Synthesis of Chromen[4,3-b]pyrrolidines by Intramolecular 1,3-Dipolar Cycloadditions of Azomethine Ylides: Experimental and Computational Assessment of the Origin of Stereocontrol

Dedicated to Dr. Jean-Paul Picard, in memoriam

Abstract: Azomethine ylides, generated from imines derived O-cinnamyl or O-crotonyl salicylaldehyde and α-amino acids, undergo intramolecular 1,3-dipolar cycloaddition, leading to chromene-[4,3-b]-pyrrolidines. Two reaction conditions are used: a) microwave irradiation (200W) assisted heating (185 °C) of a neat mixture of reagents, and b) conventional heating (170 °C) in PEG-400 as solvent. In both cases mixture of two epimers at the α-position of the nitrogenatom in the pyrrolidine nucleus was formed through the less energetic endo-approach (B/C ring fusion). In many cases, the formation of the stereoisomer bearing a trans-arrangement into the B/C ring fusion in high proportions. A comprehensive computational and kinetic simulation studies are followed by the assessment of intramolecular pathways and kinetic are carefully performed.

Introduction

The chromene-[4,3-b]-pyrrolidine moiety is present in many compounds exhibiting remarkable physiological properties (Figure 1). This structural motif is present in compound and constrained analogs of methoctramine which are antagonists of muscarinic acetyl choline receptors (mAChR). The diazo-derivative is a key precursor in the preparation of new amino azachromenes displaying photochromic properties (Figure 1). The chromone moiety is also present in a new class of modified isoflavonoids LQB-226 (4) (Figure 1), which present antineoplastic and antiparasitary properties. Encouraged by these properties we proposed the synthesis of related compounds in order to study their bifunctional biological activity.

Figure 1. Selected bioactive compounds bearing the chromene-[4,3-b]-pyrrolidine moiety.

The most accessible routes to achieve these fused chromene-pyrrolidine skeleton consists on the employment of an intramolecular 1,3-dipolar cycloaddition (1,3-DC) between azomethine ylides and alkenes as key step. The 1,3-dipolar reaction between azomethine ylides and alkenes lead to the efficient regio- and stereocontrolled chemical synthesis of pyrrolidines, whose relevance in biological chemistry and materials science is very well known. The synthesis of these particular polycyclic compounds (with a core pyrrolidine ring) has been achieved through this intramolecular reaction onto imines with amino esters or alkyl amino esters, respectively (Scheme 1). In situ generated iminium salts, which were prepared by reaction of O-allylated salicylaldehydes with amino esters or N-alkyl amino esters, respectively (Scheme 1). Imines R1 = Ph do not react under thermal conditions, so the use of the more reactive iminium cations type is recommended in this case.
additional substitution at the nitrogen atom. The computational
derivatives makes the synthesis more attractive, allowing
identification of all detected stereoisomers from crude reaction
of the microwaves in the overall reaction course as well as the
imines were prepared
respectively). The
reasonable justification to the reaction of the azomethine ylide
study of the simplest skeleton will be very helpful to determine a
in an intermolecular version.
onto an electronically rich olefin, which is very difficult to achieve
investigate the two-component [3+2] cycloaddition where the
last process to finally synthesize compounds 5, we decided to
investigate the two-component [3+2] cycloaddition where the
imines were prepared in situ from 6 and 7 (Figure 2). The effect
of the microwaves in the overall reaction course as well as the
identification of all detected stereoisomers from crude reaction
mixtures will be considered. In addition, the preparation of N-H
derivatives makes the synthesis more attractive, allowing
additional substitution at the nitrogen atom. The computational
study of the simplest skeleton will be very helpful to determine a
reasonable justification to the reaction of the azomethine ylide
onto an electronically rich olefin, which is very difficult to achieve
in an intermolecular version.

Figure 2. Salicylaldehydes and amino acid derivatives used in this study.

Results and Discussion

Synthesis of Compounds 5 by Intramolecular 1,3-DC

Compounds 6a, and 6b were prepared by O-alkylation of
salicylaldehyde 12 with cynnamyl bromides 13 according to
standard procedures (Scheme 2); in good yields (70 and 73%,
respectively). The p-nitrocinamyl bromide 13b was prepared
from the corresponding alcohol in 73% global yield. Several
attempts to prepare p-methoxyxinnamyl derivative 6 (R1 = OMe)
were unsuccessful.

