Estudio detallado de la calidad y gestión de las playas de la provincia de Alicante.

Hugo Tinoco López
72474498-A
Objeto:

El presente estudio de las playas de la provincia de Alicante se ha centrado en el cálculo de parámetros que representen los factores de recreo, biofísicos y sedimentológicos de cada playa a fin de recoger una serie de criterios de actuación encaminados a mantener, restaurar o mejorar el equilibrio del ecosistema costero y la actividad humana que a él se le asocia.

Los criterios establecidos se adecúan de una manera sostenible a los posibles escenarios, así como también tienen la capacidad de adaptarse a posibles cambios en las condiciones iniciales de tal manera que se disponga de mecanismos capaces de predecir de una forma cualitativa y cuantitativa posibles situaciones adversas.

Mediante este estudio se han establecido además las principales debilidades de las 97 playas estudiadas de la provincia de Alicante, así como también los aspectos en los que destacan en relación al resto.

Empleando este tipo de clasificaciones o estudios resulta fácil centrar las actuaciones a realizar playa por playa para su mejora teniendo en cuenta tanto el factor humano como el medioambiental.
Índice

Índice ... 3

Introducción ... 5

1. Sedimentos. ... 6
 1.1. Interrelación entre las propiedades del sedimento y la ingeniería costera................. 6
 1.1.1. Medio ambiente .. 7
 1.1.2. Regeneración de playas. .. 7
 1.2. Tamaño de Sedimento. .. 8

2. Introducción a los Procesos Litorales .. 11
 2.1. Transporte de sedimentos. ... 14
 2.1.1. Transporte sólido transversal .. 17
 2.1.2. Transporte sólido longitudinal ... 20
 2.1.3. Unidad fisiográfica .. 22
 2.1.4. Balance sedimentario. ... 22
 2.2. Dinámica litoral. ... 23
 2.2.1. Flujo Medio ... 25
 2.2.2. Profundidad de Cierre ... 26
 2.2.3. Zona de surf o zona de rompientes. ... 26
 2.2.4. Refracción ... 29
 2.2.5. Difracción .. 30
 2.2.6. Reflexión .. 31

3. Dominio Público ... 32
 3.1. Servidumbres legales ... 34
 3.1.1. Servidumbre de protección .. 34
 3.1.2. Servidumbre de paso .. 37
 3.1.3. Servidumbre de acceso al mar .. 37
 3.1.4. Zona de influencia .. 37

4. Competencias en Materia de Gestión de Playas. ... 39
 4.1. Administración del Estado .. 39
 4.2. Comunidades Autónomas. ... 42
 4.3. Competencias Municipales. ... 43
 4.4. Relaciones interadministrativas .. 43

5. Limpieza Mecanizada en Playas .. 44
Introducción

El 24% de la costa española son playas, y gran parte de este espacio está sometido a una gran presión urbanísticas por encontrarse asentados grandes núcleos poblacionales a su alrededor.

Mediante este estudio de calidad se pretende establecer un modelo de gestión y mantenimiento de la calidad de las playas para mantener un equilibrio entre la actividad humana y el ecosistema existente.

La Real Academia de la Lengua Española define una playa como la ribera del mar o de un río grande, formada de arenales en superficie casi plana, así como también la porción de mar contigua a esta ribera.

Sin embargo, a efectos de la aplicación de la Ley de Costas, las playas son los espacios litorales donde se han depositado materiales sueltos, como son la arena, las gravas y guijarros, los cantos rodados, o los grandes bolos, formados gracias a la dinámica litoral y marina, a los vientos marinos, o a otras causas naturales o artificiales.

En esta definición se incluyen las dunas de cualquier tipo y tamaño, tengan o no vegetación.

En el concepto de “playa” también se incluyen espacios a los que no llega el agua del mar, ni siquiera durante episodios extremos de temporal, y por esa razón en algunas zonas dunares el dominio público marítimo-terrestre, la playa concretamente, se extiende hasta límites que están relativamente alejados de la orilla del mar, e incluso situados a una cota superior al nivel máximo del mar.

No todo el dominio público marítimo-terrestre es playa, pero la playa es siempre dominio público marítimo-terrestre.
1. Sedimentos.

Una playa puede estar compuesta por una gran variedad de materiales de diversos tamaños y formas. Sin embargo, el rango de tamaños de sedimentos entre los que suelen variar las playas del litoral Español no es muy amplio.

La mayor parte del material sedimentoario que forman las playas proviene de la meteorización de las rocas y del transporte tanto fluvial como eólico del mismo hasta la playa. Usualmente los granos de arena que se pueden encontrar en las playas son de origen silícico, estando compuestos de alrededor de un 70% de cuarzo, un 20% de feldespatos y un 10% de otros minerales en cantidad variable (Dean & Dalrymple, 2004).

La densidad de las arena silícicas se encuentra en torno a 2,66 g/cm³ (McLachlan & Brown, 2006), sin embargo la característica más importante del material sedimentario desde el punto de vista de la ingeniería costera suele ser el tamaño del grano.

Sin embargo para cuantificar el tamaño de los granos del material sedimentario se emplean operadores estadísticos debido a la gran variedad de tamaños que podemos encontrar en una muestra de arena tomada de una playa.

La importancia de las propiedades del sedimento y su interrelación con la ingeniería costera es un aspecto muy importante que se pretende ilustrar el punto 1.1. antes de comentar la clasificación del sedimento en tamaños.

1.1. Interrelación entre las propiedades del sedimento y la ingeniería costera.

Como se puede aventurar a primera vista, cualquier tipo de acción sobre la costa ha de prestar especial interés a las características de la misma, y estas características van a depender íntimamente de las propiedades del sedimento por ser la unidades más pequeñas que conformar el todo que podemos conocer como playa. Los sedimentos son a la playa como los átomos a la materia, y de su correcto
entendimiento se basará el éxito de las actuaciones que se pretendan realizar sobre la costa.

1.1.1. Medio ambiente.

Grumbine (1994) realizó una recopilación sobre los principales objetivos que ha de perseguir cualquier tipo de actuación sobre una zona concreta dentro de la gestión ambiental. En estos objetivos se prima siempre el mantenimiento de los ecosistemas preexistentes y su convivencia con el uso humano de manera integrada a través de la imposición de restricciones a este último.

Estas restricciones, si son observadas desde el punto de vista del tamaño del sedimento, pueden basarse en la limitación del empleo de fracciones excesivamente finas, como limos o arcillas, en labores de actuación costera que impliquen el vertido de material para minimizar los efectos de turbidez que pueden poner en desequilibrio la flora y fauna marina existente en el entorno.

Esto efecto se debe a que la turbidez está íntimamente relacionada con el tamaño del sedimento, y para partículas muy finas se produce la suspensión de las mismas sobre el medio bloqueando el paso de la luz, elemento fundamental para la vida de los seres del medio (CEM, 2002).

1.1.2. Regeneración de playas.

La regeneración de una playa es el vertido de material sedimentario en la misma con el fin de restablecer el balance sedimentario (punto 2.1.4) para evitar que se produzca la pérdida de ancho de playa seca debido a la erosión de la misma.

El tamaño, forma y color de los sedimentos empleados en la regeneración de una playa ha de ser acorde a los preexistentes, pero con ciertas consideraciones. Como se aventurará en el punto 2, el tamaño del sedimento influye en la morfología del perfil transversal y a la hora de realizar una regeneración el nuevo perfil dibujado por el tamaño de sedimento actual debe cortar el perfil preexistente, ya que de no ser así la regeneración no habrá servido de nada y el material vertido se perderá por no alcanzarse el equilibrio.

La elección de un sedimento más anguloso que el existente puede incidir negativamente en la comodidad de los usuarios de la playa, así como el cambio del color del sedimento de regeneración respecto el preexistente redundaría en un impacto visual negativo.
En la figura 1 se muestra la evolución que tendría el perfil de playa y el ancho de playa seca ganado si el tamaño del sedimento elegido para la regeneración es inadecuado.

Figura 1. Evolución del perfil en una regeneración mal diseñada.
Fuente: Modificación de (Dean & Dalrymple, 2004).

1.2. Tamaño de Sedimento.

La clasificación más común empleada para poner nombre al tamaño de sedimento que se está manejando es la de (Wentworth, 1922), sin embargo como esta clasificación depende de potencias de 2, (Krumbein, 1936) introdujo la escala de phi como alternativa para realizar la clasificación.

\[
D = 2^{-\phi} \quad [1]
\]

\[
\log_a(b) = c \iff a^c = b
\]

\[
a \to 2; b \to D; c \to \phi
\]

\[
\phi = -\log_2(D) \quad [2]
\]

Siendo D el diámetro del sedimento, y resultando la obtención de \(\phi\) muy interesante debido a que es el operador comúnmente empleado para la obtención de los indicadores estadísticos que sirven para caracterizar una arena.

La manera más común de representación de la sedimentología de una arena se realiza sobre un papel semilogarítmico, en el que se diferencian los distintos tamaños del sedimento en el eje X.
representados en escala logarítmica, y sus correspondientes tamices normalizados, frente al porcentaje en peso de partículas finas en el eje de las Y. En el eje Y se expresa el porcentaje en peso de partículas de diámetro menos que el indicado. Esta representación se puede apreciar en la imagen 2.

Atendiendo a la figura XX, el diámetro que divide el peso de la muestra por la mitad se correspondería con el D_{50}, conocido como el diámetro medio de sedimento y muy empleado en ingeniería costera para la obtención de perfiles transversales.

Otra forma de medir la tendencia central de una muestra de sedimentos es mediante el empleo de la mediana, la cual puede ser definida siguiendo los estudios (Folk, 1974) como:

$$M_{d\Phi} = \frac{\phi_{84} + \phi_{50} + \phi_{16}}{3} \quad [3]$$

Además de la clasificación de (Wentworth, 1922), también existe la clasificación de la American Society for Testing and Material (ASTM) y las normas DIN europeas. Como se puede intuir toda clasificación tiene cierto grado de subjetividad, sin embargo se considera oportuno exponer la comparación de las tres clasificaciones citadas llevada a cabo por (de la Peña Olivas, 2007), comparación que viene representada en las figuras 3.
<table>
<thead>
<tr>
<th>ASTM</th>
<th>DIN</th>
<th>MWC</th>
<th>Tamiz (ASTM)</th>
<th>Tamaño</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mm</td>
<td>Phi</td>
</tr>
<tr>
<td>Canto rodado</td>
<td>Canto rodado</td>
<td>12p. (300mm)</td>
<td>4096</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1024</td>
</tr>
<tr>
<td>Guijarro</td>
<td>Guijarro grande</td>
<td></td>
<td>256</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Guijarro pequeño</td>
<td></td>
<td>107,64</td>
<td>-6,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90,51</td>
</tr>
<tr>
<td>Grava gruesa</td>
<td>Grava muy grande</td>
<td></td>
<td>76,11</td>
<td>-6,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Grava gruesa</td>
<td>Grava grande</td>
<td>53,82</td>
<td>-5,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45,26</td>
</tr>
<tr>
<td></td>
<td>Grava gruesa</td>
<td>Grava grande</td>
<td>38,05</td>
<td>-5,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Grava gruesa</td>
<td>Grava grande</td>
<td>26,91</td>
<td>-4,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22,63</td>
</tr>
<tr>
<td></td>
<td>Grava gruesa</td>
<td>Grava grande</td>
<td>19,03</td>
<td>-4,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Grava fina</td>
<td>Grava media</td>
<td>3/4p. (19mm)</td>
<td>13,45</td>
<td>-3,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,31</td>
</tr>
<tr>
<td></td>
<td>Grava fina</td>
<td>Grava media</td>
<td>9,51</td>
<td>-3,25</td>
</tr>
<tr>
<td></td>
<td>Grava fina</td>
<td>Grava media</td>
<td>8</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>Grava fina</td>
<td>Grava media</td>
<td>3,73</td>
<td>-2,75</td>
</tr>
<tr>
<td></td>
<td>Grava fina</td>
<td>Grava media</td>
<td>5,66</td>
<td>-2,5</td>
</tr>
<tr>
<td>Grava fina</td>
<td>Grava media</td>
<td>4 (4,75 mm)</td>
<td>4,76</td>
<td>-2,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravilla</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>Arena muy gruesa</td>
<td>2</td>
<td>3,36</td>
<td>-1,75</td>
</tr>
<tr>
<td></td>
<td>Arena gruesa</td>
<td>10 (2 mm)</td>
<td>2,83</td>
<td>-1,5</td>
</tr>
<tr>
<td></td>
<td>Arena gruesa</td>
<td>12</td>
<td>2,38</td>
<td>-1,25</td>
</tr>
<tr>
<td></td>
<td>Arena gruesa</td>
<td>14</td>
<td>1,68</td>
<td>-0,75</td>
</tr>
<tr>
<td></td>
<td>Arena gruesa</td>
<td>14</td>
<td>1,41</td>
<td>-0,5</td>
</tr>
<tr>
<td>Arena media</td>
<td>Arena gruesa</td>
<td>16</td>
<td>1,19</td>
<td>-0,25</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>20</td>
<td>0,84</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>25</td>
<td>0,71</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>30</td>
<td>0,59</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>35</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Arena media</td>
<td>Arena media</td>
<td>40 (0,425 mm)</td>
<td>0,42</td>
<td>1,25</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>45</td>
<td>0,35</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>50</td>
<td>0,297</td>
<td>1,75</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>60</td>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>70</td>
<td>0,21</td>
<td>2,25</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>80</td>
<td>0,177</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>100</td>
<td>0,149</td>
<td>2,75</td>
</tr>
<tr>
<td></td>
<td>Arena media</td>
<td>120</td>
<td>0>125</td>
<td>3</td>
</tr>
</tbody>
</table>

Limo y arcilla	Limo grueso	140	0,105	3,25
	Limo grueso	170	0,088	3,5
	Limo grueso	200 (0,075 mm)	0,074	3,75
	Limo grueso	230	0,0625	4
	Limo grueso	270	0,0526	4,25
	Limo grueso	325	0,0442	4,50
	Limo grueso	400	0,0372	4,75
	Limo grueso	500	0,0312	5
	Limo grueso	600	0,0156	6
	Limo grueso	700	0,0078	7
	Limo grueso	800	0,0039	8
	Limo grueso	900	0,00195	9
	Limo grueso	1000	0,00098	10
	Limo grueso	1100	0,00049	11
	Limo grueso	1200	0,00024	12
	Limo grueso	1300	0,00012	13
	Limo grueso	1400	0,000061	14

Figura 3. Clasificación de las partículas de sedimento. Fuente: (de la Peña Olivas, 2007)
2. Introducción a los Procesos Litorales

Las playas no son elementos estáticos, sino que sufren cambios que están sujetos a la acción de los agentes climatológicos como las olas, el viento o las corrientes, estos procesos son conocidos como procesos litorales.

Estos procesos litorales tienen un denominador común, que es el sol. Debido a las variaciones térmicas producidas por la radiación solar se producen vientos en superficie y corrientes en el mar, y las olas no dejan de ser el resultado de la acción del viento generado por las diferencias térmicas producidas por el sol.

En definitiva, los principales causantes de las variaciones que puede sufrir una playa pueden clasificarse dentro de dos grupos, los naturales, generados por la dinámica litoral, o los artificiales, causados por la acción humana.

Es importante establecer una zonificación básica para distinguir los principales accidentes presentes en este tipo de formaciones sedimentarias, las playas, ya que mediante su entendimiento se podrá definir si una variación en su morfología es un problema o es meramente una variación temporal derivada de la dinámica litoral.

En la figura 4 se observan las tres principales zonas que se han de distinguir con sus elementos más representativos, no obstante existen configuraciones más complicadas que incluyen algunas de las definiciones de la tabla 1.

![Figura 4. Zonificación básica de la playa.](image-url)
La morfología de las playas cambia tanto en planta como en perfil constantemente como respuesta a los cambios del transporte sólido transversal o longitudinal de sedimentos que producen la dinámica litoral o la acción antrópica.

Estos procesos de transporte, y lo que conllevan, se van a definir en el punto 2.1 y 2.2 para dar un conocimiento breve de la variabilidad morfológica que sufren las playas dentro de una escala temporal.

<table>
<thead>
<tr>
<th>TÉRMINO</th>
<th>DEFINICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil de playa</td>
<td>Variación de la profundidad con la distancia a la línea de costa, en dirección normal a la misma.</td>
</tr>
<tr>
<td>Línea de costa</td>
<td>Línea determinada por el nivel de la pleamar</td>
</tr>
<tr>
<td>Playa seca</td>
<td>Zona del perfil de playa comprendida entre el límite de tierra de la playa y el nivel alcanzado por el oleaje en pleamar. Este segundo límite suele coincidir con el borde de la berma o el inicio del frente de la playa.</td>
</tr>
<tr>
<td>Berma (Estrán)</td>
<td>Zona semi-horizontal de la playa seca formada por la acumulación de sedimento debida al oleaje. Su límite por el lado del mar es el brusco cambio de pendiente que se produce hacia el frente de playa, denominado borde de la berma. Cuando, tras una temporada de gran actividad del oleaje, se sucede un período de calma, una nueva berma, berma de verano se puede añadir a la anterior, berma de invierno, con un nivel horizontal inferior (debido a que el ascenso del oleaje es inferior). Marcando la separación entre las dos bermas puede haber una zona de mayor pendiente, correspondiente al frente de playa de invierno.</td>
</tr>
<tr>
<td>Escarpe</td>
<td>Escalón vertical en la playa seca formado por la erosión de la berma producida por un temporal.</td>
</tr>
<tr>
<td>Zona intermareal</td>
<td>Zona de la playa comprendida entre el borde de la berma y la línea de máxima bajamar.</td>
</tr>
<tr>
<td>Frente de playa</td>
<td>Sección de la playa que queda expuesta a la acción del flujo ascendente y descendente del oleaje en pleamar.</td>
</tr>
<tr>
<td>Escalón</td>
<td>Zona de mayor pendiente que aparece en ocasiones en el límite inferior del frente de playa en playas reflejantes durante la pleamar.</td>
</tr>
<tr>
<td>Terraza de bajamar</td>
<td>Parte de la zona intermareal situada entre el límite inferior del frente de playa y la línea de máxima bajamar.</td>
</tr>
<tr>
<td>Cañal de bajamar</td>
<td>Depresión en la terraza de bajamar que puede aparecer inmediatamente debajo del frente de playa. Suele estar asociada al seno de una barra creciente muy próxima al frente de playa.</td>
</tr>
<tr>
<td>Barra longitudinal</td>
<td>Acumulación de arena semiparalela a la línea de costa. Puede haber varias barras en el perfil de la playa.</td>
</tr>
<tr>
<td>Cresta de la barra</td>
<td>Zona de mayor elevación de la barra longitudinal.</td>
</tr>
<tr>
<td>Seno de la barra</td>
<td>Depresión en el perfil de playa paralela a la línea de costa, asociada con la barra. Se produce inmediatamente hacia el interior de la barra.</td>
</tr>
<tr>
<td>Playa sumergida</td>
<td>Zona de la playa comprendida entre la línea de máxima bajamar y el límite exterior del perfil.</td>
</tr>
</tbody>
</table>

Tabla 1. Definiciones sobre la morfología de la playa.
Fuente: (Ley Vega de Seoane, Gallego Fernández, & Vidal Pascual, 2007)

Sin embargo, en la figura 5 se resumen los principales factores naturales que van a afectar a la morfología de la costa diferenciando su escala tanto temporal como espacial. La mayoría de estos procesos
se revierten naturalmente, pero esto no significa que no se tengan que controlar, ya que en ocasiones resulta difícil distinguir entre el inicio de un problema real erosivo y una erosión natural reversible.

