orbital

momentum  = −1 [1]. Spin–orbit coupling leads to a ground state triplet with =J̃ 1. The energy splitting to
thefirst excited state, with =J̃ 2, is approximately linear in the atomic spin–orbit coupling, reflecting the fact
that the octahedral symmetry quenches only in part the orbital angularmomentum. Thereby, the effective
model has to take into account L, and not only S. The Jahn–Teller distortion, whichwe discuss next, changes this
situation.

4.3. Jahn-Teller distorted Fe/MgO
Wenowdiscuss the effect of the tetragonal distortion on themultiplet structure of Fe2+ inMgO. As discussed in
section 2, this distortion introduces the uniaxial terms +d l d lz z2

2
4

4 in equation (3). The effect of the uniaxial
terms on themany-body 15-fold degenerate ground state of theHamiltonianwith ζ = 0 and a=0.250 meV is
shown infigure 6(a). It is apparent that the JT distortion splits these 15 states into a ground state quintuplet,
corresponding to a S=2 spinwith quenched orbitalmomentum, and a excitedmanifoldwith 10 states. Thus, it
takes a JT distortion on top of the octahedral crystal field to eliminate the extra + =L2 1 15 degeneracy of the Γ5

orbital triplet.When spin–orbit coupling is added (figure 6(b)) the + =S2 1 5 degeneracy is broken into a
singlet, a doublet, and a split doublet (see figure 7(a)). Finally, the Zeeman splitting breaks the remaining
degeneracies, as observed in figure 6(c).

Interestingly, thefive low energy states, corresponding to =l̃ 0z , can be described by an effective  = 2
Hamiltonian of the form

     μ= + + + + ⃗ ⃗D
a

g B
6

* · . (11)z x y z Beff2
2 4 4 4⎡⎣ ⎤⎦

Figure 5. (a) Energy splitting induced by the undistorted octahedral crystal field on the + + =S L(2 1)(2 1) 25 times degenerate 5D

ground state versus the dimensionless cubic parameter ′a a (with ′ =a 0.250 meV).Note that the 10-fold degenerate excited state
goes off-scale for very small values of ′a a . (b) and (c) Energy splittings induced by the spin–orbit interaction andZeeman terms
respectively. (d) Expectation value 〈 〉Sz and (e) 〈 〉Lz for the lowest three states for ′ =a a 1, ζ=50 meV. In all cases,U=19.2 eV.
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The comparison of the spectra as a function of amagnetic fieldBz, calculated bothwith the full CIHamiltonian
and the effective spinmodel, is shown infigure 7(a). The parameters of the effectiveHamiltonian are obtained

byfitting to themultiplet calculation.We obtainD=0.734meV, a=0.130 meV and =g* 2.03. The expectation
values of Sz and Lz, computedwith the eigenstates of the full CIHamiltonian, are shown infigures 7(b), (c) as a
function ofBz. It is apparent that the ground state (black line) has Sz= 0, as a result of the dominant uniaxial
term D z

2 favouring theminimum spin projection as ground state,  = 0z . Thefirst excited doublet, split byBz,
has = ±S 1z . The  +x y

4 4 term couples the otherwise degenerate doublet = ±S 2z , resulting in a quantum
spin tunneling splitting. Themixing of thewave functions is apparent in the non-linear evolution of the
expectation value of 〈 〉Sz as a function ofBz. At smallfield themagneticmoment is quenched. At higher field the
Zeeman contribution overcomes the quantum spin tunneling.We note in passing that, in contrast with the S=2
spinwithC2 in plane symmetry [3], in our case there is no quantum spin tunneling splittingwithin the = ±S 1z

doublet, which remains degenerate.

5.Discussion and conclusions

The results of the previous sections illustrate how, for the cases of Fe2+ inMgOwith andwithout Jahn–Teller
distortion, we have been able to derive effective spinHamiltonians (equations (9) and (11)] that reproduce the
spectra obtained from the few-electronHamiltonian. The parameters are derived directly from aDFT
calculation of the electronic structure of this system.Wenow list possible improvements for themethod. In
addition, we briefly discuss the implications for a technologically relevant system,MgO tunnel barriers with Fe
electrodes [27, 28, 44, 45], and present our conclusions.

Figure 6. (a) Energy splitting of the 15-fold degenerate orbital triplet in the octahedral crystal field induced by switching-on a
deformation +d l d lz z2

2
4

4 . (b) and(c) Energy splittings induced by the spin–orbit interaction andZeeman terms respectively. In all
cases,U=19.2 eV, ζ=50 and a=0.250 eV. The five lower energy levels, corresponding to S=2, appear in a yellowbackground.