Table 1. Intramolecular two component 1,3-DC between 6 and 7.[a]

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>Y</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>CO2Et</td>
<td>HCl</td>
<td>CH2</td>
</tr>
<tr>
<td>p-N02C6H4</td>
<td>H</td>
<td>HCl</td>
<td>CH2</td>
</tr>
<tr>
<td>CO2Me</td>
<td>H</td>
<td>HCl</td>
<td>CH2</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>HCl</td>
<td>CH2</td>
</tr>
</tbody>
</table>

With compounds 6 in hand, we decided to try the two component reactions in the presence of the corresponding amino acid alkyl ester hydrochloride 7, that means imine formation and cyclization in one pot process, either under microwave assisted heating or using conventional heating. After the optimization process, the best reaction conditions consisted in: Method A: neat, 185 °C, 200W of microwave irradiation and Method B: polyethyleneglycol (PEG)-400 at 170 °C.

The condensation of diethyl aminomalonate hydrochloride 7a with aldehyde 6a followed by the intramolecular 1,3-DC was successfully performed following Method A (Table 1, entry 1). In this case, the Method B afforded lower yield of a very complex reaction mixture. To the best of our knowledge, this is the first time that freshly generated imino ester 8aa gives a intramolecular 1,3-DC with R1 = Ph. Glycine derivative hydrochloride 7b was also tested, Method A being the most appropriate giving a 45% yield of a mixture of three diastereomers 14ab, 15ab and 16ab (Table 1, entries 2 and 3). The employment of natural α-substituted amino ester hydrochlorides also required Method A to achieve better chemical yields and higher diastereoselectivities for products 14ac and 14ad (Table 1, entries 4-7). The influence of the electronic nature of the group in the allyl ether precursor 6 was next surveyed. For electron-deficient arenes (R1 = p-N02C6H4) the reaction worked in short reaction times giving adducts 14bb-14bd as major diastereoisomers (Table 1, entries 8-10). In the series of electron-withdrawing groups such as R1 = CO2Me both methods resulted to be satisfactory in terms of the overall yield (Table 1, entries 11-17). The diastereoselectivity was also noticeable always in favor of compound 14 when the glycine-derived amino ester hydrochloride 7b was employed (Table 1, entries 12 and 13). However, diethyl aminomalonate furnished a 1:1 mixture of epimers 14ca and 16ca (Table 1, entry 11). The reaction of α-alkyl substituted amino esters 7c and 7d was much more stereoselective and only small amounts of trans-fused isomers were observed in the crude product. Thus, when alanine methyl ester hydrochloride 7c was allowed to react with 6c, Method B afforded the highest chemical yield and the best 14cc:16cc diastereomeric ratio (80:20) (Table 1, entries 14 and 15). In contrast, Method A was the most appropriate in the reaction involving 6c and phenylalanine methyl ester hydrochloride 7d. Here, polycycle 14cd was the major stereoisomer isolated (70:30 dr) in 68% combined yield (Table 1, entry 17). Unfortunately, the reaction performed with the allylic system 6d, following both method conditions, completely failed.
The presence of mixtures of cycloadducts 14 and 15 in different proportions is in accordance with the previous publications.[14-20] However, the isolation of a third stereoisomer 16 in high percentages was unexpected. For the analysis of the relative configuration single crystal X-ray diffraction and different NMR experiments were combined. The absence of a third chiral center (at the α-position) simplified the analysis of the stereochemical outcome of the chromene-pyrrolidine fusion. Based on the NMR analysis of the major \textit{endo}-adducts 14 (coupling constants and NOESY studies) it was not possible to determine unambiguously the relative configuration. Fortunately, the relative configuration of structure 14ac was established by X-ray diffraction analysis.[21] An identical protocol for separated/isolated compounds 15ab and 16bb, bc, cb and cd was followed, but it was not possible to obtain neither appropriate crystals nor consistent X-ray diffraction patterns.