En cambio, en la figura 6 se muestran las principales actividades antrópicas que derivan en la erosión de la costa diferenciándolas tanto temporal como espacialmente.

Resulta interesante realizar una descripción causa-efecto de estos procesos no naturales erosivos, ya que mediante su entendimiento se podrán evitar muchos de los problemas que actualmente sufre la costa española.

La urbanización masiva llevada a cabo en la totalidad del litoral mediterráneo se puede considerar como una de las principales causas de los problemas de erosión costera que se están sufriendo en la actualidad. Existen innumerables casos en los que se han eliminado los sistemas dunares siendo sustituidos por densas urbanizaciones, por suerte con la aparición de la Ley de Costas de 1988 este hecho fue frenado.
Estos sistemas dunares eran la fuente principal de sedimentos que mantenía en equilibrio el ecosistema costero y dejó de existir.

Además, si se elimina la principal fuente de aporte de sedimentos que es la duna, y se le suma al caso la ejecución de carreteras, pavimentos, edificios, etc. que modifican los coeficientes de escorrentía del suelo. Se está propiciando que las aguas de lluvia lleguen a las costas con velocidades muy superiores a las preexistentes y sin sedimentos, lo que se traduce en una mayor erosión, y sin aporte de material.

Otro problema radica en la ejecución de presas. Los ríos son una fuente natural de sedimentos para las costas, y el corte de un cauce natural se traduce en la nulidad de este aporte natural debido a que el material sedimentario que antes llegaba a la costa ahora queda retenido aguas arriba en los embalses, con el problema que ello conlleva para la presa.

Por otro lado, las obras marítimas actúan como un mecanismo de corte de la dinámica litoral creando una celda de sedimentos, lo que impide que estos lleguen a sus destinos originales.

2.1. Transporte de sedimentos.

La playa es una acumulación de sedimentos, como arena, gravilla, grava o bolos, asentados en el borde costero que responde a un balance entre aportes de material por parte de fuentes y pérdidas del mismo por parte de sumideros.

Las principales fuentes de aporte de material que se pueden dar son:

- Erosión de acantilados.
- Aportes fluviales de ríos o ramblas.
- Aportes biogénicos (ej. conchas de moluscos bivalvos).
- Aportes desde la plataforma continental.
- Aportes debidos al viento.
- Aportes antrópicos (regeneraciones, vertidos de dragados,...).

Los principales sumideros, que causan pérdidas de material, pueden ser:

- Sedimentación en estuarios, puertos u otros accidentes.
- Sedimentación en el trasdós de la playa por el viento y/o por el oleaje.
- Transporte hacia la plataforma continental.
Descomposición de la arena.
Extracción por el hombre.

Los mecanismos de transporte de sedimentos, serán los que actúen sobre sumideros y fuentes creando el balance sedimentario de la playa.

Para ver las modificaciones que sufre una playa es necesario conocer estos mecanismos y ver cómo interactúan con la costa, para ello se hace referencia a dos revisiones bibliográficas que recogen diversos modelos para su cálculo y entendimiento. Estas referencias son las de (Bakhhtyar, Barry, Li, Jeng, & Yeganeh-Bakhtiary, 2009) y (Elfrink & Baldock, 2002), artículos que recogen una gran fuente de información si se desea profundizar en los modelos de transporte de sedimentos que afectan a la dinámica litoral.

Los principales mecanismos de transporte son:
- Transporte longitudinal debido a la dinámica litoral.
- Transporte transversal debido a la dinámica litoral.
- Transporte eólico.
- Transporte por el hombre.

Los agentes presentes en la dinámica litoral que se han considerado son las olas, el viento y las corrientes, y la interacción entre estos viene representada de manera esquemática en la figura 7.
a) Fenómenos de refracción, difracción y reflexión (punto 2.2).

b) Corrientes costeras.

c) Transporte de sedimentos por suspensión y arrastre.

d) Cambios topográficos derivados del transporte de sedimentos.

e) Afección de las corrientes a los oleajes incidentes.

f) Erosión mecánica producida por la rotura del oleaje.

g) Transportes eólicos de sedimentos.

h) Aportes de sedimentos por los ríos actuando como fuente.

Los dos principales medios de transporte que derivan de la acción de las olas al incidir en la costa son producidos por la incidencia oblicua de las mismas, y se conocen como transporte sólido transversal y transporte sólido longitudinal. En la figura 9 se puede observar una descomposición vectorial de un oleaje de incidencia oblicua, y como de esta descomposición derivan ambos transportes.
El transporte solido longitudinal solamente cambia de sentido cuando varía la dirección de incidencia del oleaje respecto a la perpendicular a la costa, sin embargo el transporte solido transversal es oscilante con una misma dirección pero dos sentidos, hacia el mar o hacia la costa.

2.1.1. Transporte solido transversal.

Los movimientos de los sedimentos a lo largo del perfil de playa recibe el nombre de transporte transversal.

El transporte solido transversal está producido principalmente por la acción del oleaje y del viento, y es el principal causante de la formación de las barras o los cambios que sufre el perfil de una playa.

El tipo de perfil de una playa, si es de verano o invierno, y si es reflexivo o disipativo, lo va a definir el transporte solido transversal.

Para tener una idea de la magnitud de este tipo de transporte, en la figura 10, se representa de manera esquemática la variación sufrida por el perfil de la playa ante la incidencia de un temporal.

En la figura 10 se puede observar como los sedimentos del estrán se trasladan aguas a dentro para formar una barra o dar una pendiente más tendida a la playa, con lo que se consigue una mayor disipación de la energía incidente en la costa. Éste es el principal sistema de defensa que dispone la playa ante la erosión costera, y se traduce en una erosión temporal que al cabo de un período no muy largo de tiempo tiende a regenerarse de manera natural. El problema surge cuando se corta el aporte de sedimentos natural de los focos debido a actuaciones antrópicas, ya que parte de la arena que se ha perdido en este proceso de defensa ya no se recuperará por la ausencia del foco preexistente y es a partir de ese instante, cuando se comienza a producir un problema erosivo.

![Figura 10. Variación del perfil transversal tras la incidencia de un temporal. Fuente: Modificación de (Dean & Dalrymple, 2004)](image-url)
A lo largo del perfil transversal, las formas o modos de transporte varían. Para las mayores profundidades intermedias el transporte predominante es en arrastre; al aproximarse a la zona de rompientes, donde se puede situar la barra, comienzan a aparecer los ripples (ondulaciones que se forman en la arena), signo inequívoco de un transporte en suspensión; en las proximidades de la barra, punto de rotura, el transporte predominante es laminar; tras la rotura el material queda en suspensión; al aproximarse a la orilla pasa a dominar el transporte laminar (Horikawa, 1988).

Las principales causas de la variación del perfil transversal son las siguientes:

- **Variación de la granulometría del material.**
 Un perfil de playa en equilibrio dinámico mantiene una distribución granulométrica del sedimento de tal manera que los sedimentos de mayor tamaño tienden a depositarse en el estrán mientras que los de menor tamaño se depositan más alejados de la línea de costa.

 Existen estudios que relacionan la pendiente de la playa con el tamaño medio del sedimento y con la exposición de la playa ante los agentes climáticos como se puede apreciar en la figura 11.

![Figura 11. Relación entre la pendiente del frente de la playa, la exposición de la misma frente a los oleajes y el tamaño de sedimento.](image)

 Fuente: Modificado de (McLachlan & Brown, 2006)

 Por tanto, si se realizase una regeneración con un tamaño medio de sedimento más fino que el natural de la playa, éste se desplazará a mayores profundidades hasta encontrar la zona donde, por su tamaño, se encuentre en equilibrio, habiendo resultado la regeneración totalmente ineficiente.

- **Influencias mareales.**
 Dean (1991) propone la hipótesis de la existencia de un cierto rango de tamaños de sedimento con unas características hidráulicas similares que alcanzan el equilibrio para unas condiciones concretas de oleaje incidente a una profundidad particular.
Esto se traduce a que bajo un oleaje incidente dado los sedimentos, que conforman el perfil, poseen una profundidad asignada a la que se han de situar en función de su tamaño para adquirir el equilibrio.

En base a esta afirmación (Dean, 1991) propone que ante un aumento del nivel del mar, por ejemplo debido a la marea, los sedimentos tienden a moverse hacia tierra para relocalizarse hacia la profundidad de equilibrio que tienen asignada en función de su tamaño y características. Así se refleja en la figura 12.

Resulta lógico pues, extrapolar esta interpretación a la subida del nivel del mar producido por el calentamiento global.

Figura 12. Hipótesis de Dean sobre el movimiento de las partículas ante una elevación del nivel del mar.
Fuente: (Dean, 1991)

- Incremento de reflexiones del oleaje.

El efecto de la interacción entre el perfil transversal de la playa y la reflexión de los oleajes incidentes producida por un elemento antrópico, como puede ser el muro de un paseo marítimo ha sido ampliamente estudiado por (Kraus, 1988), (Kraus & McDougal, 1996) y (McDougal, Kraus, & Ajiwibowo, 1996).

Figura 13. Socavación producida por la reflexión de un oleaje incidente en un muro.
Fuente: Modificación de (Kraus, 1988)

Al incidir el oleaje de un temporal sobre un paramento vertical, esté hace que el oleaje se refleje, pudiendo interactuar con los oleajes incidente de tal forma que se generen fenómenos de amplificación de la altura de ola por entrar en fase las olas incidentes con las reflejadas. Este hecho derivará en un socavamiento a pie de estructura del perfil original, que irá profundizándose a medida que el oleaje vaya...
incidiendo más en el tiempo, con una tendencia a descalzar la estructura.

- Incremento o decremento de la energía del oleaje incidente en la costa.

Esta hecho se puede deber diversas situaciones, como: la construcción de alguna obra que altere la incidencia del oleaje en la playa en cuestión, la aparición de temporales extraordinarios con periodos de retorno muy altos, o transformaciones meteorológicas debidas a fenómenos como el cambio climático entre.

Aun así, este aspecto se puede observar en la figura 14, donde se aprecia la existencia de dos tipos de perfiles característicos, el de invierno y el de verano. Estos dos tipos de perfiles transversales derivan de la diferencia de energía incidente en la costa entre los periodos de verano e invierno, siendo más energéticos los temporales en invierno que en verano. Esta diferencia energética se traduce en una reordenación del perfil transversal, dando un aspecto más tendido al perfil y con la posibilidad de generación de barras en invierno. Mientras que en verano que el perfil es más vertical y el ancho de playa seca es mayor.

2.1.2. Transporte solido longitudinal.

El movimiento longitudinal de sedimentos es el principal causante de que exista una diferencia del ancho de playa seca entre cada extremo de una playa.

En el litoral Mediterráneo, este tipo de transporte habitualmente se da en dirección Norte-Sur haciendo que las playas tiendan a girar en
sentido antihorario orientándose perpendicularmente al flujo medio de energía, término que está definido en el punto 2.2.1.

Este movimiento longitudinal, que se produce cuando el oleaje alcanza la costa oblicuamente y actúa de dos formas simultáneas:

1. La primera consiste en un transporte zig-zag sobre la playa provocado por el run-up de las olas en la dirección correspondiente al ángulo de incidencia. Tiene lugar entre la línea de rompientes y la playa y se crea bajo la acción de la componente paralela a la playa de la energía del oleaje.

2. La segunda deriva de la incidencia oblicua del oleaje que genera dos corrientes, una longitudinal y otra transversal a la costa. Al movimiento de sedimentos paralelos a la costa se le conoce con el nombre transporte sólido litoral o transporte longitudinal, y es uno de los responsables de la transformación de la costa.

En la imagen 15, se observan los dos procesos descritos, el de zig-zag y el transporte paralelo a la playa.

El oleaje puede transportar el material sedimentario que forma la costa de dos formas diferentes: arrastrándolo sobre el fondo, transporte en arrastre, o levantándolo del suelo y transportándolo suspendido en el agua, transporte en suspensión. Horikawa (1988) distingue una tercera forma de transporte que denomina “sheet flow” o transporte laminar, que es una forma de transportar intermedia entre el transporte en suspensión y en arrastre: cuando el grano por la acción del oleaje se
levanta del suelo moviéndose en suspensión en una lámina estrecha de agua con una alta densidad de material.

2.1.3. Unidad fisiográfica.

El transporte de sedimentos no es un fenómeno continuo a lo largo de la costa, sino que sufre variaciones en magnitud y dirección debido a elementos naturales, como los accidentes geográficos, o artificiales, como los puertos.

Estos elementos, o barreras, que entorpecen el movimiento de sedimentos, que se corresponde con lo que se ha definido como transporte longitudinal, lo pueden hacer de manera total o parcial.

Por esta razón es necesario establecer áreas de estudio conocidas como unidades fisiográficas. Se denomina unidad fisiográfica independiente a aquella porción o tramo de costa donde discurre continuamente el transporte solido litoral longitudinal; esto es, el tramo de costa comprendido entre dos barreras totales al paso de sedimentos (de la Peña Olivas, 2007).

Las barreras naturales más comunes se identifican como cabos, acantilados, cañones submarinos, etc. Las barreras artificiales se corresponden con puertos, espigones, etc.

Las unidades fisiográficas no tienen por qué ser fijas en el tiempo, ya que pueden ser modificadas de manera natural, por la formación de tómbolos por ejemplo, o de manera artificial, por la ejecución de obras marítimas.

2.1.4. Balance sedimentario.

La estabilidad de una playa está íntimamente relacionada con el balance sedimentario de la misma. Se dice que una costa es estable cuando su estado físico permanece inalterado a lo largo del tiempo (de la Peña Olivas, 2007).

De manera sencilla, se puede explicar un proceso erosivo de inestabilidad como la situación en la que el material perdido es superior al aportado por las fuentes de suministro. Este hecho suele estar relacionado con la alteración de los transportes longitudinales o por la modificación o destrucción de las fuentes. Un ejemplo muy común de la alteración de una fuente de aporte de sedimentos es el encauzamiento de un río, ya que antes del encauzamiento el río aportaba cierta cantidad de material sedimentario, pero tras su encauzamiento este aporte deja de existir debido al recubrimiento mediante hormigón de su cauce quedando el balance inclinado a la perdida de material.
Para que el estado físico de una unidad fisiográfica permanezca inalterado en el tiempo, los caudales sólidos entrantes \((Q_{\text{entrante}}) \) han de ser los mismos que los salientes \((Q_{\text{saliente}}) \), respondiendo a la siguiente ecuación:

\[
Q_{\text{entrante}} = Q_{\text{saliente}}
\]

En la figura 16 se pueden apreciar los diferentes caudales sólidos que pueden actuar en una unidad de playa, teniendo en cuenta los aportes de aguas abajo, los de aguas arriba, los offshore (desde el mar) y los onshore (desde tierra).

![Esquema de los caudales sólidos que intervienen en el balance sedimentario.](image)

Fuente: Modificación de (de la Peña Olivas, 2007)

En función del análisis de los caudales entrantes y salientes se pueden identificar los siguientes casos según la nomenclatura definida por Suárez Bores recogida en (Martínez Martínez, 1985):

- **Playas hiperestables.** Se dan cuando los caudales sólidos entrantes \((Q_{\text{entrante}}) \) son superiores a los salientes \((Q_{\text{saliente}}) \).

\[
Q_{\text{entrante}} > Q_{\text{saliente}}
\]

- **Playas inestables.** Se dan cuando los caudales sólidos entrantes \((Q_{\text{entrante}}) \) son menores a los salientes \((Q_{\text{saliente}}) \).

\[
Q_{\text{entrante}} < Q_{\text{saliente}}
\]

Se dice que la estabilidad o la inestabilidad es “dinámica” siempre que se cumpla que los caudales salientes y/o entrantes sean nulos, es decir, cuando las partículas se renuevan. A su vez, cuando ambos caudales (aportación y pérdida) son nulos, la estabilidad es “estática”.

2.2. Dinámica litoral.

El oleaje, las corrientes y el viento, y la interacción de estos agentes con el medio, producen la movilización de los sedimentos y por consiguiente modifican la forma de las playas como se ha visto en el
apartado 2.1. Entonces, una vez entendidos los procesos que influyen en la variación morfológica de las playas es preciso conocer y clasificar estas variaciones.

Desde el punto de vista de la sustentación lateral de la playa, ésta se puede clasificar como abierta, apoyada y encajada. El la figura 17, se observa esquemáticamente esta clasificación.

![Figura 17. Clasificación de playa en función de su planta. Fuente: (de la Peña Olivas, 2007)](image)

Mientras que desde el punto de vista de su perfil, se pueden distinguir playas completas, playas apoyadas o sustentadas (cuando la playa se apoya en un pie sumergido, ya sea natural o artificial) y playas sumergidas (cuando no existe ancho de playa seca). El la figura 18, se observa esquemáticamente esta clasificación.

![Figura 18. Clasificación de playas en función de su perfil. Fuente: (de la Peña Olivas, 2007)](image)
Usualmente una playa presentará una morfología determinada dada por un equilibrio, esta morfología no es fija, sino que varía dentro de un rango. Sin embargo, este rango es muy susceptible de verse alterado por el inciso de actividades antrópicas. En este punto se puede hacer un inciso sobre la práctica habitual del extendido de la arena hacia la orilla para obtener playas más horizontales, lo que significa una mayor comodidad para los usuarios pero a la vez una mayor facilidad para provocar la erosión de la playa ante un temporal.

Según (Raudkivi & Dette, 2002), la reubicación de sedimentos tras un periodo de tormenta, el cual ha causado una erosión de la playa seca reubicando los sedimentos aguas adentro, necesita de un cierto periodo de tiempo en el que los oleajes regulares trasporten este sedimento reubicándolo nuevamente hasta la línea de costa y que de ahí por medio del transporte eólico vuelva a la paya seca. Sin embargo, durante este periodo de tiempo el sedimento en suspensión existente en el perfil de playa es considerable, incidiendo este hecho en un aumento del transporte solido longitudinal, lo que redunda en una pérdida de dicho sedimento en la playa por su relocalización en una unidad fisiográfica distinta a la estudiada aguas abajo.