Figure 7. (a) Low energy spectrumof the Fe2+ ion in theMgOobtained using theDFT+WFHamiltonian versus themagnetic field
applied along the Jahn–Teller deformation axis (z). The dots correspond to the eigenvalues of the spinHamiltonian in equation (11).
Magnetic field dependence of the expectation values (b), 〈 〉Sz and (c), 〈 〉Lz , for thefive coloured energy levels in (a). In all cases,
U=19.2 eV, ζ=50 and a=0.250 eV.
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5.1. Improvements for themethod
There are several ways inwhich themethod presented in thismanuscript could be improved. First, the
approximation that theWannier functions are atomic orbitals in the evaluation of thematrix elements of both
the spin–orbit coupling andCoulomb interaction could be avoided at the price of performing the numeric
integration using the actualWannier functions. This would also allow extending themethod to situations in
which the localized atomic orbital lives in interstitial sites, such as the technologically relevant [46, 47] cases of
NV centers in diamond [48], orMg vacancies inMgO [49, 50]. Second, amore accurate quantitative description
would require us to correct the double counting of some of theCoulomb interactions [19, 51–53]. Third, the
Hilbert space in themultiplet calculation could be expanded in twoways, either includingmore intra-atomic
configurations [7] , such as pd5, or configurations where the charge is transferred to the neighbour oxygen atoms
[17, 54]. Fourth, theGGA calculation underestimates the gap of insulators, whichmost likely has some influence
on the d levels as well. The use of a hybrid functional, or of an approximation adequate to compute energy gaps,
such as theGWmethod [55–59], would be an improvement, but the computational overhead for unit cells with
tens of atoms is far from small. Finally, themethod presented here could be improved obtainingU from first
principles calculations [20, 58–60].

5.2. Influence of Fe impurities in the barrierMgOof amagnetic tunnel junction
Wenowbriefly discuss some relevant consequences drawn fromour calculation in the context of spin
dependent transport inMgOmagnetic tunnel junctions with Fe-based electrodes such as Fe or CoFeB [27, 28]. A
keyfigure ofmerit ofmagnetic tunnel junctions is themagnetoresistance, defined as

= × −MR R R R100 ( )AP P P, whereRP andRAP are the resistance for parallel and antiparallel orientation of
the electrodemagnetizations. A very largeMR, exceeding 1000, was predicted for Fe/MgO/FeMTJ [44, 45].
Actual experiments in this systemhave found room temperatureMR above 600 [61], which have permitted a
tremendous boost of this technology, but have remained quite below the theoretical limit.

The very likely presence of substitutional impurities of Fe in theMgObarrier would affect transport in two
ways, opening two additional tunneling channels in themagnetic tunnel junction. On one side, electrons could
tunnel through the in-gap d-levels (see figure 2). Elastic tunneling through these states is possible at large bias
(≃1 eV), when the Fermi energy of one of the electrodes is set on resonancewith the in-gap d-levels. This would
yield characteristic resonance line shapes atfinite bias, notmuch different from those observed experimentally
[62]. At small bias, electrons could still tunnel through these d-levels through second order cotunneling
processes, inwhich the transport electronwould excite a spin transition between the low energy states of the Fe,
within a range of a fewmeV; (seefigure 7(a)).Whereas this process will give amuch smaller contribution to
transport, they are known to be an efficient [63] source of spin-flip. These problemswill be addressed
qualitatively elsewhere.

5.3. Summary
In summarywe have presented amethod to derive effective spinHamiltonians formagnetic atoms inside
insulators, starting from aDFT calculation based on planewaves. This is achieved by post-processing theDFT
calculation to obtain themaximally localizedWannier functions, which, in the system considered here, happen
to be atomic-like orbitals in themagnetic atom. Expressed on the basis of theWannier functions, we can build a
many-bodyHamiltonian (equation (4)) that includes the effect of crystal and ligandfields, as given byDFT, and
the effect of spin–orbit interaction and on-site Coulomb repulsion at themagnetic atom. Thismodel is solved by
numerical diagonalization. An analysis of the symmetry of the spectrum and themulti-electronwave functions
allows us to postulate amuch simpler effective spinHamiltonians (equations (9) and (11)) that accurately
describe the low energy sector of the spectrum.We apply thismethod to the case of Fe2+ inMgO, considering
both the undistorted and distorted geometries. In the former the orbitalmomentum is not quenchedwhich
results in a very different type of effectiveHamiltonian, featuring both S and L operators. In the Jahn–Teller
distorted case, orbitalmomentum is quenched, and a spin S=2Hamiltonian is enough to describe the lowest
energy states of Fe2+. Themethod can be implemented to study a variety of systems, including dilutedmagnetic
semiconductors,magnetic adsorbates on insulating surfaces, andmagnetic atomsmigrated from the electrodes
into the barrier inmagnetic tunnel junctions.
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AppendixA. Evaluation of theCoulomb integrals

TheCoulombparametersVijkl are calculated assuming nd hydrogen-like wavefunctions

∫πϵ
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m the spherical harmonic and R r( )n,2 the hydrogenwavefunction corresponding to quantum

numbers n and l=2 for an effective nuclear chargeZ and effective radius μa
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where = μz Z a . Using the spherical harmonic expansion
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where =<r r rmin ( , )1 2 and =>r r rmax ( , )1 2 , one can divide the integral in equation (A.2) into an angular part
and a radial part, writing then

∑ χ=
ℓ

ℓ
ℓV U , (A.5)ijkl ijkl

m,

where ℓU and χ ℓ
ijkl

m, contains the radial and the angular information respectively. The angular integrations over

the solid angles Ω1 and Ω2 factorizes, χ Φ Φ= −ℓ
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, , , where each part can bewritten in

terms of theWigner 3-j symbols [64]
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The radial part is given by
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This integral is solved numerically for l = 0, 2, and 4. From equations (A.7) and (A.3) it is clear that allmatrix
elementsVijkl scale proportional to z. For convenience, instead of using z as a free parameter, we use =U V0000 as
the free parameter. In particular, =z a1.95 0, with a0 the Bohr radius, forU=19.6 eV.
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