The cis-configuration could be assigned to the ring junction of all the cycloadducts by comparison of the coupling constant of compounds 14ac (unequivocally characterized by crystal X-ray diffraction analysis) and 14ad. The stereochemistry also could be analyzed by 2D nuclear Overhauser effect spectroscopy (NOESY) of 14ac and 14ad. These NOESY contacts were found to be compatible with the corresponding MM3-minimized structures, in which Monte Carlo simulations in CHCl\textsubscript{3} showed quite rigid AB scaffolds with conformationally flexible pyrrolidinyl, methoxycarbonyl, methyl, and benzyl groups (Figure 3).

The trans-arrangement in molecules 16 was deduced from the analysis of coupling constants and all the information supplied by NOESY experiments (see supporting information) and by comparison with the coupling constants reported in the literature.[15] Our MM3(CHCl\textsubscript{3}) Monte Carlo simulations show that the tricyclic scaffold in 16cc is more rigid than those computed for diastereomers 16 (see Figure 3). On the other hand, the presence of stereoisomer 17 can be discarded.

Next, the transformation of major compounds 14 in the corresponding bioactive tosylamides 5 was carried out following
a standard procedure (Scheme 3). In addition, the relative configuration of 5ab derived from 14ab was confirmed by X-ray diffraction analysis (see supporting information).[32]

Scheme 3. Preparation of N-tosyl derivatives 5ab-ad.

Computational studies

General considerations. The mechanism of 1,3-dipolar cycloadditions has been studied in detail[29] and it has been concluded that, depending on the substitution pattern, the [3+2]-thermal cycloaddition between NH- and N-metallated azomethine ylides can take place via a concerted [\(\pi^s+s^2\)] pathways[30] or through a stepwise mechanism involving zwitterionic intermediates.[31] However, the intramolecular version of the reaction between azomethine ylides and alkenes have been less studied.[32] In particular, to the best of our knowledge, the concerted or stepwise nature of the mechanism of this particular transformation has not been assessed. One important feature of intramolecular 1,3-DC is the possibility of generating fused or bridged regioisomers (Scheme 4). In general, the restricted conformational freedom imposed by the spacer connecting the dipole and the dipolarophile moieties results in high regiocontrol, except when the spacer is large enough.[33] If the spacer (denoted as \(S\) in Scheme 4) connects the alkene and one of the carbon atoms of the azomethine ylide (I), both fused and bridged cycloadducts (IIIF and IIB, respectively) can be formed. In contrast, when the spacer links the olefinic moiety with the central N-atom of the dipole, only bridged [3+2] cycloadducts can be formed (Compounds IVB and IVB'). Here, we will focus on the origins of the stereocontrol in several I→IIIF cycloadditions.

Scheme 4. Fused (F) and bridged (B) regioisomers in intramolecular [3+2] cycloadditions between azomethine ylides and alkenes. The specific intramolecular process addressed in this work is highlighted.

The stereochemistry of these reactions is in principle complex since two diastereoisomers and up to four chirial centers can be formed in one preparative step; thus giving rise to a maximum of \(2\times4\times2=32\) possible isomeric cycloadducts, which can be reduced to 16 racemic diastereoisomers. As far as the possible configurations of azomethine ylides I are concerned, at least four possible conformers can be envisaged. These conformers are denoted as IW, IS, IS' and IU depending upon the relative positions of the substituents at the terminal carbon atoms of the 1,3-dipole (Scheme 5). In general, \(X\) can be H, alkyl, or a metal with different ligands, and \(B\) is an electron-withdrawing group such as methoxycarbonyl.

Scheme 5. Possible geometries of azomethine ylides I.

Reactive intermediates I can in turn react intramolecularly with an alkene to yield, for a given regioisomer, two possible racemic pairs of diastereoisomers. For instance, in Scheme 6 we have depicted the four possible pyrrolidine racemic cycloadducts corresponding to the [3+2] cycloaddition between NH-azomethines of W and S' configuration (X=H, B=CO2Me) and a trans-alkene. We denote endo-cycloadducts as those in which the R and A substituents are cis to each other, the alternative exo-pyrrolidines IIIF possessing these substituents in a trans relative stereochemistry.

Scheme 6. Pyrrolidine cycloadducts associated with the [3+2] cycloaddition between(\(\zeta\))-olefins and azomethine ylides IW and IS'. Only one enantiomer and regioisomer is represented in each case.
cycloadducts 14ab-17ab involve (i) generation of the 1,3-dipoles, and (ii) intramolecular (3+2) cycloadditions. Our computational results on both steps will be presented and discussed in the following sub-sections.