Por ello, mediante la relocalización mecánica de sedimentos de la playa seca hacia la orilla del mar para aplanar la pendiente de la misma, se está propiciando que ante un oleaje incidente mínimamente superior al regular, se facilite un transporte de sedimentos aguas adentro con su consecuente transporte en suspensión y la pérdida de parte del sedimento debido al transporte longitudinal.

2.2.1. Flujo Medio.

Las playas se enmarcan dentro de la zona Costera, que comprende el área de la plataforma continental y de la costa en la que los procesos morfodinámicos vienen determinados por la dinámica litoral. Su desarrollo hacia tierra y hacia el mar depende, por lo tanto, de la tipología de la costa, de la plataforma continental, y del clima marítimo de la zona.

La forma en planta de una playa viene determinada por la dirección del flujo medio de energía, definiéndose la planta de equilibrio de una playa en dirección normal al flujo medio de energía.

El cálculo del flujo medio está íntimamente relacionado con la obtención del transporte solido longitudinal, ya que se puede asumir que el volumen de sedimentos transportados a lo largo de la costa es proporcional al flujo de energía de las olas. Esta asunción deriva de los estudios llevados a cabo por (Munch-Peterson, 1938), ingeniero danés que fue el primero en relacionar el transporte solido litoral con la energía del oleaje en profundidades indefinidas.
Las fórmulas que derivan del cálculo del flujo medio para la obtención del transporte sólido longitudinal suelen diferir en la obtención de la distribución de los sólidos en suspensión a lo largo de la zona de surf, lo que varía con las condiciones de oleajes incidentes (Raudkivi & Dette, 2002).

A partir de ahí han sido llevados a cabo numerosos estudios que pueden observarse de manera sintetizada en la discusión realizada por (Sayao, 1982), sin embargo la formulación más empleada en España es la conocida como fórmula del CERC (CEM, 2002).

Es importante observar además, que la componente paralela a la línea de costa del vector flujo de energía puede variar sustancialmente a lo largo de la costa, incluso para direcciones de incidencia de oleajes y viento homogéneas, debido a los efectos de refracción (punto 2.2.4) que causan una tendencia a alinear los vectores incidencia de manera perpendicular a la costa (Raudkivi & Dette, 2002).

2.2.2. Profundidad de Cierre.

La morfología del perfil de una playa depende de la interacción de los procesos dinámicos que actúan sobre ella, sin embargo los cambios sustanciales que se pueden dar en él son relevantes hasta una cierta profundidad. Esta profundidad conocida como la profundidad de cierre está caracterizada por una reducción drástica del movimiento de los sedimentos que deriva es una morfología del fondo marino aguas adentro poco cambiante.

Dentro de la ingeniería costera, el conocimiento de la profundidad de cierre es una herramienta indispensable para el correcto dimensionamiento y colocación de las estructuras de defensa costera, así como también para el correcto dimensionado de las regeneraciones.

Se puede definir la profundidad de cierre como el lugar geométrico dentro del perfil transversal de una playa a partir del cual el movimiento acreacional de los sedimentos está limitado. Este hecho deriva en que los principales y más notables procesos, a corta escala espacio y tiempo, de la dinámica litoral van a estar enmarcados entre la línea de costa y dicha profundidad de cierre.

2.2.3. Zona de surf o zona de rompientes.

Se define al área en el que se producen los procesos de rotura del oleaje, y por tanto disipación de la energía incidente a la costa, como la zona de rompientes. De su control y entendimiento se derivan gran parte de los procesos dinámicos litorales.
Los principales problemas en una costa erosionada derivan de una pendiente empinada en la costa y de un alto transporte litoral conjugado. El hecho de disponer de una pendiente muy empinada cerca de la línea de costa producirá que la disipación de la energía del oleaje incidente se produzca en una banda muy estrecha, por lo que a igual energía incidente se va a tener un mayor ratio de energía por unidad de área cuanto menor sea el ancho de la zona de rompientes.

En muchas costas en retroceso la pendiente del perfil de playa sumergido es muy empinada, lo que va a provocar una playa reflexiva con mayor facilidad para la perdida de material por un proceso similar al descrito en el punto 2.1.1 debido a las reflexiones del oleaje. Pero además de este hecho, hay que añadir que se alcanzan mayores profundidades a menor distancia a la costa, por lo que cualquier tipo de actuación con el fin de reducir la reflexividad de la playa mediante la creación de un nuevo perfil más tendido será más costosa en relación a los mayores volúmenes necesarios a mover.

Dette, Peters, and Newe (1977) han investigado el comportamiento que tendría un perfil de playa con pendientes sumergidas más tendidas terminadas en un apoyo sumergido, aumentando así el ancho de la zona de rompientes, y con pendientes en la playa seca de 1:15 para generar una reserva de arena frente a los temporales de tormenta.

El funcionamiento de este perfil artificial viene descrito por Raudkivi and Dette (2002) de tal manera que se induce el inicio de la rotura de las olas a los pies del apoyo sumergido creando una erosión en dirección hacia tierra tras el mismo, sin embargo este sedimento erosionado es empujado hacia tierra y no se elimina de la zona de rompientes. Los oleajes con mayor tamaño tenderán a romper sobre el peraltamiento creado por dicho apoyo localiza la disipación de la energía del oleaje y reduciendo además la carga de energía en la zona de rompientes. El peraltamiento del oleaje se verá también reducido, y con ello las corrientes de retorno. El socavamiento hacia el lado de tierra producido tras el apoyo será rellenado con el oleaje de menos energéticos que rompan más cerca de la línea de costa a profundidades inferiores. Por lo tanto, no se pierden grandes cantidades de arena de la zona de surf creada a través de este tipo de perfil apoyado. Sin embargo el problema de este tipo de perfiles artificiales radica en la consecución de su continuidad a lo largo de la línea de costa.

Del perfil artificial que se acaba de mencionar se puede además dar explicación a la práctica errónea ya comentada del esparcimiento de arena a lo largo del ancho de playa seca para conseguir pendientes más cómodas para los usuarios, y anchos de playa mayores. En base a la experiencia de Raudkivi and Dette (2002), esta práctica tendría que ir
acompañada de un perfil adecuado que redujese la energía incidente en la costa. Ya que de no ser así, se estaría propiciando la pérdida de arena a mayores velocidades por los efectos reflexivos derivados por el aumento de pendiente paulatino que sufre la playa debido a la migración forzada de los sedimentos al trasladarlos de la playa seca a la zona de batientes por estar estos más expuestos a la acción del oleaje.

La consecución del perfil de equilibrio va asociado además a una reducción en los procesos de erosión y aceleración, ya que como su propio nombre indica se alcanza un equilibrio en el que la playa ni gana ni pierde arena, este hecho se puede apreciar en la figura 19, donde se simulán los transportes de sedimentos producidos a lo largo de un temporal simulado en un canal de oleajes. Sin embargo no se ha de perder el concepto, un perfil de equilibrio se asocia a unas condiciones sedimentológicas y de oleaje concretas, al cambiar alguno de estos factores se puede incidir en la variación del mismo.

Como conclusión de los trabajos de Raudkivi and Dette (2002) se podría decir, que en playas erosionadas con pendientes pronunciadas es posible establecer el ancho requerido de la playa seca mediante la elevación de la zona de rompientes. Además, la rápida pérdida de arena de la playa seca durante los episodios de tormenta se podría minimizar si la pendiente de la playa seca fuese más tendidas, con una pendiente para la playa seca del 1:15, pero siempre acompañado de un perfil sumergido adecuado, ya que sin él no se estaría en el equilibrio.
Además, donde el ancho de playa disponible entre la orilla y la duna no sea el suficiente para que la playa seca acoja la mayor tormenta esperada, la duna debería ser protegida contra la gran pérdida de arena propiciada por el citado episodio. La arena de una duna que no esté protegida de las condiciones extremas será desperdiciada, lo que contribuirá a incrementar el transporte litoral durante la tormenta y posteriormente, mientras el exceso de arena es reubicado por los oleajes regulares hasta la consecución del perfil de equilibrio.

2.2.4. Refracción.

La refracción del oleaje es un fenómeno que se basa en la variación de velocidad que experimentan los frentes de onda debido a los cambios batimétricos, produciéndose la tendencia del vector dirección de propagación de incidir perpendicular a la línea de costa.

Esta variación de la velocidad en función de la profundidad se puede comprender fácilmente atendiendo a la formulación de la celeridad en aguas profundas desarrollada por la teoría lineal de oleaje de la profundidad. Como se observa en la ecuación 4, la celeridad de la onda y del grupo de ondas en aguas profundas depende de la profundidad. Por lo que si se analiza la ecuación 4, se puede observar como a mayor profundidad la velocidad del frente va a ser mayor, mientras que a menor profundidad este se ralentiza.

\[C = \sqrt{gd} \] [4]

Este fenómeno explica que los vectores de avance del frente de ondas tiendan a incidir en la costa de manera perpendicular, este cambio de dirección puede apreciarse en la figura 20, que aplicado al caso real de la incidencia de un oleaje en una costa se ha representado en la figura 21.

![Figura 20. Cambio de dirección frentes de onda debido a la refracción.](image-url)
En la figura 21, se puede apreciar además el fenómeno de concentración de energía que se produce en los cabos a la par que el de disipación de energía que se aprecia en las bahías. Este fenómeno se debe a la agrupación de los vectores de incidencia del oleaje sobre las morfologías costeras de tipo cabo, en contraposición de la apertura de los frentes de incidencia al llegar a accidentes costeros del tipo bahía.

![Imagen de refracción]

El fenómeno de la refracción se puede entender además desde un punto de vista físico, al observar cómo cambia la trayectoria de un haz de luz al cambiar de medio. Esta variación de trayectoria se debe a la variación en la velocidad de propagación existente entre un medio y otro, que es exactamente lo mismo que ocurre al frente de onda al pasar de una batimetría a otra. Este fenómeno sigue la teoría de la Ley de Snell, y en la ingeniería marítima ha sido desarrollado de la misma manera.

2.2.5. Difracción.

La difracción consiste en una cesión lateral de energía a lo largo de la cresta de la ola y en dirección perpendicular a la propagación de ésta debido al choque del frente de ondas con un obstáculo (diques, barras, islotes, etc.) o un cambio brusco en la batimetría (dragado, dique sumergido, arrecife, etc.).

Tras el paso del frente por el accidente desencadenante de la difracción, se produce un cambio rápido de la dirección del frente amoldándose de manera radial al polo generador de la difracción como puede apreciarse en la figura 22. En la zona que queda abrigada
por el elemento generador de la difracción se produce además un descenso de la altura de ola.

Figura 22. Difracción.

2.2.6. Reflexión.

Es el fenómeno por el cual una onda es reflejada al impactar sobre una superficie vertical. Este fenómeno se da al incidir los oleajes sobre un dique vertical, ya que estos trabajan por reflexión de la onda, en contraposición de cómo trabaja un dique de escollera que actúa haciendo romper la ola sobre su manto.

Dentro del campo de la ingeniería costera el accidente costero por excelencia que produce este tipo de fenómeno es el acantilado, y se debe a la verticalidad de sus paredes expuestas a la acción del oleaje.

El fenómeno de reflexión visto desde el punto de vista del diseño de diques verticales tiene el problema de que la onda incidente puede entrar en fase constructiva con la onda reflejada dándose una amplificación de la altura de ola que puede llegar a aumentar al doble la amplitud de la onda incidente en el peor de los casos.

El concepto de reflexión es un concepto que también proviene de la teoría de ondas de la física, en el que se enuncia de manera genérica que al incidir una onda sobre la superficie que separa dos medios de característica diferentes se producirá una onda refractada que cambiará de medio y otra reflectada que quedará en el mismo medio. La onda reflejada lo hace con el mismo ángulo de la onda incidente pero en sentido contrario como puede apreciarse en la figura 23.

Figura 23. Fenómeno de reflexión sobre acantilado.
3. Dominio Público

La calificación de dominio público de las zonas litorales tiene en España un carácter histórico y es reconocida en documentos legales tan antiguos como Las Siete Partidas del Rey Alfonso X El Sabio (s. XIII).

La Constitución Española de 1978 establece en su artículo 132.1 que la ley tiene que regular el régimen jurídico del dominio público, inspirándose en los principios de inembargabilidad, inalienabilidad e imprescriptibilidad. En este contexto, es evidente la relevancia del Dominio Público marítimo-terrestre (DPMT), pues es el único de cuantos existen directamente individualizado y definido como tal en la Constitución (art. 132.2), probablemente con la finalidad de acabar con las anteriores confusiones y actitudes contrarias a la demanialidad de espacios tan importantes (MAGRAMA., 2005).

Según el derecho administrativo de España el Dominio Público Marítimo-Terrestre (DPMT), es el conjunto de bienes de dominio público formado por el mar territorial, las aguas interiores, los recursos naturales de la zona económica exclusiva y de la plataforma continental, incluyendo playas y costas hasta las zonas de alcance de los mayores temporales conocidos. De este modo, pertenecerán al dominio público marítimo-terrestre los espacios siguientes:

- **Zona marítimo-terrestre.** Espacio comprendido entre la línea de bajamar escorada o b.m.v.e. y el límite hasta donde alcanzan las lolas en los mayores temporales conocidos\(^1\) o cuando lo supere, el de la línea de PMVE. Esta zona se extiende por las márgenes de los ríos hasta donde se haga sensible el efecto de las mareas. Se consideran incluidas en esta zona los terrenos bajos que se inundan como consecuencia del flujo y refluo de las mareas, de las olas o de la filtración del agua de mar.
- **Playas o zonas de materiales sueltos.** Arenas gravas y guijarros, incluyendo escarpes, bermas y dunas\(^2\).

\(^1\) La modificación de 2013 establece que se determinará reglamentariamente el alcance de las olas en los mayores temporales conocidos.

\(^2\) La modificación de 2013 establece que las dunas se incluirán hasta el límite necesario para garantizar la estabilidad de la playa y la defensa de la costa. Algunas Comunidades Autónomas consideran que se quedarán fuera del DPMT algunos...
El mar territorial y las aguas interiores con su lecho y subsuelo e islotes si los hubiera, así como los recursos naturales de la zona económica y la plataforma continental.

Los terrenos ganados al mar, ya sea por depósito de materiales, retirada del mar, derivados de obras y desecados de la ribera y los invadidos por el mar que pasen a formar parte de su lecho.

Los acantilados (superficies de inclinación mayor de 60º, en contacto con mar o con espacios del DPMT) hasta su coronación.

Los terrenos deslindados que han perdido las características naturales de playa, acantilado, o zona marítimo terrestre, a menos que se declare su innecesariedad y se proceda a su desafección.

Los terrenos incorporados por los concesionarios para completar la superficie de una concesión otorgada en el DPMT, así como los terrenos colindantes con la ribera del mar adquiridos para su incorporación al DPMT.

Obras e instalaciones construidas por el Estado en el DPMT y las de iluminación de costas y señalización marítima sea cual sea su ubicación, además de puertos e instalaciones portuarias de titularidad estatal.

Será competencia de la Administración del Estado la delimitación del DPMT por medio de deslindes que definan el su límite interior por una poligonal que una los puntos de referencia. En el procedimiento de deslinde serán oídos los propietarios colindantes, personas que acrediten la condición de interesados y se solicitará informe a la Comunidad Autónoma y al Ayuntamiento correspondiente.

Una vez aprobado el expediente de deslinde, se declarará la posesión y titularidad dominical a favor del estado del DPMT que limite y se procederá a su amojonamiento.

La modificación de 2013 de la Ley de Costas tiene en consideración la revisión del deslinde en aquellos casos en los que “se

espacios con dunas por lo que recurrirán ante el Tribunal Constitucional el artículo que refleja este apartado.
altere la configuración del dominio público marítimo-terrestre.”

A los titulares de los terrenos que se incorporen al DPMT en esta revisión podrá otorgárselas una concesión por 75 años para poder ejercer el derecho de ocupación y aprovechamiento. Los que se incorporen a la zona de servidumbre no podrán realizar obras a excepción de aquellas dedicadas a la reparación, mejora consolidación y modernización de las existentes, sin cambios en volúmenes y declarando la mejora en la eficiencia energética y las medidas de ahorro de agua tomadas y aprobadas.

Además, en dicha modificación se establece que la Administración del Estado podrá declarar zonas de regresión grave en tramos del dominio público marítimo-terrestre si se cumplen los condicionantes establecidos en el futuro reglamento y si no se puede restaurar el estado anterior por procesos naturales. En estas zonas se limita el otorgamiento de derechos de ocupación manteniéndose las existentes solo si no hay riesgo de que el mar les alcance. Por otro lado, la Administración del Estado podrá realizar actuaciones para la protección, conservación o restauración imponiendo contribuciones especiales si fuera necesario.

3.1. Servidumbres legales

La Ley de Costas define unas zonas de servidumbre destinadas a la defensa y protección del dominio público marítimo-terrestre, así como la conservación de las características naturales de los elementos que lo definen y para asegurar el libre acceso al litoral y llevar a cabo las operaciones de protección y salvamento.

Estas zonas se extienden desde el límite interior de la ribera del mar hacia tierra adentro. Es común confundir el límite del Dominio público marítimo-terrestre con el límite de la ribera del mar. Aunque puede que en algunas ocasiones ambas líneas se solapen, conviene revisar la definición de ribera del mar para poder diferenciarlo del conjunto de elementos que componen el D.P.M.T.

3.1.1. Servidumbre de protección

Según la Ley de Costas, la servidumbre de protección recae sobre una zona de 100 metros que es medida tierra adentro desde el límite

3 Añadido como Artículo 13Bis a la Ley de Costas
4 Añadido como Artículo 13Ter a la Ley de Costas
5 Ver régimen de contribuciones especiales en el Añadido artículo 87Bis
6 La ribera del mar y de las rías, tal y como se define en el Artículo 3 de la Ley de Costas se reduce a la zona marítimo-terrestre y las playas o zonas de materiales sueltos. Véanse los dos primeros puntos del listado de bienes que pertenecen al DPMT del apartado anterior.
interior de la ribera de la mar. Esta zona es la más extensa y su objetivo es proporcionar protección a la costa.

La extensión de esta zona puede ser ampliada por la Administración del Estado, de acuerdo con la de la Comunidad Autónoma y el Ayuntamiento correspondiente, hasta un máximo de 200 metros, en el caso que se necesite asegurar la efectividad de la servidumbre, teniendo en cuenta las peculiaridades del tramo de costa de que se trate.