Generation of 1,3-Dipoles. We first analyzed computationally the generation of azomethine ylides 8wab and 8sab. This process can be formally considered as a 1,2-prototropy, in which an acidic proton on α-position of the methoxycarbonyl group migrates to the iminic nitrogen (Scheme 7). In a previous work,[31c] we have demonstrated that the only possible energetically feasible pathway to generate azomethine ylides W consists of an enolization of the initial imino ester followed by a pseudopericyclic [1,5]-prototropy (vide infra). On the other hand, azomethine ylides S' can be generated by cis-trans isomerization of the former azomethine ylide. In order to reproduce the harsh conditions required experimentally (namely high temperatures and/or microwave irradiation, vide supra) both 298 K and 460 K temperatures were considered in our study. The obtained reaction profiles and the main geometric features of the computed transition structures associated with the formation of ylides 8wab and 8sab are gathered in Scheme 7 and Figure 4, respectively.

![Scheme 7. Reaction profiles associated with the thermal formation of azomethine ylides 8wab and 8sab. Numbers below the compounds and arrows corresponds to the relative and activation energies respectively. The corresponding Gibbs energies are in parentheses. Values computed at 298.15 K are in grey. Values computed at 460.15 K are in italics, between brackets. All the results were computed at the M06-2X(PCM)/def2-TZVPP//B3LYP(PCM)/6-31G* level of theory and are given in kcal mol⁻¹.](image)

Our calculations show that the initial enolization of 8ab is a highly endothermic process. Therefore, iminoenol 8'ab will be in low concentration in the reaction media. Once the transient enol 8'ab is formed, it can easily rearrange through a [1,5]-hydrogen shift to yield azomethine ylide 8wb. The activation barrier associated to this process is ca. 8 kcal mol⁻¹ at both temperatures. This low value and the planar geometry of the system (See Figure 4) are compatible with the pseudopericyclic nature of TS0.¹ ³⁴ Moreover, formation of 8wb is thermodynamically favoured with respect to 8'ab.

On the other hand, azomethine ylide 8sab can be formed through rotation about N(d)-C(d) bond in 8wab. Noteworthy, the computed activation barrier associated with this step strongly depends on the temperature considered. Our results show that the isomerization process is favoured at high temperatures (c.a. 6 kcal mol⁻¹ lower than at room temperature) thus showing the importance of the entropic contribution to the Gibbs free activation barrier in this isomerization step. Moreover, formation of 8sab is a thermodynamically unfavoured process, since the hydrogen bond between the NH and carboxy moieties present in azomethine ylide 8wb is stronger than the hydrogen bond between the arylidene CH and carboxy groups in 8sab (Scheme 7).

![Figure 4. Main geometric features of transition structures associated with the formation of azomethine ylides 8wab and 8sab computed at the B3LYP(PCM)/6-31G* level of theory. Distances and angles are in Å and deg respectively.](image)

Intramolecular [3+2] cycloadditions. Once we had calculated the reaction coordinates leading to azomethine ylides 8sab and 8wab, we analyzed the different intramolecular [3+2] pathways leading to tricyclic pyrrolidines 14ab-17ab shown in Table 1. In those compounds, the double bond (namely dipolarophile moiety) is not attached to an electron-withdrawing group. Therefore, the expected two electron interactions required for the electronic circulation of pericyclic [3+2]-cycloadditions would be less favoured than those found for other dipolarophiles such as [n-nitrosoyrenes].[31c] The analysis of the frontier orbitals of azomethine ylides 8sab and 8wab shows that in the latter case the main two-electron interactions correspond to the HOMO-1/LUMO and HOMO/LUMO+1 pairs (Figure 5A). According to this interaction scheme, the less energetic saddle point endo-TS should be the most synchronous one (Figure 6). In contrast, intramolecular cyclization of 8sab involves HOMO/LUMO and HOMO-1/LUMO+1 two-electron interactions (Figure 5B) thus leading to quite asynchronous transition structures.
Figure 5. Main Kohn-Sham molecular orbitals (B3LYP(PCM)/6-31G* level of theory) of reactants (A) 8_{Wab} and (B) $8_{S'ab}$ involved in [3+2]-intramolecular cycloadditions. Orbital energies are given in eV.

The computed energetic profiles corresponding to the [3+2]-cycloaddition as well as the chief geometric features of the corresponding transition structures are gathered in Scheme 8 and Figure 6, respectively.

Scheme 8. Reaction profiles associated with the intramolecular [3+2] cyclization of azomethine ylides 8_{Wab} and $8_{S'ab}$. Numbers below the compounds and arrows corresponds to the relative and activation energies respectively. The corresponding Gibbs energies are in parentheses. Values computed at 298.15 K are in grey. Values computed at 460.15 K are in italics, between brackets. All the results were computed at the M06-2X(PCM)/def2-TZVPP//B3LYP(PCM)/6-31G* level of theory and are given in kcal mol$^{-1}$.

According to our calculations, the endo-approaches present lower activation barriers than their exo-analogues. Moreover, azomethine ylide $8_{S'ab}$ was found to be more reactive than its isomer 8_{Wab}, being endo-TSS$'$ the saddle point with the lowest activation barrier. On the other hand, endo-cycloadducts 14_{ab} and 15_{ab} are more stable than exo-tricyclic pyrrolidines 16_{ab} and 17_{ab} so an increment of the temperature using harsh conditions favoured them. Therefore, formation of 14_{ab} and 15_{ab} are both thermodynamically and kinetically favoured. However, formation of 15_{ab} strongly depends on the previous isomerization step since all the activation barriers computed for the [3+2] cycloaddition steps were found to be quite similar in magnitude.

It is noteworthy that when higher temperatures were considered in the calculations the Gibbs activation barriers associated with the [3+2] cycloadditions increased substantially. This thermal effect can be ascribed to a lesser contribution of the entropic factor of this step compared to the previous isomerization process.
The analysis of the geometries of the computed transition structures showed that these intramolecular [3+2] cycloaddition reactions consist of concerted but quite asynchronous processes. Noteworthy, our calculations show that in these saddle points C(e)-C(a) distances are shorter than the C(c)-C(b) ones, a result contrary to that found for intermolecular [3+2]-cycloadditions involving π-deficient alkenes.\cite{9d,29a,31c} Moreover, the lower activation barrier computed for endo-cycloadditions can be ascribed to the presence of stabilizing electrostatic interactions between the NH and the alkox moieties, which cannot occur along the exo reaction paths (Figure 6). It is interesting to note that in the exo-saddle points the 3,4-dihydro-2H-pyranyl ring of the chromane moiety being formed adopts a stable half-chair conformation, whereas in the case of the endo transition structures the O-H-N interaction leads to an unexpected boat conformation for this six-membered ring.

Kinetic simulations. Our computed reaction paths involve complex profiles including enolization, pseudopericyclic, torsional and pericyclic elementary steps, many of them being significantly temperature-dependent. As a consequence, the stereochemical outcome for the whole process could not be deduced directly from the ensemble of activation energies. Therefore, we decided to perform kinetic simulations on the computed reaction profiles at the standard temperature of 298 K and at 460 K, the temperature at which the experimental studies were carried out (vide supra).

Since the final steps leading to the [3+2] cycloadducts can be considered irreversible, the formation of 14ab-17ab can be described by equations (1)-(4):

\begin{align}
d/dt[14ab] &= k_{X,W}[8W_{ab}] \\
d/dt[17ab] &= k_{X,W}[8S'_{ab}] \\
d/dt[15ab] &= k_{X,S'}[8S'_{ab}] \\
d/dt[16ab] &= k_{X,S'}[8W_{ab}]
\end{align}

The concentration of azomethine ylides 8_{Wab} and 8_{S'ab} are described by equations (5) and (6):

\begin{align}
d/dt[8_{Wab}] &= k_0[8_{S'ab}] + k_{-1}[8_{S'ab}] - (k_{1} + k_{X,W} + k_{R,W})[8_{Wab}] \\
d/dt[8_{S'ab}] &= k_{1}[8_{Wab}] - (k_{-1} + k_{X,S'} + k_{R,S'})[8_{S'ab}]
\end{align}

In eqs. (1)-(6) the meaning of the kinetic constants associated with the different elementary steps is that indicated in Figure 7. From the information contained in this Figure, it is clear that formation of cycloadducts 14ab-17ab only depends on the concentration of the azomethine ylides 8_{Wab} and 8_{S'ab}. On the other hand, 8_{Wab} can be generated from iminoenol 8'_{ab} whereas 8_{S'ab} only can be formed via isomerization of 8_{Wab}. This situation leads to a complex kinetic scheme in which kinetic constant k_1 acts as a threshold that controls the formation of cycloadducts 15ab and 16ab.