En los primeros 20 metros de la servidumbre de protección no podrán realizarse cerramientos a menos que tengan una altura máxima de 1 metro y diáfanos sobre esa altura con un 80% de huecos, salvo que se empleen elementos vegetales vivos. Además los primeros 6 metros estarán dedicados a la servidumbre de tránsito, pudiendo ampliarse hasta 20 metros en lugares de tránsito difícil.

La zona de servidumbre de protección se puede reducir a 20 metros en las zonas con terrenos ya clasificados como suelo urbano cuando la ley entró en vigor.

Los límites de la zona de servidumbre de protección quedarán definidos en el deslinde. En sus planos se fijarán el límite del DPMT y el límite interior de la ribera del mar cuando ambas líneas no coincidan. Además, se indicará el límite interior de la zona de servidumbre de protección.

En los terrenos que caigan dentro de la zona de servidumbre de protección se pueden realizar, sin necesidad de autorización, cultivos y plantaciones y estarán prohibidas las actividades siguientes:

a) Las edificaciones que están destinadas a residencia o habitación.

b) La modificación o construcción de vías de transporte interurbano paralelas al litoral y de intensidad de tráfico superior a 500 vehículos/día de media anual en caso de carreteras, incluyendo sus áreas de servicio.

c) Todas aquellas actividades que impliquen la destrucción de yacimientos de áridos.

d) El tendido aéreo de líneas eléctricas de alta tensión.

e) El vertido de residuos sólidos, escombros y aguas residuales sin depuración. Sí se permitirá el vertido de residuos sólidos y escombros cuando sean utilizables como rellenos y estén autorizados.

f) La publicidad a través de carteles o vallas o por medios acústicos o audiovisuales no relacionados con actividades que allí se desarrollen.
Excepcionalmente, el Consejo de Ministros podrá autorizar las actividades e instalaciones a que se refieren las letras a), b) y d) si se acredita su utilidad pública y si se acomodan al planeamiento urbanístico aprobado por la Administración competente.

Cabe hacer mención en este momento a lo que recogen las disposiciones transitorias de la Ley de Costas en cuanto a la definición de la zona de servidumbre. Su aplicación ha generado gran revuelo y reclamaciones por la posibilidad de expropiaciones, más aún, cuando se ha ido acercando la fecha límite a la que expiran algunas concesiones.

En cuanto a los titulares de terrenos con espacios en la zona marítimo-terrestre, playa y mar territorial, amparados por la Ley Hipotecaria o por sentencia judicial antes de la aplicación de la Ley, se les otorgará el derecho de ocupación y aprovechamiento del DPMT por medio de concesión. Igualmente ocurrirá en aquellos terrenos que queden entre antiguos y futuros deslindes a excepción de aquellos inundables para cultivos marítimos o salinas a los que se les otorga el régimen de la servidumbre de protección.

El régimen de las zonas de servidumbre recogidos en la Ley de Costas, y resumidos en este apartado, se aplicará en suelo clasificado como urbanizable no programado y suelo no urbanizable antes de la aplicación de la Ley. Se entiende que posteriores revisiones deberán respetar el citado régimen de protección.

Únicamente en el suelo urbanizable programado que cuente con plan parcial y el suelo urbano clasificado como tal antes de la entrada en vigor de la Ley podría reducirse la anchura de la servidumbre hasta 20 metros y podrán mantener el aprovechamiento urbanístico siempre que se asegure la servidumbre mediante las condiciones que se recogen en el reglamento.\(^7\)

La modificación de 2013 de la Ley incluye dentro del grupo del párrafo anterior aquellas áreas que, aunque no estén clasificadas como suelo urbano, sí tenían en 1988 un alto nivel de antropización característico de núcleos de población\(^8\). Además, reduce la servidumbre de protección a 20 metros en los márgenes de los ríos, hasta donde sean sensibles las mareas.

\(^7\) Ver disposición transitoria novena del Reglamento de la Ley de Costas.

\(^8\) Ver disposición transitoria primera de la Ley de 2013.
Las obras e instalaciones que hayan sido construidas antes de la entrada en vigor de la Ley de Costas, sin autorización o concesión, serán demolidas cuando no se proceda a su legalización por razones de interés público. Las construidas de acuerdo con la normativa vigente entonces y que se ubiquen en la zona de servidumbre únicamente podrán realizar obras de reparación y mejora, sin aumentos de volumen, y siempre que se certifique la mejora energética y las medidas de ahorro de agua tenidas en cuenta en las obras.

3.1.2. Servidumbre de paso

Según la Ley de Costas su principal objetivo es permitir la libre circulación del público peatonal a lo largo de la costa, además, para los vehículos de vigilancia y salvamento menos en los casos de espacios protegidos. Por tanto, esta recaerá sobre una franja de 6 metros, medidos tierra adentro a partir del límite interior de la ribera del mar.

En los lugares con tránsito difícil o peligroso, esta anchura puede ser ampliada todo lo necesario, hasta un máximo de 20 metros.

Esta zona puede ser ocupada por obras a realizar en el dominio público marítimo-terrestre. En ese caso se sustituirá la zona de servidumbre por otra nueva en condiciones iguales. También puede ser ocupada por la ejecución de paseos marítimos.

3.1.3. Servidumbre de acceso al mar

La Ley de Costas indica que la servidumbre de acceso al mar recaerá, en este caso, en una franja no paralela al mar, sino que se establece diferentes puntos para poder garantizar el acceso público y gratuito al mar. Estos están delimitados por los terrenos colindantes o contiguos al dominio público marítimo-terrestre, en la longitud y anchura que demanden la naturaleza y finalidad de acceso.

En las zonas urbanas y urbanizables, los accesos peatonales deben estar distanciados entre sí como máximo 200 metros, y en el caso de los accesos de tráfico rodado un máximo de 500 metros. Todos los accesos deben estar señalizados y abiertos al uso público a su terminación.

3.1.4. Zona de influencia

Con el fin de garantizar la protección del DPMT se define una zona de influencia, además de las zonas de servidumbre, que se extiende en un ancho de 500 metros, como mínimo, a partir del límite interior de la ribera del mar.

9 Ver disposición transitoria cuarta de la Ley de Costas de 1988
Las limitaciones que para esta zona se establecen son de aplicación en las herramientas de ordenación territorial y urbanística. Según la Ley de Costas, estas herramientas deberán prever las reservas de suelo para aparcamiento para evitar el estacionamiento en la zona de servidumbre de tránsito en playas con acceso a tráfico rodado. Además las construcciones deberán evitar la formación de pantallas arquitectónicas o la densificación de edificación.

Se recogen a continuación las competencias administrativas de cada una de las Administraciones Públicas. No obstante, podrán ser modificadas ante la inminente publicación del Reglamento de la Ley 2/2013, de 29 de mayo, de protección y uso sostenible del litoral y de modificación de la Ley 22/1988, de 28 de julio, de Costas, previsto para finales de este año 2013 o principios del que viene.

Las fuentes de datos para esta recopilación han sido:

- Ley 22/1988, de 28 de julio de Costas.
- Ley 2/2013, de 29 de mayo, de protección y uso sostenible del litoral y de modificación de la Ley 22/1988, de 28 de julio, de Costas.
- Real Decreto 1471/1988, de 1 de diciembre, por el que se aprueba el Reglamento General para desarrollo y ejecución de la Ley 22/1988, de 28 de julio de Costas.
- Real Decreto 1112/1992, de 18 de septiembre, por el que se modifica parcialmente el Reglamento General para desarrollo y ejecución de la Ley 22/1988, de 28 de julio de Costas, aprobado por el Real Decreto 1471/1988, de 1 de diciembre.
- Real Decreto Legislativo 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante.

4.1. Administración del Estado.

De acuerdo con la Ley 22/1988, de 28 de julio, de Costas de 1988 y su Reglamento (RD 1471/1989) son competencias del Estado:

- El deslinde de los bienes de DPMT, así como su afectación y desaffectación y la adquisición y expropiación de terrenos para su incorporación a dicho terreno.
- La gestión del DPMT incluyendo el otorgamiento de adscripciones, concesiones y autorizaciones para su ocupación y aprovechamiento, la declaración de zonas de reserva, las autorizaciones en las zonas de servidumbre de tránsito y acceso al mar y, en todo caso, las concesiones de obras fijas en el mar, así
como las de instalaciones marítimas menores, tales como embarcaderos, pantalanes, varaderos y otras análogas que no formen parte de un puerto o estén adscritas al mismo.10
- La tutela y policía del DPMT y de sus servidumbres, así como la vigilancia del cumplimiento de las condiciones con arreglo a las cuales hayan sido otorgadas las concesiones y autorizaciones correspondientes.
- Ejercicio de tanteo y retracto en las transmisiones de yacimientos de árido y, en su caso, la expropiación de los mismos.
- La realización de mediciones y aforos, estudios de hidráulica marítima e información sobre el clima marítimo.
- La aprobación de las normas elaboradas conforme a lo establecido en el artículo 22 de la Ley de Costas (protección de determinados tramos de costa11 para asegurar el correcto dimensionado de las zonas de servidumbre) y 41 de este Reglamento (id.)12
- Las obras y actuaciones de Interés General o las que afecten a más de una Comunidad Autónoma. Tendrán calificación de obras de interés general y serán competencia de la Administración del Estado (Ministerio de Medio Ambiente, Medio Rural y Marino):
 - Las que sean necesarias para la protección, defensa y conservación del DPMT, así como su uso.
 - Las de creación, regeneración y recuperación de playas. Así como los trabajos de dragado necesarios, en su caso.
 - Las obras de acceso público al mar no previstas en el planteamiento urbanístico.
 - Las emplazadas en el mar y aguas interiores, sin perjuicio de las competencias de las Comunidades Autónomas, en su caso.13
- La elaboración y aprobación de las disposiciones sobre vertidos, seguridad humana en lugares de baño y salvamento marítimo
- La iluminación de costas y señales marítimas

10 No será competencia del Estado el otorgamiento de autorizaciones en zonas de servidumbre de protección. Sólo se reduce esta competencia a las zonas de servidumbre de tránsito y acceso al mar en virtud del RD 1112/1992, al declararse inconstitucional la redacción del artículo 110.1.b de la Ley de Costas
11 La longitud de costa a incluir en las normas deberá referirse, como mínimo, a una unidad, fisiográfica o morfológica relativa a la dinámica litoral o al territorio respectivamente, o, en su caso, a uno o varios términos municipales colindantes completos. (Art. 41.3 del Reglamento)
12 El apartado de la Ley de Costas que hacía referencia a este articulado hace referencia, además de al artículo 22, al artículo 34 pero se declara inconstitucional y nulo por RD 1112/1992. Además, se declaran inconstitucionales y nulos los Artículos 71 al 74 (Normas) como consecuencia de la nulidad del artículo 34.
13 Se modifica la anterior redacción del Reglamento y el artículo 111.1.d) de la Ley de Costas, que establecían en este precepto: “Las emplazadas en el mar y sus aguas interiores, sin perjuicio de las competencias de las Comunidades Autónomas sobre acuicultura, en su caso”. El Tribunal Constitucional, en su sentencia 149/1991, declara inconstitucional, y consiguientemente nulo el inciso “sobre acuicultura” pues “no es la acuicultura la única materia de competencia autonómica que pueda dar lugar a la realización de obras en el mar territorial.
La prestación de toda clase de servicios técnicos relacionados con el ejercicio de las competencias anteriores y el asesoramiento a las Comunidades Autónomas, Corporaciones Locales y demás Entidades públicas o privadas y a los particulares que lo soliciten.

La ejecución de los acuerdos y convenios internacionales en las materias de su competencia.\(^{14}\)

La implantación de un Banco de Datos Oceanográficos que sirva para definir las condiciones de clima marítimo en la costa española, para lo cual las distintas Administraciones Públicas deberán suministrar la información que se les recabe.

La ejecución de obras de interés general numeradas en el séptimo punto de la lista anterior no podrá ser suspendida por otras Administraciones Públicas, sin perjuicio de la interposición de los recursos que procedan.

Cuando estas obras afecten a los recursos marinos, el Ministerio de Medio Ambiente, Medio Rural y Marino informará preceptivamente en el plazo de un mes.

Corresponde también a la Administración del Estado emitir informe en los siguientes supuestos:

- Planes y normas de ordenación territorial o urbanística y su modificación o revisión, en cuanto al cumplimiento de las disposiciones de la Ley de Costas, de este Reglamento y de las normas que se dicten para su desarrollo y aplicación.\(^{15}\)
- Planes y autorizaciones de vertidos al mar desde tierra, a efectos del cumplimiento de la legislación estatal y de la ocupación del dominio público marítimo-terrestre.
- Proyectos de construcción de nuevos puertos y vías de transporte de competencia de las Comunidades Autónomas, ampliación de los existentes o de su zona de servicio y modificación de su configuración exterior, conforme a lo previsto en el artículo 49 de la Ley de Costas y concordantes de este Reglamento.
- Declaraciones de zonas de interés para cultivos marinos, concesiones y autorizaciones, de acuerdo con la legislación específica.

La Administración del Estado podrá ejercer el derecho de reserva para la utilización del DPMT para el cumplimiento de fines de su

\(^{14}\) Con el RD 1112/1992 se modifica el texto del reglamento original y el texto de la Ley de Costas al declararse inconstitucional por la STC 149/1991. Texto original: “La ejecución de los acuerdos y convenios internacionales en las materias de su competencia y, en su caso, la coordinación e inspección de su cumplimiento por las Comunidades Autónomas, pudiendo adoptar, si procede, las medidas adecuadas para su observancia.”

\(^{15}\) Se entienden como instrumentos de ordenación territorial y urbanística, incluyendo Proyectos de delimitación de suelo Urbano y los Estudios de Detalle y otros de similar contenido, que incidan sobre el DPMT y sus zonas de servidumbre.
competencia y por el plazo necesario para ello; siempre y cuando se trate de obras o instalaciones que no se puedan poner en otro sitio (art. 32 de la Ley) o para la realización de estudios e investigaciones (art. 101.1 del Reglamento).

La zona de reserva prevalecerá frente a cualquier otra utilización y llevará implícita la declaración de utilidad pública y necesidad de ocupación, y conllevará la expropiación de los derechos preexistentes incompatibles con ella.

4.2. Comunidades Autónomas.

Las Comunidades Autónomas ejercerán las competencias que en las materias de ordenación territorial del litoral, puertos, urbanismo, vertidos al mar16 y demás relacionadas con el ámbito de la Ley de Costas tengan atribuidas en virtud de sus respectivos Estatutos.

A nivel autonómico, el equivalente a las reservas son las adscripciones. Se emplearán para la construcción, ampliación o modificación de puertos y vías de transporte. Los proyectos de las Comunidades Autónomas deberán contar con el informe favorable de la Administración del Estado, en cuanto a la delimitación del dominio público estatal susceptible de adscripción, usos previstos y medidas necesarias para la protección del dominio público.

El plazo de las concesiones otorgadas en bienes adscritos, incluidas prórrogas no podrá ser superior al plazo máximo establecido en la legislación estatal para las concesiones sobre Dominio Público Portuario en los Puertos de I.G.17 Las concesiones o autorizaciones que las CCAA otorguen en el DPMT adscrito devengarán el correspondiente canon de ocupación en favor de la Administración del Estado, sin perjuicio de los que sean exigibles por aquéllas. Además, la CA ostentará, a efectos del IBI, la condición de sustituto del contribuyente respecto a la porción adscrita del DPMT no afectada por las concesiones.

Las comunidades autónomas serán responsables del abono, funcionamiento, mantenimiento y conservación de la iluminación y balizamiento de puertos de su competencia. El suministro, modificación y supresión será determinado por el Ministerio de Fomento.

16 La Ley de Costas de 1988, en el apartado 110.1.h, y su Reglamento en la versión original, en el apartado 203.1.h. contenían que era competencia de la Administración del Estado “la autorización de vertidos, salvo los industriales y contaminantes desde tierra al mar”. Tal texto fue declarado inconstitucional, y consiguientemente nulo por la STC 149/1991, ya que la competencia para autorizar vertidos desde tierra al mar es competencia propia de las CCAA. En virtud de esta sentencia, el R.D. 1112/1992 deja este párrafo sin contenido. Los vertidos de mar a mar se regirán por la legislación específica.

17 El máximo plazo para estos casos es de 35 años, según artículo 82 del R.D.L. 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante.
4.3. Competencias Municipales.

En los términos previstos por la legislación que dicten las Comunidades Autónomas, las competencias municipales podrán abarcar los siguientes extremos:

- Informar los deslindes del DPMT.
- Informar las solicitudes de reservas, adscripciones, autorizaciones y concesiones para la ocupación y aprovechamiento del DPMT.
- Explotar, en su caso, los servicios de temporada que puedan establecerse en las playas.
- Mantener las playas y lugares públicos de baño en las debidas condiciones de limpieza, higiene, salubridad, así como vigilar la observancia de las normas e instrucciones dictadas por la Administración del Estado sobre salvamento y seguridad de las vidas humanas.

4.4. Relaciones interadministrativas

En el ámbito espacial contemplado por la Ley de Costas, las Administraciones Públicas basarán sus relaciones en los deberes de información mutua, colaboración, coordinación y respeto.

El otorgamiento de títulos administrativos sobre el DPMT y sus zonas de servidumbre se notificará por la Administración otorgante al resto de Administraciones en un plazo de 10 días.

En la tramitación de planeamientos territoriales y urbanísticos que ordenen el litoral, para su aprobación inicial, deberá enviar, con anterioridad a dicha aprobación, el contenido del proyecto a la Administración del Estado para que ésta emita, en el plazo de un mes, informe comprensivo de las sugerencias y observaciones que estime convenientes para el cumplimiento de los aspectos que sean de su competencia.

El Delegado del Gobierno, a instancia del Ministerio de Agricultura, Alimentación y Medio Ambiente, podrá suspender los actos y acuerdos adoptados por las entidades locales que afecten a la integridad del DPMT o de la servidumbre de protección o que supongan una infracción manifiesta de lo dispuesto en el artículo 25 de la Ley de Costas. Esta cláusula, conocida como cláusula antialgarrobicos, es añadida por la modificación de 2013 al artículo 119 de la Ley de Costas y que será recurrida por varias Comunidades Autónomas por vulnerar las competencias municipales que otorga la Constitución.
5. Limpieza Mecanizada en Playas

Las playas de arena son los emplazamientos preferidos por la mayoría de los usuarios utilizándose las mismas como elementos de recreo destinados a tomar el sol y bañarse. Como subproducto de esta actividad de ocio se generan una gran cantidad de deshechos depositados en la arenas de estas playas, y a fin de eliminar estos deshecho las autoridades locales realizan campañas de limpieza diarias para restaurar un aspecto estético agradable desde el punto de vista del turista o usuario.

Este tipo de práctica en Europa es “casi obligada” a fin de obtener un galardón conocido como la “Bandera Azul”. Este galardón exige retirar los deshechos naturales que se consideran como antiéstéticos así como también los antrópicos (Davenport & Davenport, 2006).

La limpieza de las playas se puede llevar a cabo de diversas maneras que van desde la simple recogida de basura, más deseable y no dañina al medio (Davenport & Davenport, 2006), hasta las labores de limpieza mecanizada que eliminan tanto las deposiciones naturales como las antrópicas, así como también alteran la microtopografía de la distribución de los sedimentos y sus habitantes (fauna) creando un hábitat que no se encuentra en equilibrio (Gheskiere, Vincx, Weslawski, Scapini, & Degraer, 2005).

Este proceso de limpieza mecanizada que elimina tanto el alimento como a las propias comunidades de especies que viven en el ecosistema de la playa como isópodos, talitridos o invertebrados acuáticos como la dipterean larvae (Llewellyn & Shackley, 1996) (Davenport & Davenport, 2006).

Gheskiere et al. (2005) han demostrado las diferencias de biodiversidad existentes entre playas del Mediterráneo separadas por escasos kilómetros en las que, debido a una gran intensidad turística, se llevan a cabo labores de limpieza mecanizada de playas diarios frente a aquellas cuyo tratamiento mecanizado es cuasi-inexistente, concluyendo que en las playas mecanizadas las comunidades bentónicas se ven peligrosamente reducidas.

Nordstrom, Jackson, Freestone, Koroticy, and Puleo (2012) en base a un estudio exhaustivo sobre una playa en la que se observó su
evolución excluyendo en determinadas zonas el empleo de la limpieza mecanizada de la misma y la reubicación de arenas, concluyeron que la supresión de estas prácticas permite la regeneración autógena de dunas con una regeneración asociada de ecosistemas. Sin embargo, la supresión de estas prácticas en lugares con un depósito dunar se va a traducir en un menor ancho de playa disponible para los usuarios debido a que la duna emplea una mayor superficie de terreno para moverse libremente. Por ello estos autores plantean un método que permita en una alternancia de zonas en las que se trate la playa enfocada al usuario y otras que los ecosistemas puedan funcionar libremente de manera natural donde no existan estas prácticas.

5.1 Efectos de la limpieza de playa mecanizada sobre el ecosistema costero de la playa.

El empleo indiscriminado de máquinas limpiadoras en las playas tiene un grave impacto sobre un tipo de fauna, los talítridos (McLachlan & Brown, 2006), que vive en la superficie de la arena en las playas del litoral español.

Estas especies se conocen con el nombre común de pulgas de playa, siendo de pequeño tamaño y destinado sus funciones a la limpieza de la materia viva que se adhiere a los granos de arena. Además son un indicador ecológico muy deseable dentro de los procesos de recuperación dunar (Nourisson, Bessa, Scapini, & Marques, 2014).

Las operaciones de limpieza mecanizada, además de llevarse consigo todos los residuos dejados por los usuarios de la playa eliminan algas y restos de biota que son fuente de alimentos principal del ecosistema existente (Brown & McLachlan, 2002).

Llewellyn and Shackley (1996) y Defeo et al. (2009) recogen los principales problemas sufridos por las comunidades de invertebrados debido a los procesos de limpieza mecánica de playas indiscriminados, mientras que Willmott and Smith (2003) demuestra cómo estos procesos merman las comunidades de manera drástica y tras el cese de estas actividades se puede llegar a recuperar parte del ecosistema perdido.

Gilburn (2012) además realiza una comparativa de cómo las playas que habitualmente reciben galardones de calidad son las que más emplean estos sistemas de limpieza y tienen los peores índices de cantidad de fauna de este tipo de ecosistemas.
6. Gestión de Playas: Estado del Arte

La gestión de playas se puede definir como todos aquellos procesos impuestos por parte de un ente competente que van encaminados a mantener un equilibrio entre el ecosistema costero existente y la presión que tiene sobre el mismo la actividad humana.

Grumbine (1994) realizó una recopilación sobre los principales objetivos que ha de perseguir cualquier tipo de actuación sobre una zona concreta dentro de la gestión ambiental. Estos objetivos son cinco:

- Mantener la población de las especies existentes en sus respectivos ecosistemas.
- Estudiar y delimitar las áreas sobre las que se desarrollan los diferentes ecosistemas integrados en la zona de estudio.
- Mantener los procesos ecológicos y evolutivos de dichos ecosistemas.
- Tener en cuenta la escala temporal de afección que puede conllevar una determinada actuación sobre los ecosistemas existentes.
- Integrar el uso humano dentro de ese ecosistema con una serie de restricciones.

El primer escalón que se ha de superar para poder establecer una correcta gestión sobre el mantenimiento de las playas y sus ecosistemas consiste en averiguar qué se está haciendo y quién lo está haciendo.

El esquema administrativo y de mantenimiento en la gestión de playas en España es muy complejo debido a que en gran número de ocasiones las competencias sobre este término se encuentran cruzadas entre administraciones (Ariza, Jimenez, & Sarda, 2008).

Las principales responsabilidades legales para las playas y la gestión costera en España se regulan por la Ley 2/2013, de 29 de mayo, de protección y uso sostenible del litoral que modifica parte de la Ley 22/1988, de 28 de julio, de Costas. Estas leyes abogan el derecho de todos a disfrutar de este medio, pero también imponen el deber de su conservación.
Para una correcta gestión de un sistema costero se establecen cuatro puntos básicos han de desarrollarse conjuntamente por los entes competentes, ya que en base a su desarrollo se derivará un adecuado equilibrio entre los recursos disponibles y su empleo (Micallef & Williams, 2002). Estos cuatro puntos fundamentales su resumen a continuación:

- **Análisis:** Consiste en conocer la situación existente, identificar los problemas y definir los resultados que se pretenden conseguir.
- **Planeamiento:** Implica la coordinación de las técnicas disponibles tanto temporal como espacialmente para guiar las acciones a realizar a la consecución de los objetivos fijados.
- **Gestión:** Se basa en salvaguardar la correcta ejecución del planeamiento poniendo en contacto todos los entes implicados en las actuaciones fijadas.
- **Monitorización:** Verificar que las actuaciones llevadas a cabo cumplen los objetivos fijados tanto temporal como espacialmente mediante un seguimiento de los sistemas sobre los que se ha actuado.

Teóricamente las responsabilidades en el tema de la gestión costera están repartidas en tres estamentos (Ariza et al., 2008):

- **Administración Central:** Es la encargada de definir, controlar y salvaguardar el dominio público marítimo-terrestre y los derechos y deberes asociados al mismo.
- **Administración Regional:** Es la responsable de determinar los usos del suelo, así como de gestionarlos y protegerlos.
- **Administración Local:** Es la encargada de realizar las labores de mantenimiento costero y de informar sobre los proyectos a realizar en el dominio público marítimo-terrestre a la administración central.

Un medio práctico para el control de playas puede pasar por las labores diarias de mantenimiento llevadas a cabo por las administraciones locales, ya que mediante una serie de actividades normalizadas podrían advertir los problemas más comunes y notificar de su existencia las entidades encargadas de hacer frente a estos problemas (Ariza et al., 2008).

Ariza et al. (2008) remarcan el problema del espacio temporal existente entre que se reporta un problema a la Administración Central y se le pone solución. Para ello apuestan por dotar de competencias a las Administraciones Locales en materia de defensa costera.

Sin embargo, este hecho no se ve oportuno debido a la gran existencia de playas que competen a varios términos municipales, dentro de los cuales uno de ellos puede ser el poseedor del problema erosivo estando la solución a la causa en el otro. Este tipo de conflictos no pueden ser resueltos a nivel local porque incumben a más de un
municipio, por lo que se ha de ir a un estamento de orden superior que coordine la actuación entre municipios.

Un ejemplo de ello puede ser la Playa de Campoamor, que discurre a lo largo del término municipal de Orihuela y del término municipal de Pilar de la Horadada.

![Figura 26. Playa de Campoamor, término municipal de Orihuela y término municipal de Pilar de la Horadada.](image)

A día de hoy quedan bastantes vacíos legales dejando sin saber quién es el encargado de solucionar problemas de erosión en ciertas playas debido a que el problema puede ser desconocido por estar fuera del alcance del ente competente. Dentro de la Comunidad Valenciana los entes que deberían tener competencia y deberían de trabajar de manera conjunta son los siguientes:

- Ayuntamiento (actuación a nivel local)
- Diputación de la Comunidad Valenciana (actuación a nivel regional)
• Consellería de Obras Públicas (Dirección General de Costas). (actuación a nivel autonómico).
• Ministerio de Medio Ambiente. (Dirección General de Costas). (actuación a nivel estatal).

El principal problema que afronta la costa catalana, en lo relativo a la gestión costera, son los problemas de erosión y la falta de arenas. Teniendo 20 municipios que han registrado problemas erosivos, de los cuales el 75% de los casos están relacionados con construcciones realizadas en zonas próximas (Ariza et al., 2008).

6.1 Competencias y responsabilidades.

En el Estado español las competencias en materia de gestión del litoral están repartidas entre las distintas Administraciones Públicas. La Constitución reserva al Estado y las Comunidades Autónomas la mayor parte de funciones públicas en este ámbito, dejando un ámbito de competencias limitado, aunque importante, a las administraciones locales.

Corresponden a la Administración General del Estado, a través de la Dirección General de Costas, del Ministerio de Medio Ambiente, la gestión y tutela del Dominio Público Marítimo-Terrestre, de su ocupación y aprovechamiento, así como del otorgamiento o denegación de autorizaciones en las zonas de servidumbre de tránsito y de acceso al mar.

En el 2005 se podían describir en el ámbito público las siguientes áreas competenciales con los organismos responsables a nivel estatal.

<table>
<thead>
<tr>
<th>Ámbito</th>
<th>Organismo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominio Público Marítimo-Terrestre</td>
<td>Dirección General de Costas. Ministerio de Medio Ambiente</td>
</tr>
<tr>
<td>Biodiversidad</td>
<td>Secretaria Biodiversidad. Ministerio de Medio Ambiente</td>
</tr>
<tr>
<td>Calidad de las aguas continentales</td>
<td>Ministerio Medio Ambiente</td>
</tr>
<tr>
<td>Puertos de interés general</td>
<td>Ministerio de Fomento</td>
</tr>
<tr>
<td>Salvamento y riesgo de contaminación</td>
<td>Ministerio de Fomento</td>
</tr>
<tr>
<td>Pesca</td>
<td>Ministerio de Agricultura, Pesca y Alimentación</td>
</tr>
<tr>
<td>Actividades económicas</td>
<td>Ministerio Economía y Hacienda</td>
</tr>
<tr>
<td>Energía, turismo y comercio</td>
<td>Ministerio de Industria, Turismo y Comercio</td>
</tr>
<tr>
<td>Investigación</td>
<td>Ministerio Educación y Ciencia</td>
</tr>
<tr>
<td>Patrimonio subacuático</td>
<td>Ministerio Cultura</td>
</tr>
</tbody>
</table>

Aun siendo los municipios quienes cuentan con un menor número de competencias, ostentan una de las más importantes, la de planificación y gestión de los usos del suelo (urbanismo). A pesar de que las CCAA cuentan con mecanismos de control sobre estos instrumentos, no es así en cuanto a su desarrollo detallado.

La tabla 3 refleja la complejidad de la división de competencias en relación a cuatro sectores seleccionados:
<table>
<thead>
<tr>
<th>Ámbito</th>
<th>Nacional</th>
<th>CC.AA.</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas Costeras</td>
<td>• Dominio Público Marítimo-Terrestre.</td>
<td>• Zona de Servidumbre del DPMT.</td>
<td>• Urbanismo.</td>
</tr>
<tr>
<td></td>
<td>• Delimitación, tutela y gestión.</td>
<td>• Obras Públicas de interés para la CCAA.</td>
<td>• Uso, seguridad y limpieza de playas.</td>
</tr>
<tr>
<td></td>
<td>• Estudios, proyectos y obras públicas de interés general.</td>
<td>• Ordenación territorial.</td>
<td>• Sanidad.</td>
</tr>
<tr>
<td></td>
<td>• Legislación básica sobre pesca.</td>
<td>• Ordenación áreas litorales.</td>
<td>• Monitorización y seguridad.</td>
</tr>
<tr>
<td></td>
<td>• Protección y recuperación de los valores naturales.</td>
<td>• Pesca fluvial y en aguas interiores.</td>
<td>• Informes sobre solicitudes de uso del DPMT.</td>
</tr>
<tr>
<td></td>
<td>• Obras de defensa.</td>
<td>• Marisqueo y maricultura.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Derechos de uso y paso.</td>
<td>• Sanidad e higiene.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instalaciones y uso de las obras de defensa.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ordenación y promoción del turismo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zona de Servidumbre del DPMT.</td>
<td>• Recursos e infraestructuras hidráulicas (cuando transcurren sólo por una CCAA).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vertidos en aguas interiores.</td>
<td>• Depuración de aguas residuales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Control y monitorización de la calidad de las aguas (calidad de baño y recursos vivos) en coordinación con el Estado.</td>
<td>• Abastecimiento de aguas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Planificación de infraestructuras y gestión y protección de recursos hídricos (cuando transcurren por más de una CCAA).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertidos en aguas exteriores.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversidad</td>
<td>• Marco legal.</td>
<td>• Gestión de áreas naturales protegidas e instrumentos legales adicionales.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coordinación y promoción de políticas de protección.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Acuerdos internacionales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Parques Nacionales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puertos y Navegación</td>
<td>• Puertos comerciales.</td>
<td>• Puertos deportivos y pesqueros.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Iluminación de costas y señales marítimas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Control de buques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Salvamento marítimo.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Relación de competencias costeras a escala estatal, de comunidad autónoma y municipal.

Fuente: (MAGRAMA., 2005).

Esta dispersión, ambigüedad e incluso indefinición de responsabilidades ha llevado a situaciones conflictivas dentro de la Administración Pública. Sin embargo, la complejidad del entramado de competencias y responsabilidades públicas y privadas que se pueden observar en las zonas costeras no debe generar una mayor entropía y desconfianza en la opinión pública y los agentes. Para ello, se precisa de un marco general de desarrollo, el de una estrategia de Gestión Integrada de las Zonas Costeras, que asegure la coordinación y
cooperación en la actuación de la administración pública y de ésta con el sector privado.

6.2 Aspectos de gestión.

Euroesion (2004) establece que los modelos de gestión locales tradicionales no resultan una buena vía en la gestión de los problemas erosivos ya que la escala espacial de muchos de estos problemas supera el ámbito local.

Un problema crucial dentro de la gestión de costas, como ya se ha remarcado en el punto 6.1, es el hecho de que las competencias en materia costera estén diversificadas entre distintos organismos que habitualmente no están coordinados (Breton, Clapes, Marques, & Priestley, 1996).

Un ejemplo de ello es que solo 40% de los municipios de la costa catalana agrupen todos los aspectos de la gestión de playas bajo un único departamento, en el resto de casos las competencias se encuentran cruzadas entre 2 o más departamentos (Ariza et al., 2008).

La media anual de inversión en las costas catalanas por municipio en materia de mantenimiento, limpieza y conservación es de 133.113€, sin incluir en este valor las operaciones de gestión de arenas que son soportadas por el Estado Español (Ariza et al., 2008).

![Gráfico 27. Inversión en materia de gestión de playas en función del número de departamentos, superficie de playa urbana e ingresos por impuestos. Fuente: (Ariza et al., 2008).]

Normativa de gestión aplicable a las playas:

- ISO 9001:2008 – “Sistemas de Gestión de la Calidad"
- ISO 14001:2004 – “Sistemas de Gestión Ambiental"
- EMAS – “Sistema Europeo de Ecogestión y Auditoria"
- UNE 187001:2011 – “Playas. Requisitos para la prestación del Servicio"
- OTROS: Banderas Azules, UNE 170001-2 “S.G. Accesibilidad Universal"...
Un aspecto de remarcable interés en base a la gestión medioambiental llevará a cabo por la Comunidad Valenciana ha sido la NO participación en el proyecto ENPLAN. Toda la costa española Mediterránea excepto la Comunidad Valenciana ha participado en este proyecto de gestión ambiental como se puede apreciar en la figura 28.

Figura 28. Regiones participate en el proyecto ENPLAN.
Fuente: (Murcia, 2005)

ENPLAN es un proyecto europeo cofinanciado por la Iniciativa Comunitaria Interreg IIIB-Medoc para la elaboración de una metodología común y compartida de aplicación de la Evaluación Ambiental Estratégica en planes y programas. La Directiva comunitaria 2001/42/CE introduce, para planes y programas con efectos significativos! sobre el medio ambiente, la Evaluación Ambiental Estratégica, como instrumento para la prevención de los posibles impactos en el proceso de planificación.

6.3 Uso de la playa.

La percepción que tienen los usuarios de una playa está directamente relacionada con factores higiénicos, funcionales y de seguridad. La demanda de espacio para tomar el sol y relajarse es el principal uso de que se le da a una playa, por lo que las playas se conciben principalmente como áreas de recreo (Breton et al., 1996).

En España se considera que una playa está saturada cuando la superficie de arena disponible es inferior a $4 \text{ m}^2/\text{usuario}$ (Ariza et al., 2008).
Las situaciones óptimas en cuanto a la superficie de arena disponible por usuario en una playa se dan para los valores de (Ariza et al., 2010):

- Playa Urbana: > 8 m²/usuario
- Playa Semiurbana: > 12 m²/usuario

La masificación de las playas es un hecho que les importa a las administraciones, según arrojan las encuestas llevadas a cabo por (Ariza et al., 2008), sin embargo no se llevan a cabo evaluaciones periódicas del nivel de uso de las playas para poder gestionar este tipo de sobreexplotación.

Un problema añadido a la masificación es la estacionalidad de la misma, además de una distribución del uso de la playa nada uniforme durante el día presentando una mayor concentración en ciertas horas concretas como se puede apreciar en la figura 29 (Breton et al., 1996).

Figura 29. Curva de distribución del uso de una playa tipo en verano.
Fuente: (Breton et al., 1996)

Asociado a la masificación se encuentra la congestión de las vías de transporte debido a que el principal medio empleado por los usuarios de las playas es el vehículo privado (Breton et al., 1996). Por lo que se pone de manifiesto la necesidad de fomentar planes estratégicos que integren transportes alternativos, sobre todos en las playas urbanas.

Desde el punto de vista de la problemática que puede derivar de una situación de regresión en una playa, podemos sacar en conclusión que si ésta se encuentra al borde de la masificación y comienza a perder metros de playa seca la presión de ocupación que se ejercerá sobre la playa irá creciendo exponencialmente.
6.3.1 Capacidad de Carga de una playa. ("Carrying Capacity")

La capacidad de carga de una playa puede ser definida como el número máximo de usuarios que pueden concurrir al mismo tiempo en una playa sin causar en ella un deterioro físico, económico o sociocultural a la vez que tampoco causen un descenso en la percepción de la calidad de la playa por parte de los mismos usuarios (Coccossis, Mexa, Collovini, Parpairis, & Konstandoglou, 2001).