Figure 6. Main geometric features of transition structures associated with the intramolecular [3+2] cyclization of azomethine ylides 8_{Wab} and 8_{S'ab}. See caption of Figure 4 for further details.

Figure 7. Qualitative diagram showing the different reaction paths and kinetic constants in the formation of cycloadducts 14ab-17ab.

We estimated the kinetic constants gathered in Figure 7 by means of the Eyring equation\cite{35}. The values for these constants can be found in the Supporting Information. Using these values, we performed Runge-Kutta numerical integration of the kinetic equations associated to the processes shown in Schemes 7 and 8. The outcome of these simulations is show in Figure 8.
Our kinetic simulations show that the product ratio depends on the temperature considered in the calculations. At 298 K, the cycloaducts that come from azomethine ylide \(8_{wab}\) are the major products, thus showing no azomethine ylide isomerization occurs at this and lower temperatures. In this case, the simulated outcome shows a \(14_{ab}:16_{ab}\) product ratio of 73:37. However, at high temperatures, the stereochemical outcome is qualitatively different. In this case, \(14_{ab}\) remains being the major product, but formation of \(15_{ab}\) is now possible because of the partial isomerization of 1,3-dipole \(8_{wab}\) to \(8_{g}\). Thus, at 460 K, our numerical simulations yield a \(14_{ab}:15_{ab}:16_{ab}\) ratio of 75:17:8, which is in nice agreement with the experimentally found ratio of 65:24:11 (Table 1, entry 2).

Conclusions

Using this two component synthesis employing two different reaction conditions the preparation of chromene-[4,3-b]-pyrroolidines can be easily achieved. This is the first time that freshly generated imino ester was able to promote a intramolecular 1,3-dipolar cycloaddition from \(6a\) with \(R^2 = Ph\). When \(R^2 = Ar\) Method A (MW, 200 W) gave compounds 14 as major stereoisomers in shorter reaction times, rather than Method B (PEG-400, 170 °C). Mixtures of 14, 15 and 16 were detected in variable proportions. Besides, when \(R^2 = CO_2Me\) Methods A and B gave in most cases similar results furnishing molecules 14 as major stereoisomers together with cycloaducts 16. It was noticeable that in these examples compounds 15 were not identified in the crude reaction material. This strategy is the key to get adducts 16 after purification. Computational analysis of these (3+2) intramolecular cycloaddition shows that formation of \(W\) and \(S'\) 1,3-dipoles determines the stereochemical outcome of the reaction. The latter reactive species require higher temperatures to be formed from the corresponding imines. Intramolecular 1,3-dipolar reactions take place via relatively asynchronous transition structures, the endo-geometries being the less energetic ones. The kinetic profile obtained from these computational studies are compatible with the preferential formation of major cycloaducts \(14_{ab}\) and \(15_{ab}\) at high temperatures, the former coming from the \(W\) 1,3-dipole and the latter form the corresponding \(S'\) analogue.

Experimental Section

General method for [3+2] cycloaddition to O-alkylated-salicylaldehydes using microwave irradiation. To a solution of toluene (0.7 mL) in a Pyrex test tube, containing the corresponding O-alkylated salicylaldehyde 6 (0.1 mmol), the amino ester hydrochloride (0.12 mmol), and triethylamine (0.5 mmol), were added in this order. The mixture was heated at 80 °C (see Table 1 for reaction times). After cooling, ethyl acetate was added and the mixture washed three times with brine, then \(Na_2SO_4\) was added, filtered, and the organic phase was evaporated. The crude reaction mixture was purified by flash column chromatography on silica gel to provide the cycloaducts 14, 15 and 16 as viscous oils. Yields, diastereomeric ratio and other details are described in Table 1, for characterization material see supporting information.