6.4 Recreo/Conservación.

Usualmente estos dos conceptos es muy difícil que vayan de la mano, debido a que ambas opciones son exclusivas, es decir, una playa dedicada al recreo es muy difícil que tenga una conservación de la misma óptima por el mero hecho de que todas las infraestructuras necesarias para el recreo rompen la idea que se puede tener de una playa natural o conservada.

McLachlan, Defeo, Jaramillo, and Short (2013) han establecido una clasificación primaria de las playas capaz de realizarse por inspección visual, que puede servir como un indicador primario de hacia dónde se ha de orientar la gestión de una playa, hacia la conservación del medio natural del mismo o hacia el mantenimiento del uso de la misma como elemento de recreo tratando de paliar los efectos negativos que esto tiene sobre el ecosistema de la misma.

Estos autores han desarrollado una tabla en la que se clasifican las labores de gestión de la playa en:

- Labores dedicadas al recreo
- Labores dedicadas a la conservación.
- Playas multi-uso.

El método de clasificación se basa en puntuar dos índices propios de cada playa o sector de la misma empleando las siguientes tablas:

- Índice potencial de recreo: RI.

<table>
<thead>
<tr>
<th>Category</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>0</td>
</tr>
<tr>
<td>Safety and health</td>
<td>0</td>
</tr>
<tr>
<td>Physical carrying capacity</td>
<td>0</td>
</tr>
<tr>
<td>Total score</td>
<td>Minimum score is 0 plus, 0 - 0 = 0, maximum score is 3 + 3 + 2 = 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition and score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>No infrastructure, difficult access</td>
</tr>
<tr>
<td>Safety and health</td>
<td>Extremely hazardous and/or polluted</td>
</tr>
<tr>
<td>Physical carrying capacity</td>
<td>Limited, pocket beach, no backshore</td>
</tr>
<tr>
<td>Total score</td>
<td>Minimum score is 0 plus, 0 - 0 = 0, maximum score is 3 + 3 + 2 = 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition and score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>No infrastructure, limited access</td>
</tr>
<tr>
<td>Safety and health</td>
<td>Hazardous and/or polluted</td>
</tr>
<tr>
<td>Physical carrying capacity</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Total score</td>
<td>Minimum score is 0 plus, 0 - 0 = 0, maximum score is 3 + 3 + 2 = 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition and score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>No infrastructure, reasonable access</td>
</tr>
<tr>
<td>Safety and health</td>
<td>Moderate hazards and clean</td>
</tr>
<tr>
<td>Physical carrying capacity</td>
<td>Extensive beach with wide backshore</td>
</tr>
<tr>
<td>Total score</td>
<td>Minimum score is 0 plus, 0 - 0 = 0, maximum score is 3 + 3 + 2 = 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Condition and score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>Good access, some amenities</td>
</tr>
<tr>
<td>Safety and health</td>
<td>Low bathing hazards, clean and totally pollution free</td>
</tr>
<tr>
<td>Physical carrying capacity</td>
<td>Excellent access, parking and amenities, including lifesaving</td>
</tr>
<tr>
<td>Total score</td>
<td>Minimum score is 0 plus, 0 - 0 = 0, maximum score is 3 + 3 + 2 = 10</td>
</tr>
</tbody>
</table>

Tabla 4. Obtención del índice potencial de recreo. Fuente: (McLachlan et al., 2013)
Para el cálculo de la diversidad macrobentónica, (McLachlan et al., 2013) presentan una relación de cómo afecta la pendiente de la playa en su zona intermareal a la abundancia de comunidades macrobentónicas. Esta relación se resume en que las playas disipativas con pendientes más tendidas presentan un mejor medio para el desarrollo de estas comunidades, mientras que las playas reflectivas representan el efecto contrario (Brown & McLachlan, 2002).

Una vez obtenidos estos índices se introducen en la figura 30 para conocer en qué aspecto de la gestión se ha de orientar la planificación.

Las playas que han obtenido puntuaciones por encima de 5 en CI y por debajo de 5 en RI (zona A de la figura 30), indican un carácter conservacional que ha de ser mantenido con la restricción de las actividades de recreo o la explotación turística de la playa. Todo lo contrario que sucede con las playas que tengan una puntuación por encima de 5 en RI y debajo de 5 en CI, encontrándose en la zona B de la figura 30. El tipo de playas que se encuentran en la zona B se corresponde usualmente con playas encajadas en un entorno urbano, hecho habitual en el Mediterráneo.

Según McLachlan et al. (2013) la clave de orientar una gestión hacia la conservación o el recreo reside en el control del acceso a las playas, tanto espacial como temporal. Plantean establecer restricciones de acceso a playas que requieran tareas de conservación mientras se provea de buenos accesos a las playas dedicadas al recreo.

Las premisas propuestas por estos autores de controlar los accesos son una buena idea teórica, pero muy difícil de llevar a la práctica dentro de un marco de extrema saturación como el que viven las playas Mediterráneas. Cabe remarcar además que es usual tener un acceso más complicado, que no es restringido, a aquellas playas que se consideran con mejores aptitudes medioambientales debido a que estas se suelen encontrar alejadas de las áreas urbanas por lo que los accesos son más complicados.
6.5 Técnicas de monitorización.

Los programas de monitorización pueden ser una solución para la detección precoz de los posibles problemas erosivos a los que se encuentra sometida la costa mediterránea. Además según (Micallef & Williams, 2002) la monitorización es un punto imprescindible a llevar a cabo para conseguir una gestión estratégica satisfactoria.

<table>
<thead>
<tr>
<th>Técnica de Monitorización</th>
<th>Resolución (metros)</th>
<th>Coste Unitario (€/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imágenes por Satélite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPOT 5</td>
<td>2,5-5</td>
<td>5-8</td>
</tr>
<tr>
<td>IKONOS</td>
<td>1</td>
<td>10-13</td>
</tr>
<tr>
<td>Sistemas de teledetección fijos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGUS video system</td>
<td>1</td>
<td>20-30</td>
</tr>
<tr>
<td>Métodos topográficos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toma de perfiles empleado estaciones totales y/o GPS</td>
<td>0,1</td>
<td>100-200</td>
</tr>
<tr>
<td>Ecosondas en buques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonar de haces múltiples</td>
<td>0,1</td>
<td>150-250</td>
</tr>
<tr>
<td>Fotogrametría aérea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fotogrametría aérea</td>
<td>0,1</td>
<td>300-400</td>
</tr>
<tr>
<td>Altimetría láser aerotransportada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIDAR</td>
<td>0,1</td>
<td>500-700</td>
</tr>
</tbody>
</table>

Tabla 6. Costes unitarios de sistemas de monitorización costera para áreas superiores a 100 km². Fuente: (Euroision, 2004).

Un ejemplo del coste que puede suponer un programa de monitorización frente a los gastos empleados en defensa y regeneración costera es el expuesto por (Munoz-Perez, Roman-Blanco, Gutierrez-Mas, Moreno, & Cuena, 2001) en su análisis llevado a cabo en...
la costa del Golfo de Cádiz a lo largo de los 90. Estos autores exponen que el gasto de monitorización de la costa mediante campañas topográficas y sedimentarias se correspondió con el 1,2% del total invertido en defensa y mantenimiento costero.

De este hecho se puede sacar en conclusión el bajo coste oportunidad que supone establecer un adecuado sistema de monitorización para evitar de manera precoz la problemática derivada de la erosión costera.

6.6 Vías de actuación frente a un problema de erosión costera.

Las principales vías de actuación que se han solido llevar a cabo de manera tradicional pasan por cinco opciones.

1. No hacer nada: No realizar ningún tipo de inversión en defensa costera ni gestión de mantenimiento.
2. Realineación de la primera línea costera: Reubicar la primera línea urbana costera y en su caso ejecutar nuevas construcciones de defensa más alejadas de la originales en dirección a tierra.
3. Mantener la línea existente: Se trata de mantener la línea costera existente mediante los métodos tradicionales de defensa costera.
4. Desplazarse ganando terreno al mar: Avanzar en la línea de defensa existente mediante la construcción de nuevas defensas mar adentro en relación a las originales.
5. Intervención limitada: Centrar los trabajos en procesos naturales que reduzcan los riesgos al tiempo que se permita el cambio natural de las costas.

Figura 31. Políticas de intervención frente a situaciones de regresión costera.
Fuente: Modificación de (Eurosisón, 2004).
6.7 Galardones a la calidad de las playas.

6.7.1 Bandera Azul

La bandera azul es un galardón diseñado principalmente para playas de recreo, por lo que está orientado a playas urbanas o semiurbanas quedando excluidas casi la totalidad de las vírgenes por no poseer los servicios que este galardón revisa.

6.7.2 ISO 14001

La certificación ISO 14001 tiene el propósito de apoyar la aplicación de un plan de manejo ambiental en cualquier organización del sector público o privado. Fue creada por la Organización Internacional para Normalización (International Organization for Standardization - ISO), una red internacional de institutos de normas nacionales que trabajan en alianza con los gobiernos, la industria y representantes de los consumidores. Además de ISO 14001, existen otras normas ISO que se pueden utilizar como herramientas para proteger el ambiente, sin embargo, para obtener la certificación de protección al medio ambiente sólo se puede utilizar la norma ISO 14001. El grupo de normas ISO, que contiene diversas reglas internacionales que han sido uniformizadas y son voluntarias, se aplica ampliamente en todos los sectores de la industria.

6.7.3 ISO 9001

La ISO 9001:2008 es un estándar basado en sistemas de gestión de la calidad ya que es una norma internacional y que se centra en todos los elementos de administración de calidad con los que una empresa debe contar para tener un sistema efectivo que le permita administrar y mejorar la calidad de sus productos o servicios.
7. Encuestas

7.1 Análisis y caracterización de playas:

Se ha realizado un modelo de encuesta que ha sido llevado a todas las administraciones o compañías de la provincia de Alicante que tienen competencia en la gestión y limpieza de las playas a fin de realizar un estudio individualizado de cada una de ellas que ha derivado en la asignación de un índice de calidad a cada una de las playas de la provincia de Alicante.

Para la caracterización de las playas de la provincia de Alicante el primer paso que se dio fue su división. La propuesta que se ha elegido viene basada en dos grandes grupos que se identifican como playas urbanas y playas urbanizadas y para ello se ha empleado la especificación propuesta por Ariza et al. (2008). Cada grupo se identifica de la siguiente manera:

- **Urbanas**: Playas localizadas dentro de los principales núcleos poblacionales cuyo hinterland esté más de un 60% urbanizado.
- **Urbanizadas**: Playas emplazadas cerca de áreas residenciales, cuyo hinterland esté menos de un 50% urbanizado.

Acorde a esta clasificación se han dividido las 97 playas sujetas a estudio acorde a las tablas 7 y 8.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Nombre</th>
<th>Tipo de Playa</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENIA</td>
<td>SetlaMirarrosa (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>DENIA</td>
<td>La Almadraba (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>DENIA</td>
<td>Los Molinos (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>DENIA</td>
<td>Les Bovetes (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>DENIA</td>
<td>Les Marines (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>DENIA</td>
<td>NovaPuntaR (Denia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>XABIA</td>
<td>La Grava (Xabia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>XABIA</td>
<td>Montañar (Xabia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>XABIA</td>
<td>El Arenal (Xabia)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>TEULADA</td>
<td>El Portet (Teulada)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>Municipio</td>
<td>Nombre</td>
<td>Tipo de Playa</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>TEULADA</td>
<td>L'Ampolla (Teulada)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>CALPE</td>
<td>La FossaLevante (Calpe)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>CALPE</td>
<td>Morelló (Calpe)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>CALPE</td>
<td>El ArenalBoll (Calpe)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALTEA</td>
<td>La Roda (Altea)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALTEA</td>
<td>Cap Blanc (Altea)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALFAS DEL PI</td>
<td>El Albir (Alfaz del Pi)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>BENIDORM</td>
<td>Levante (Benidorm)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>BENIDORM</td>
<td>Poniente (Benidorm)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>La Cala (Villajoyosa)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>Centro (Villajollosa)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Carrer del Mar (El Campello)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Muchavista (El Campello)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>San Joan (Alicante)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>Almadraba (Alicante)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>Albufereta (Alicante)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>S. Pola Este (Santa Pola)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Varadero (Santa Pola)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Levante (Santa Pola)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Gran Platja (Santa Pola)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Playa Lisa (Santa Pola)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>CentroRoquetas (Guardamar)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>Los LocosSalaret (Torrevieja)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>El Cura (Torrevieja)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>El Acequión (Torrevieja)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>Los Náufragos (Torrevieja)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>C. MoscayEstaca (Orihuela)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>C. Cerrada (Orihuela)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>C. Bosque (Orihuela)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>C. Capitán (Orihuela)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>Cabo Roig (Orihuela)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>Mil Palmeras (El Pilar)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>Río SecoRocamar (El Pilar)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>El Rincón (El Pilar)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>PuertoTorre (El Pilar)</td>
<td>Playa Urbana</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>El Mojón (El Pilar)</td>
<td>Playa Urbana</td>
</tr>
</tbody>
</table>

De este estudio ha resultado que el 50% de las playas analizadas son urbanas y el otro 50% urbanizadas.
<table>
<thead>
<tr>
<th>Localidad</th>
<th>Playa</th>
<th>Tipo de Playa</th>
</tr>
</thead>
<tbody>
<tr>
<td>XABIA</td>
<td>Portixol (Xabia)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>XABIA</td>
<td>El Ambolo (Xabia)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>XABIA</td>
<td>La Granadella (Xabia)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>BENITATXELL</td>
<td>Los Tiestos (Benitxel)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>TEULADA</td>
<td>Les Playetes (Teulada)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>TEULADA</td>
<td>L’Andragó (Teulada)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>BENISSA</td>
<td>La Llobella (Benissa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>BENISSA</td>
<td>La Fustera (Benissa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>CALPE</td>
<td>Manzanera (Calpe)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALTEA</td>
<td>Mascarat (Altea)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALTEA</td>
<td>La Barreta (Altea)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALTEA</td>
<td>Solsida (Altea)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALTEA</td>
<td>L’Olla (Altea)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALTEA</td>
<td>Cap Negret (Altea)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>Racó Conill (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>El Torres (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>EstudiantesVarade (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>Paradís (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>Bonnou (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>La Caleta (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>El Charco (Villajoyosa)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>LA VILAJOIOSA</td>
<td>Del Carritxar (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Baeza (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Del Cuartel (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Del Puerto (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Amerador (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>Almadraba (El Campello)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>Agua Amarga (Alicante)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>SaladarUrbanova (Alicante)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ELCHE</td>
<td>ArenalesCarabassí (Elche)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>C. Mare de Deu (Santa Pola)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Bras del Port (Santa Pola)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>Pinet (Santa Pola)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ELCHE</td>
<td>Las Pesqueras (Elche)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>RebolloTusales (Guardamar)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>Els Vivers (Guardamar)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>El MoncayoCampo (Guardamar)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>Les Ortigues (Guardamar)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>La Mata (Torrevieja)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>Punta Prima (Orihuela)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>Aguamarina (Orihuela)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>La Glea (Orihuela)</td>
<td>Playa Urbanizada</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>Las VillasHiguericas (El Pilar)</td>
<td>Playa Urbanizada</td>
</tr>
</tbody>
</table>

Tabla 8. Playas Urbanizadas de la provincia de Alicante.

A pesar de ello, Ariza et al. (2008) llevaron a cabo para su análisis una diferenciación inicial de las playas dentro de cuatro grandes grupos:
• Urbanas: Playas localizadas dentro de los principales núcleos poblacionales cuyo hinterland esté más de un 60% urbanizado.
• Urbanizadas: Playas emplazadas cerca de áreas residenciales, cuyo hinterland esté menos de un 50% urbanizado.
• Naturales: Playas que se encuentran fuera de los principales núcleos poblacionales y pueden llegar a estar en áreas de baja densidad de población con un máximo del 30% de su hinterland urbanizado, o localizarse en áreas no habitadas.
• Mixtas: Aquellas playas que no puedan englobar en ninguna de las anteriores clasificaciones.

Otra clasificación posible sería la realizada por la guía de playas de la Comunidad Valenciana que distingue los siguientes tipos de playa:

• Urbana
• Semiurbana
• Rustica
• Virgen
• Otras

Las principales variables planteadas para la caracterización de las playas dentro de estos grandes grupos han sido:

• Si disponen de bandera azul o no.
• Distintivos ¿ISO?
• Presentan situaciones de muy alta densificación durante alguna época del año.
• Tienen problemas de erosión.
• Han sido sometidas a regeneración. Tipo de arena y de dónde la traen. Estudios, análisis, etc.
• Algas, ¿cómo las tratan? Limpieza de algas para no perder la arena.
• Poseen elementos de defensa costera. Tipo.
• Han sido afectadas por la ejecución de algún tipo de obra marítima.
• Poseen o no un departamento que trate exclusivamente los temas relacionados con la gestión y mantenimiento de la playa.
• Externalización de servicios y quién los lleva o controla.
• Titulación de los encargados de gestión de playas de los correspondientes departamentos. Biólogo, Geólogo, Ing. de Caminos o Abogado.
• Número de departamentos que tienen competencias en gestión y mantenimiento de playas.
• Inversión total y de cada departamento.
• Nivel de conocimientos de la dinámica litoral. (Plantear pequeñas preguntas tipo test sobre definiciones teóricas).

Se plantea elaborar 10 puntos que se evalúen del 1 al 10, correspondiéndose la puntuación 10 con un mayor grado de preocupación e interés sobre el problema y el 1 con un grado mínimo de interés sobre el mismo. Los puntos a evaluar son los siguientes:

1. Limpieza de playas.
2. Calidad de aguas y arenas.
3. Protección de los ecosistemas de la playa.
4. Problemas de erosión en las playas y conocimiento de los movimientos de sedimentos en el litoral.
5. Densificación masiva (masificación).
6. Tratamiento de plagas de medusas.
7. Calidad de los accesos a la playa. (A pie, coche o transporte público).
8. Seguridad. (Socorrismo y policía).
9. Gestión de basuras y polución.
10. Actividades de recreo ofertadas en las playas.

Teniendo en cuenta todos los aspectos citados anteriormente y habiendo añadido una serie de parámetros nuevos que están reflejados en la encuesta se procedió a la realización de las mismas estableciendo cada encuesta de manera individualizada para cada playa de la provincia.

Los resultados de dichas encuestas vienen recopilados en un anexo al presente trabajo titulado como Encuesta Gestión de Playas de la Provincia de Alicante.

Los resultados de dichas encuestas han servido de base para la cumplimentación del índice de calidad que se le ha otorgado a cada playa analizada acorde al proceso descrito en otro anexo del presente trabajo que se denomina como Estudio del BQI, Índice de Calidad de las playas de la provincia de Alicante.

De manera general este estudio ha servido como base de investigación para la recopilación de datos de campo relacionados con la gestión y calidad de las playas así como también como base de datos para futuras líneas de investigación relacionadas con la materia que han quedado abiertas como pueden ser la limpieza o el estudio del hinterland de cada una de las playas analizadas.
Encuesta Gestión de Playas.

Código Playa: XXXXX
Provincia: Alicante
Municipio: XXXXX

Denominación de la Playa: XXXXX

Datos persona encuestada:

Nombre: XXXXX
Cargo: XXXXX
Titulación: XXXXX
Ayuntamiento: XXXXX
Departamento: XXXXX
E-mail*: XXXXX
Telf. de contacto*: XXXXX

*Se solicita el e-mail y teléfono de contacto del encuestado a fin de realizar un seguimiento del proceso para verificar la correcta realización de las encuestas por parte de los alumnos de la asignatura Ing. Marítima de la titulación de Ingeniería de Canales, Caminos y Puertos de la Universidad de Alicante.

Los siguientes recuadros, que hacen referencia a las características geomorfológicas de la playa estudiada, han de ser cumplimentados por el encuestado con los datos más actuales disponibles haciendo mención a la fuente de los mismos.

<table>
<thead>
<tr>
<th>Característica:</th>
<th>Dato:</th>
<th>Fuente y año:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie total playa (Ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perímetro (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura media (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura máxima (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura mínima (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendiente media (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A continuación se procederá a la cumplimentación de una serie de preguntas tipo test sobre aspectos relacionados con la gestión de la playa encuestada.

1. Distintivos de calidad reconocidos

¿Dispone la playa encuestada de Bandera Azul concedida por la Fundación Europea para Educación Ambiental (FEE)?

☑ Tache con una cruz el año en el que ha sido galardonada (G) y el año en el que ha sido candidata (C)

<table>
<thead>
<tr>
<th>Año</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>1992</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>1997</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>2002</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>2007</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>2012</td>
<td>G</td>
<td>C</td>
</tr>
</tbody>
</table>

¿Dispone la playa encuestada del galardón de la “Q de Calidad Turística” concedido por el Instituto para la Calidad Turística Española (ICTE)?

☐ Si ☐ No

¿Dispone la playa encuestada del certificado de “Accesibilidad Universal” que se rige a través de la Norma UNE 170001?

☐ Si ☐ No

Hugo Tinoco López

64
¿Se dispone de algún otro tipo de certificado asociado a la calidad medioambiental, turística o accesibilidad?

☐ Sí ☐ No

Otros distintivos, nombrar los mismos:

2. Ocupación y capacidad de carga

Las siguientes casillas han de ser rellenadas por el encuestado a fin de obtener una serie de datos relacionados con la ocupación de la playa y su capacidad de carga.

¿Se realiza algún tipo de seguimiento de la ocupación de la playa?

☐ Sí ☐ No

<table>
<thead>
<tr>
<th>Característica</th>
<th>Dato</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocupación media en verano (usuarios/día)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocupación media en invierno (usuarios/día)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie media de playa ocupada en verano, (Ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie media de playa ocupada en invierno, (Ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocupación máxima en verano (usuarios/hora)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocupación máxima en invierno (usuarios/hora)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie pico ocupada durante horas punta en verano (Ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie pico ocupada durante horas punta en invierno (Ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Población del municipio en verano (nº habitante)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Población del municipio en invierno (nº habitante)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¿Se disponen de datos sobre la distribución horaria de usuarios de la playa encuestada?

☐ Sí ☐ No

En caso afirmativo exponga las distribuciones horarias de usuarios en verano e invierno:

Fuente de Datos:

En caso de disponerse de esta información en soporte informático, se ruega sea enviada a la siguiente dirección: htl@alu.ua.es
¿Presenta la Playa situaciones de **densificación** durante alguna época del año?

Se define una situación de densificación una playa cuando el metro cuadrado de playa disponible por usuario es inferior a los siguientes valores:

<table>
<thead>
<tr>
<th>Playa Urbana: < 4 m²/usuario</th>
<th>Playa urbana: Playas localizadas dentro de los principales núcleos poblacionales cuyo hinterland esté más de un 60% urbanizado.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Playa Semiurbana: < 8 m²/usuario</td>
<td>Playa semiurbana: Playas emplazadas cerca de áreas residenciales, cuyo hinterland esté menos de un 50% urbanizado.</td>
</tr>
</tbody>
</table>

☐ Si ☐ No

3. Hinterland de la playa

La existencia de usuarios de la playa que no residen en el municipio de la misma, es reflejo de su nivel de calidad y accesibilidad. Por ello, se ruega, exponga los datos que se dispongan sobre la procedencia de los usuarios de la playa:

<table>
<thead>
<tr>
<th>País</th>
<th>Provincia</th>
<th>Municipio</th>
<th>Nº Usuarios medio en verano por día</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Si se dispone de otro tipo de información sobre el hinterland de la playa especificíquese en el siguiente cuadro

Fuente de Datos:

En caso de disponerse de esta información en soporte informático, se ruega sea enviada a la siguiente dirección, para realizar un análisis conjugado del hinterland sobre el que influye la playa encuestada: htl@alu.ua.es
4. Calidad de la arena

Defina la frecuencia con la que se realizan las operaciones de limpieza y que medios se emplean para ello.

<table>
<thead>
<tr>
<th>Limpieza Mecánica</th>
<th>Limpieza Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verano</td>
<td>Resto del año</td>
</tr>
<tr>
<td>Días</td>
<td>Días</td>
</tr>
<tr>
<td>Semanas</td>
<td>Semanas</td>
</tr>
<tr>
<td>Meses</td>
<td>Meses</td>
</tr>
<tr>
<td>Anual</td>
<td>Anual</td>
</tr>
<tr>
<td>Inexistente</td>
<td>Inexistente</td>
</tr>
</tbody>
</table>

Medios empleados para la **limpieza mecánica**:

Descripción de procesos y máquinas empleadas

<table>
<thead>
<tr>
<th>Verano</th>
<th>Resto del año</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medios empleados para la **limpieza manual**:

Descripción de procesos y máquinas empleadas

<table>
<thead>
<tr>
<th>Verano</th>
<th>Resto del año</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indique si se llevan a cabo algún tipo de **ensayos** para el conocimiento de la **calidad** de las **arenas** de la playa encuestada.

☐ Si ☐ No

En caso de realizarse dicho ensayo indique qué parámetros de los siguientes se miden y cuáles son los umbrales que se establecen de calidad.

La valoración se ha de establecer en tres rangos, suponiendo una calidad suficiente (S) cuando el parámetro medido se encuentre dentro del umbral fijado, una calidad excelente (E) cuando el parámetro medido se encuentre por debajo del umbral fijado, y una calidad deficiente (D) cuando el parámetro medido se encuentre por encima del umbral medido.

E: Excelente S: Suficiente D: Deficiente

4.1. Parámetros microbiológicos

Rellene en la casilla que a continuación se presenta el ente que fija tanto los parámetros microbiológicos como sus umbrales.

- **Parámetro medido**: *Coliformes fecales o E. coli*

<table>
<thead>
<tr>
<th>Medición</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parámetro medido: **Estreptococos fecales**

<table>
<thead>
<tr>
<th>Medición</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resto del año</td>
</tr>
</tbody>
</table>

Parámetro medido: **Hongos y levaduras**

Indicar, previa cumplimentación de la tabla, en el siguiente cuadro los tipos de hongos y clases de levaduras sujetas a medición.

<table>
<thead>
<tr>
<th>Medición</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resto del año</td>
</tr>
</tbody>
</table>

Parámetro medido: **Candida albicans**

<table>
<thead>
<tr>
<th>Medición</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resto del año</td>
</tr>
</tbody>
</table>

Otros parámetros medidos:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Medición</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resto del año</td>
</tr>
</tbody>
</table>

4.2. Parámetros físico-químicos

<table>
<thead>
<tr>
<th>Metal</th>
<th>Medición (Sí/No)</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resto del año</td>
</tr>
</tbody>
</table>

Hidrocarburos Totales

Carbono Orgánico Total

Porcentaje de Finos

Suma de las congéneres IUPAC nº 28, 52, 101, 118, 138, 153 y 180
En caso de disponerse de análisis actuales tanto sedimentológicos como de la calidad de los sedimentos, se ruega sean enviados a htl@alu.ua.es

5. Operaciones de mantenimiento

A continuación se realizarán una serie de preguntas relacionadas con los distintos tipos de operaciones que se llevan a cabo dentro de la playa encaminadas con la gestión de las algas, con las operaciones de nivelación y reperfilados y con los transvases de arena.

5.1. Tratamiento de algas

5.1.1. Tratamiento de algas durante los meses de verano

¿Durante los meses de verano se retiran las algas que llegan a la playa?

☐ Si ☐ No

Describa el método y maquinaria empleada para ello.

¿Las algas retiradas de la playa en los meses de verano son reutilizadas o llevadas a vertedero?.

☐ Reutilizadas ☐ Llevadas a vertedero

En caso de ser reutilizadas describa y exponga el uso que se les da, los medios que se emplean para su reutilización y los entes encargados de asegurar y llevar a cabo su reutilización.

¿Se realiza algún tipo de tratamiento de las algas recogidas durante los meses de verano para recuperar la arena que estas puedan contener?

☐ Si ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.

5.1.2. Tratamiento de algas durante el resto del año

¿Durante el resto del año se retiran las algas que llegan a la playa?

☐ Si ☐ No

Describa el método empleado para ello.

Hugo Tinoco López
¿Las algas retiradas de la playas durante el resto del año son reutilizadas o llevadas a vertedero?

☐ Reutilizadas ☐ Llevadas a vertedero

En caso de ser reutilizadas describa y exponga el uso que se les da, los medios que se emplean para su reutilización y los entes encargados de asegurar y llevar a cabo su reutilización.

¿Se realiza algún tipo de tratamiento de las algas recogidas durante el resto del año para recuperar la arena que estas puedan contener?

☐ Sí ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.

5.2. Operaciones nivelación

¿Se realiza algún tipo de nivelación de la playa durante los meses de verano?

Se entiende como operación de nivelación de una playa la acción de extendido de las arenas de la misma hacia la orilla produciendo un cambio de su pendiente, haciéndola más tendida para mayor comodidad de los usuarios y para dotar a la playa de un mayor ancho.

☐ Sí ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.

¿Se realiza algún tipo de nivelación de la playa durante el resto del año?

☐ Sí ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.
5.3. Operaciones reperfilado

¿Se realiza algún tipo de reperfilado de la playa durante los meses de verano?

☐ Si ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.

¿Se realiza algún tipo de reperfilado de la playa durante el resto del año?

☐ Si ☐ No

Describa el método y maquinaria empleada para ello y con que frecuencia se lleva a cabo.

5.4. Trasvases de arena

¿La playa encuestada es sometida a algún tipo de trasvases de arena?

☐ Si ☐ No

Indique la frecuencia con la que se realizan los mismos:

Cada __________ Meses
Cada __________ Años

Indique la procedencia y tipo del material sedimentario empleado en el trasvase de arenas:

☐ De la misma playa ☐ Fuente externa

Indique en el siguiente recuadro la fuente de aporte de sedimentos empleada:

<table>
<thead>
<tr>
<th>Dato</th>
<th>Fuente</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de arena por trasvase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{50} de la arena existente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{50} de la arena empleada en el trasvase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color de la arena empleada en el trasvase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedencia de la arena empleada en el trasvase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composición de la arena empleada en el trasvase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El D_{50} es el tamaño medio de la muestra analizada granulométricamente.
Exponga a continuación el método empleado para la ejecución del trasvase de arena:

¿Se realizan ensayos físico-químicos sobre las arenas empleadas en los trasvases?

☐ Si ☐ No

En caso afirmativo indicar los parámetros medidos en estos ensayos:

¿Se realizan ensayos microbiológicos sobre las arenas empleadas en los trasvases?

☐ Si ☐ No

En caso afirmativo indicar los parámetros medidos en estos ensayos:

Marque con una casilla el rango de inversión anual que se destina a este tipo de prácticas.

☐ 0-10.000€ ☐ 10.000-50.000€ ☐ 50.000-200.000€

☐ 200.000-500.000€ ☐ 500.000-1.000.000€ ☐ >1.000.000€

6. Calidad de aguas

Defina la calidad de las aguas de la playa encuestada teniendo en cuenta los marcadores del Real Decreto 1341/2007, de 11 de octubre, sobre la gestión de la calidad de las aguas de baño. Indíquese con la inicial del marcador de calidad según las siguientes definiciones:

E: Excelente B: Buena S: Suficiente D: Deficiente

<table>
<thead>
<tr>
<th>Calidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suficiente**</td>
<td>Buena*</td>
</tr>
<tr>
<td>Enterococos intestinales</td>
<td>185</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>500</td>
</tr>
</tbody>
</table>

** Con arreglo a la evaluación del percentil 90.
* Con arreglo a la evaluación del percentil 95.

Márquese además la frecuencia de muestreo llevada a cabo.
<table>
<thead>
<tr>
<th>Año</th>
<th>Calidad (E/B/S/D)</th>
<th>Ensayo previo a temporada de verano (Sí/No)</th>
<th>Ensayos durante temporada de verano (número)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¿El Ayuntamiento ha establecido criterios más restrictivos que los del Real Decreto 1341/2007?

☐ Sí ☐ No

En caso afirmativo indique los nuevos umbrales establecidos en la tabla siguiente:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Umbrales</th>
<th>Valoración (E/S/D)</th>
<th>Frecuencia de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>Verano</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Erosión de la playa.

En el siguiente apartado se tratarán los temas relacionados con la principal problemática asociada a los desequilibrios de la dinámica litoral presentes a lo largo de las costas alicantinas.

¿Se tiene conocimiento de algún tipo de problema erosivo que actualmente se esté sufriendo en la playa?

☐ Sí ☐ No

En caso afirmativo, rellene la siguiente tabla con el problema erosivo sufrido y en qué año se ha tenido conocimiento, la solución adoptada para solventarlo y en qué año se ha llevado a cabo, y la causa del problema y en qué año se produjo.

<table>
<thead>
<tr>
<th>Problema erosivo*</th>
<th>Año</th>
<th>Solución Adoptada**</th>
<th>Año</th>
<th>Causa del problema erosivo***</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Elegir entre: erosión generalizada, erosión localizada, basculamiento u otros (indicar).
**Elegir entre: regeneración, dique/s exento/s, dique/s sumergido/s, espigón/es, combinación de anteriores (indicar cuáles) u otros (indicar).
***Elegir entre: obra marítima (indicar tipología), obras hidráulicas (indicar tipología), urbanización del litoral, destrucción de sistema dunar, dragados, cambio climático, otros (indicar), causa desconocida.
8. Gestión de la playa

Marque con una casilla el rango de inversión anual que el Ayuntamiento destina a la gestión de la playa encuestada.

☐ 0-50.000€ ☐ 200.000-500.000€
☐ 50.000-100.000€ ☐ 500.000-1.000.000€
☐ 100.000-200.000€ ☐ >1.000.000€

¿El Ayuntamiento dispone de algún tipo de normativa orientada a la gestión de playas?

☐ Si ☐ No

En caso afirmativo indicar la normativa disponible en materia de gestión de playas y donde obtenerla:

<table>
<thead>
<tr>
<th>Nombre del departamento</th>
<th>Nº de trabajadores dedicados a la gestión de playas</th>
<th>Titulación jefe departamento con competencia en gestión de playas</th>
<th>Nº de titulados en materia de costas en el departamento*</th>
<th>Presupuesto anual (2013)</th>
<th>Presupuesto anual dedicado a la gestión de playas (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (departamento específico)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Rellénsese la siguiente tabla con el número de trabajadores titulados en materia de costas.

<table>
<thead>
<tr>
<th>Titulación</th>
<th>Nº</th>
<th>Titulación</th>
<th>Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licenciado en Biología</td>
<td></td>
<td>Ingeniero de Caminos, Canales y Puertos</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Geólogo</td>
<td></td>
<td>Licenciado en Ciencias del Mar</td>
<td></td>
</tr>
<tr>
<td>Ingeniero de Obras Públicas</td>
<td></td>
<td>Arquitecto</td>
<td></td>
</tr>
<tr>
<td>Arquitecto Técnico</td>
<td></td>
<td>Licenciado en Ciencias Ambientales</td>
<td></td>
</tr>
<tr>
<td>Abogado</td>
<td></td>
<td>Otros</td>
<td></td>
</tr>
</tbody>
</table>

En caso de existir algún tipo de servicio externalizado* en relación a la gestión de playas o su mantenimiento, se pide que se exponga de qué servicio se trata, a qué empresa le ha sido concedido y que gasto representa.

<table>
<thead>
<tr>
<th>Servicio externalizado</th>
<th>Empresa</th>
<th>Presupuesto anual (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Limpieza, gestión de residuos, gestión de algas, control de calidad de aguas, control de calidad arena, trasvases de arena, reperfilados, nivelaciones, etc.

9. Valoración de intereses en materia de gestión de playas.

El encuestado ha de otorgar una puntuación de 1 a 10, sin repetir ningún valor asignado, a cada uno de los siguientes aspectos. Una valoración de 10 se corresponde con una gran preocupación por el aspecto evaluado, mientras que la puntuación de 1 se corresponde con un grado mínimo de interés sobre el aspecto evaluado.

Rellénese, en la primera columna, con la valoración personal del encuestado. En la segunda columna, se pide valorar cuál cree que es la preocupación por parte del Ayuntamiento al cargo de la playa.

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Valoración encuestado</th>
<th>Valoración Ayuntamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densificación masiva (masificación).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza de playas.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tratamiento de plagas de medusas.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Actividades de recreo ofertadas en las playas.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gestión de basuras y polución.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Problemas de erosión en las playas y conocimiento de los movimientos de sedimentos en el litoral</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Calidad de aguas y arenas.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Calidad de los accesos a la playa. (A pie, coche o transporte público)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Protección de los ecosistemas de la playa.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Seguridad. (Socorrismo y policía).</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Protección de los ecosistemas de la playa.</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

A rellenar por el encuestado:
8. Índice de Calidad de las Playas. (BQI)

Se trata de un índice elaborado por (Ariza et al., 2010) para otorgar una puntuación a playas urbanas o periurbanas a fin de mejorar su gestión.