General method for [3+2] cycloaddition to O-alkylated-salicylaldehydes in PEG-400. To a solution of PEG (1.0 mL) in a Pyrex test tube, containing the corresponding O-alkylated salicylaldehyde 6 (0.1 mmol), the amino ester hydrochloride (0.12 mmol), and triethylamine (0.5 mmol), were added in this order. The mixture was heated at 170 °C (see Table 1 for reaction times). After cooling, ethyl acetate was added and the mixture washed three times with brine, then \(Na_2SO_4\) was added, filtered, and the organic phase was evaporated. The crude reaction mixture was purified by flash column chromatography on silica gel to provide the cycloaducts 14, 15 and 16 as viscous oils. Yields, diastereomeric ratio and other details are described in Table 1, for characterization material see supporting information.

General method for the synthesis of sulfonamides 5. To a solution of cycloaduct 44 (0.1 mmol) in dry pyridine (0.8 mL) tosyl chloride (0.25 mmol) was added. The reaction was heated at 80 °C for 15 h. Then, the mixture was cooled to room temperature, the pyridine was removed under vacuo and warm methanol was added until total crude’s solubilization. Water was added and the precipitation of sulfonamide occurred. The mixture was centrifuged and the aqueous layers separated giving pure sulfonamide 5 as single diastereoisomer. Yield, temperature and other physical data are described in Scheme 3 and in the supporting information.

Computational Methods. Conformational analyses were carried out with the MM3 force field 36 in CHCl₃ as implemented in MacroModel. 35 Conformational searches were performed by means of Monte Carlo simulations. 36 All the computational mechanistic studies were carried out by means of either Gaussian 09 39 suite of programs. Density Functional Theory 36 (DFT) calculations were performed using the B3LYP 31 and M06-2X 42 functionals. This latter highly parameterized method is well suited for the treatment of non-bonding interactions and dispersion forces, which can be relevant in densely substituted interaction systems. 35 The 6-31G* and def2-TZVPP basis sets were used. All the stationary points were characterized by harmonic analysis. Reactants, intermediates and products showed positive definite Hessians. Transition structures (TSs) showed one and only one imaginary frequency associated with nuclear motion along the chemical transformation under study. Free energies at 298.15 and 460.15 K were calculated by including the corresponding thermal corrections to Gibbs free energies (TCGE). Figures including optimized structures were made with Maestro 45 and CYL-view programs. 46 Orbital interaction diagrams were prepared using Gauss-view interface. 37

Acknowledgements

Financial support was provided by the UFRJ, FAPERJ and CAPES in Brazil, Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00066), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P, CTQ2014-51912-REDT, and CTQ2014-54515-P), FEDER, la Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), the Basque Government (GV/EJ, grant IT-324-07), and the Universities of Alicante and of the Basque Country (UPV/EHU, UF11/22 QOSY). The authors thank the SGII/IZO-SGIker UPV/EHU and the DIPC for generous allocation of computational and analytical resources. Technical and human support provided by SGIker (UPV/EHU, MINECO, GV/EJ, ESF) is gratefully acknowledged.
Keywords:[3+2] Cycloadditions • Intramolecular reactions • states
Azomethine ylides • Kinetics • Reaction mechanisms • Transition
This skeleton was first observed in naturally occurring martinelline or martinellic acid alkaloid derivatives, which are bradikinin receptor antagonists. C. J. Lovely, V. Badarinarayana, *Curr. Org. Chem.* 2008, 12, 1431-1453.

References

[1] This skeleton was first observed in naturally occurring martinelline or martinellic acid alkaloid derivatives, which are bradikinin receptor antagonists. C. J. Lovely, V. Badarinarayana, *Curr. Org. Chem.* 2008, 12, 1431-1453.

[7] During the preparation of the manuscript, compounds 5 resulted to be promising inhibitors of TNF-α expression in macrophages (unpublished results).

Compound 11 (R₁, R₂, R₃ = H, R₄ = CO₂Me, R₅ = Et, X = O), was prepared using imine route in 38% yield and 5:1 dr from the corresponding starter 8 [see, ref. 18b, 18c].

CCDC-1056848 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request cif. CCDC-1056849 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request cif.

Gaussian-09 Revision A02, M. J. Frisch et al., Gaussian Inc., Wallingford CT, 2009 (full reference in Supporting Information).