Este índice se caracteriza de una serie de criterios que a continuación se definen.

\[
BQI = p_1 \cdot (RFI) + p_2 \cdot (NFI) + p_3 \cdot (PFI)
\]

\[
RFI = \alpha \cdot [t_1 \cdot (IC) + t_2 \cdot (ISE) + t_3 \cdot (ISerF) + t_4 \cdot (IAct) + \\
+ t_5 \cdot (IAcPar) + t_6 \cdot (IComf) + t_7 \cdot (IS) + t_8 \cdot (IBS)]
\]

\[
NFI = u_1 \cdot (IN) + u_2 \cdot (IWSP) + u_3 \cdot (IPQ)
\]

\[
PFI = 1PP
\]

En la tabla 9 viene definidos todos los términos de las ecuaciones.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Particular Indices</th>
<th>Def.</th>
<th>Imp.</th>
<th>SIR</th>
<th>PM</th>
<th>HA</th>
<th>OR AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIQ</td>
<td>Microbiological Water Quality</td>
<td>Criteria for evaluating Coliforms and cyanobacteria</td>
<td>Detection of organic pollution (standards)</td>
<td>EC BI 1999/66/EC</td>
<td>W</td>
<td>Y</td>
<td>1(10) al (100-3000)</td>
</tr>
<tr>
<td>IC</td>
<td>Beach Clogging</td>
<td>Ministry of quality of use, cleanliness and compliance with hygiene thresholds</td>
<td>Detection of nuisance (not common in most beaches)</td>
<td>MOH (1989) FAP 1997</td>
<td>S</td>
<td>Y</td>
<td>n/a (0-18)</td>
</tr>
<tr>
<td>IQQ</td>
<td>Environmental Quality</td>
<td>Integrated measure of the aesthetic and hygiene environmental quality</td>
<td>Monitor aesthetic and hygiene environmental quality (very important for tourism)</td>
<td>Clean Water Agency</td>
<td>W</td>
<td>Y</td>
<td>Qualitative scale: I-1</td>
</tr>
<tr>
<td>BI</td>
<td>Bathing Facilities</td>
<td>Evaluation of 11 components. Differences for urban and suburban beaches</td>
<td>Monitor adequate provision of services and facilities (very important for urban beaches)</td>
<td>Yue and Wang 2002</td>
<td>S</td>
<td>Y</td>
<td>n/a (0-18)</td>
</tr>
<tr>
<td>DE</td>
<td>Activities</td>
<td>Evaluation of annoying and other types of unacceptable behavior</td>
<td>Monitor behavior activities (very important in marine beaches)</td>
<td>–</td>
<td>W</td>
<td>Y</td>
<td>Presence (absence of activities)</td>
</tr>
<tr>
<td>SH</td>
<td>Access and parking</td>
<td>Measure of accessibility to surrounding areas, attractions, access to the beach and parking and transportation</td>
<td>Assessment of accessibility (very important according to questionnaire)</td>
<td>Streets Act 2200 Yue 2002</td>
<td>S</td>
<td>Y</td>
<td>n/a (0-18)</td>
</tr>
<tr>
<td>GCMQ</td>
<td>Comfort Quality</td>
<td>Evaluation of aspects of the beach structure and climatic conditions that affect users’ experience: 8 factors</td>
<td>Monitor condition (very important according to questionnaire)</td>
<td>Beaches 2008</td>
<td>S/W</td>
<td>Y/N</td>
<td>n/a (degrees, quality, cm, degrees Celsius), intensity, brightness, temperature, wind conditions</td>
</tr>
<tr>
<td>IS</td>
<td>Surrounding Area Quality</td>
<td>Evaluate landscape and aesthetic quality</td>
<td>Monitor increasingly degraded coastal landscape</td>
<td>–</td>
<td>5 years</td>
<td>Y</td>
<td>% (realized land use)</td>
</tr>
<tr>
<td>BBS</td>
<td>Beach Safety</td>
<td>Integrated measure of the safety and service services</td>
<td>Monitor increasingly degraded coastal landscape</td>
<td>Beachs Safety Plan of Barcelona</td>
<td>S</td>
<td>Y</td>
<td>Presence (absence of safety elements)</td>
</tr>
<tr>
<td>SNF</td>
<td>Natural Conditions</td>
<td>Assess quality of the natural systems in the coastal environment</td>
<td>Monitor quality of the typical natural community (very degraded in many beaches)</td>
<td>–</td>
<td>2 years</td>
<td>Y</td>
<td>% and quality scale (number of species, vegetative surface, dune system development)</td>
</tr>
<tr>
<td>DNP</td>
<td>Water Quality</td>
<td>Monitor effects of pollution events on different coastal communities</td>
<td>Monitor frequent pollution events</td>
<td>–</td>
<td>S</td>
<td>Y</td>
<td>Number of events (pollution episodes)</td>
</tr>
<tr>
<td>IMQ</td>
<td>Physical Quality</td>
<td>Represent the effects of human activities on the physical properties of beaches (sand, surface and water quality)</td>
<td>Monitor changes in physical quality by human activities</td>
<td>–</td>
<td>S</td>
<td>Y</td>
<td>% (algal infestation)</td>
</tr>
<tr>
<td>PFI</td>
<td>Non-Intervention</td>
<td>Represents the importance of beaches in promoting coastal features in the study area</td>
<td>Monitor vulnerability of coastal facilities (very important due to frequent severe damage in many coastal areas)</td>
<td>Laun & Reiner 1999</td>
<td>S</td>
<td>Y</td>
<td>% (beach protection)</td>
</tr>
</tbody>
</table>

Fuente: (Ariza et al., 2010)

Los valores de los parámetros "p", "t" y "u" representan el peso de cada una de las variables introducidas en la fórmula que han sido obtenidas por encuestas realizadas a expertos y por encuestas.
realizadas a usuarios. En la tabla 10 se muestran los valores medios de los mismos y su desviación estándar.

<table>
<thead>
<tr>
<th>Índice</th>
<th>Cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índices dependientes del factor de recreo de los usuarios (RFI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC</td>
</tr>
<tr>
<td></td>
<td>FC</td>
</tr>
<tr>
<td></td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td>α value</td>
</tr>
<tr>
<td>Very good</td>
<td>≤500</td>
</tr>
<tr>
<td>Good</td>
<td>≤2,000</td>
</tr>
<tr>
<td>Moderate</td>
<td>≤10,000</td>
</tr>
<tr>
<td>Deficient</td>
<td>≤100,000</td>
</tr>
<tr>
<td>Bad</td>
<td>>100,000</td>
</tr>
<tr>
<td></td>
<td>≤100</td>
</tr>
<tr>
<td></td>
<td>≤500</td>
</tr>
<tr>
<td></td>
<td>≤2,000</td>
</tr>
<tr>
<td></td>
<td>≤2,000</td>
</tr>
<tr>
<td></td>
<td>≤20,000</td>
</tr>
<tr>
<td></td>
<td>≤20,000</td>
</tr>
<tr>
<td></td>
<td>>20,000</td>
</tr>
<tr>
<td></td>
<td>>20,000</td>
</tr>
<tr>
<td>α: Calidad Microbiológica del agua.</td>
<td></td>
</tr>
</tbody>
</table>

The table is based on the requirements outlined in Directive 76/160/EC and the classification criteria established by the Catalan Water Agency (ACA). Values are expressed in ufc/100 ml

TC: Total Coliforms, FC: Faecal Coliforms, FS: Faecal Streptococcus

| Índice de masificación de la playa. |

<table>
<thead>
<tr>
<th></th>
<th>Urban beaches</th>
<th>Urbanized beaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average value</td>
<td>SD</td>
<td>Average value</td>
</tr>
<tr>
<td>p coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational function (RFI)</td>
<td>p1A = 0.600</td>
<td>0.140</td>
</tr>
<tr>
<td>Natural function (NFI)</td>
<td>p2A = 0.100</td>
<td>0.080</td>
</tr>
<tr>
<td>Protective function (PFI)</td>
<td>p3A = 0.300</td>
<td>0.130</td>
</tr>
<tr>
<td>t coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crowding (IC)</td>
<td>t1 = 0.080</td>
<td>0.020</td>
</tr>
<tr>
<td>Environmental Quality (EQ)</td>
<td>t2 = 0.220</td>
<td>0.034</td>
</tr>
<tr>
<td>Services and Facilities (SFS)</td>
<td>t3 = 0.080</td>
<td>0.002</td>
</tr>
<tr>
<td>Activities (AcT)</td>
<td>t4 = 0.120</td>
<td>0.033</td>
</tr>
<tr>
<td>Access and Parking (AcPur)</td>
<td>t5 = 0.080</td>
<td>0.003</td>
</tr>
<tr>
<td>Comfort (Con)</td>
<td>t6 = 0.120</td>
<td>0.032</td>
</tr>
<tr>
<td>Quality of Surrounding Area (QSA)</td>
<td>t7 = 0.120</td>
<td>0.027</td>
</tr>
<tr>
<td>Beach Safety (IBS)</td>
<td>t8 = 0.180</td>
<td>0.110</td>
</tr>
<tr>
<td>u coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Conditions (IN)</td>
<td>u1 = 0.150</td>
<td>0.140</td>
</tr>
<tr>
<td>Water–Sand Pollution (WSP)</td>
<td>u2 = 0.500</td>
<td>0.210</td>
</tr>
<tr>
<td>Physical Quality (PQ)</td>
<td>u3 = 0.350</td>
<td>0.140</td>
</tr>
</tbody>
</table>

Tabla 10. Valores de los coeficientes de valoración para los parámetros del BQI. Fuente: (Ariza et al., 2010).

Tabla 11. Valores coeficiente de la calidad microbiológica del agua. Fuente: (Ariza et al., 2010).

Tabla 12. Valores índice de masificación de la playa. Fuente: (Ariza et al., 2010).
Dar una valoración global entre 0 y 1 de los aspectos de calidad de agua y calidad de arena desde el punto de vista estético e higiénico.

- Parámetros de calidad de agua: Color, transparencia, residuos sólidos humanos, residuos vegetales, residuos marinos, alquitrán, aceites, olor y la presencia de medusas.
- Parámetros de calidad de la arena: presencia de residuos humanos, vegetales y marinos (algas en la orilla) y la presencia de medusas.

IEQ: Índice de calidad medioambiental.

- **IEQ**: Índice de calidad medioambiental.

ISeRF: Índice de servicios y facilidades.

<table>
<thead>
<tr>
<th>Servicios/facilidades</th>
<th>Bads</th>
<th>Regular</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach guarding</td>
<td>Basic</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Showers and feet washers</td>
<td>Basic</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Umbrellas and hammocks</td>
<td>Important</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Bins</td>
<td>Basic</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Facilities for children</td>
<td>Important</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Restaurant/bars and kiosks</td>
<td>Basic</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Facilities for handicapped people</td>
<td>Basic</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td>Important</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>Basic</td>
<td>Important</td>
<td></td>
</tr>
<tr>
<td>Sanitary facilities</td>
<td>Basic</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Sports facilities</td>
<td>Important</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| Tabla 13. Valores índice de servicios y facilidades. Fuente: (Ariza et al., 2010). |
Índice dependientes del factor de recreo de los usuarios (RFI)

Índice

Cálculo

Sirve para evaluar la presencia de aspectos molestos y comportamientos indeseables.

Se empieza con una puntuación de 1 y si se detecta alguno de los siguientes aspectos se resta a esta puntuación 0,2.

- Deportes fuera de las áreas delimitadas.
- Presencia de animales de compañía.
- Pesca durante las horas de baño.
- Actividades de navegación dentro de las zonas de baño.

IAct: Índice de Actividad

IAccess: acceso a los alrededores de la playa y señalización.

<table>
<thead>
<tr>
<th>Beach surroundings (Access)</th>
<th>Good</th>
<th>Regular</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>Well surfaced (2 points)</td>
<td>Asphalted with irregularities (1 point)</td>
<td>Not asphalted (0 points)</td>
</tr>
<tr>
<td>Signposting</td>
<td>Signposting further than 200 m (2 points)</td>
<td>Signposting within 200 m (1 point)</td>
<td>No Signposting (0 points)</td>
</tr>
</tbody>
</table>

Tabla 14. Valores IAccess. Fuente: (Ariza et al., 2010).

IAcPar: Índice de acceso y aparcamiento. (El valor final ha de ser normalizado entre 0 y 1, correspondiéndose el 1 a la puntuación de 14)

IAcState: acceso a la playa.

<table>
<thead>
<tr>
<th>Access (Distance)</th>
<th>Good</th>
<th>Regular</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between parking and beach</td>
<td><200 m (1 point)</td>
<td>Between 200 and 300 m (0.5 point)</td>
<td>>300 m (0 point)</td>
</tr>
<tr>
<td>State of access</td>
<td>Easy and safe (1 point)</td>
<td>Safe but not easy (0.5 point)</td>
<td>Not safe, not easy (0 point)</td>
</tr>
<tr>
<td>Distance between traffic accesses</td>
<td><200 m (1 point)</td>
<td>Between 200 and 500 m (0.5 point)</td>
<td>>500 m (0 point)</td>
</tr>
<tr>
<td>Distance between footbridges</td>
<td>In urbanized beaches at main access (1 point)</td>
<td>In urbanized beaches not at main access (0.5 point)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 15. Valores IAcState. Fuente: (Ariza et al., 2010).

ITtrans: acceso a parking con coche y otros medios de transporte público.

IComf: Índice de Confort.

IS: Índice de calidad de las áreas colindantes. (Impervious surface: área urbanizada)

<table>
<thead>
<tr>
<th>Beach factors</th>
<th>Good</th>
<th>Moderate</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>20-35 m</td>
<td>15-20 m or 35-50 m</td>
<td><15 m or >50 m</td>
</tr>
<tr>
<td>Slope of dry area</td>
<td>0-4°</td>
<td>4-8°</td>
<td>Above 8°</td>
</tr>
<tr>
<td>Slope of wet area</td>
<td>1-5°</td>
<td>0.1° or 5.8°</td>
<td>Above 8°</td>
</tr>
<tr>
<td>Obstacles</td>
<td>No obstacles</td>
<td>Obstacles present in less than 15% of the shoreline</td>
<td>Obstacles present in more than 15% of the shoreline</td>
</tr>
<tr>
<td>Step</td>
<td>Step <30 cm</td>
<td>Between 30 and 20 cm</td>
<td>Step >20 cm</td>
</tr>
<tr>
<td>Abusive material</td>
<td>Without or degree abusive material</td>
<td>Significant accumulation that does not obstruct entering and exiting the water along 15% of the shoreline</td>
<td>Accumulations that obstruct entering and exiting the water in more than 25% of the shoreline</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20-23°C</td>
<td>21-23°C or 21-29°C</td>
<td><21°C or >29°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% of sunny days</th>
<th>Points (0 no sunny days) to 5 (all days sunny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each of the eight items scores 1 point (good), 0.5 (moderate) or 0 (bad)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16. Valores ITtrans. Fuente: (Ariza et al., 2010).

<table>
<thead>
<tr>
<th>Landscape index (IL)</th>
<th>Impervious area500 m Buffer Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach coastal defence works</td>
<td>Beach coastal defence works/Breach total length</td>
</tr>
<tr>
<td>Surface of port in the maritime hinterland (ILpsm)</td>
<td>Surface of water table closed by harbour developments/total surface in a 200 m buffer in the maritime area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aesthetic index (IA)</th>
<th>Impervious land use in the view shed basin (IL)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5% Impervious</td>
<td>0</td>
</tr>
<tr>
<td>5-20% impervious</td>
<td>0.33</td>
</tr>
<tr>
<td>20-60% impervious</td>
<td>0.66</td>
</tr>
<tr>
<td>>60% impervious</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 17. Valores IComf. Fuente: (Ariza et al., 2010).

Tabla 18. Valores IS. Fuente: (Ariza et al., 2010).
Índice	Cálculo
Índices dependientes del factor de recreo de los usuarios (RFI) | Se revisan 12 indicadores, y la puntuación se obtiene dividiendo el número de indicadores que se tienen en cuenta entre 12.
- Instalaciones.
- Medios de transporte.
- Material de comunicación.
- Material de rescate.
- Material sanitario.
- Sistemas de alerta de emergencia.
- Boyas.
- Señalización de áreas peligrosas y zonas de actividades.
- Evaluación de riesgos.
- Planes preventivos.
- Indicadores de accidentalidad.
- Pautas ante riesgo de fuertes oleajes.

IBS: Índice de seguridad en la playa. |

Índices dependientes de factores biofísicos de las playas (NFI) |

IN: Índice de condiciones naturales.
\[IN = \log(C_r \cdot C_s \cdot C_d) \]
Valores van de 0 (IN=0) a 1 (IN=4,6).
IN: Coeficiente representativo de la vegetación.
Representa el porcentaje de especies vegetales encontradas en una playa en relación a un catálogo de 30 especies características que pueden ser encontradas en el área local.

IN: Coeficiente de superficie.
Representa el porcentaje que supone la superficie total de área con vegetación de la playa en la zona controlada por procesos eólicos de la playa.

IN: Coeficiente de hábitat.
Se basa en una evaluación visual del estado dunar clasificada en cuatro categorías:
- Playas limpiadas mediante equipos pesados (1 de puntuación).
- Playas con vegetación cerca de los paseos u otras estructuras en el borde de la playa (2 de puntuación).
- Playas con pequeñas dunas o partes de ellas (3 de puntuación).
- Playas con un sistema dunar completo (4 de puntuación).

IWSP: Índice de polución del agua y la arena.
Se comienza con una puntuación de 1, y se le ha de restar 0,25 por cada episodio de polución que haya causado el cierre de la playa total o parcial. Se considera episodio de polución cuando se cierra un playa tanto a baño como tránsito derivado de algún tipo de evento de polución.

IPQ: Índice Físico de Calidad.
Representa los cambios físicos originados por el hombre en propiedades físicas de las playas. Este subíndice mide las variaciones sufridas dentro de la superficie de playa de tres aspectos a lo largo de los últimos 10 años:
- Tamaño de grano.
- Área de playa.
- Régimen de oleajes.

Se considera una afección moderada cuando el cambio afecta a menos de un 30 % de la playa, correspondiéndole una puntuación de 0,5. Una afección severa altera más del 30% de la superficie de la playa y le corresponde un valor de 0. El valor de 1 se le otorga cuando no se han observado alteraciones.
El resultado final proviene de la media de los tres valores obtenidos de cada aspecto.
Índice representativo de la pérdida o aporte de sedimentos (PFI)

<table>
<thead>
<tr>
<th>Índice</th>
<th>Cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de Protección</td>
<td>Representa la importancia del sistema de playas dentro de la protección frente a la erosión costera, ya que son elementos disipativos de la energía incidente del oleaje. Este indicador incluye:</td>
</tr>
<tr>
<td></td>
<td>- Ancho efectivo de playa (EBW): Que se corresponde con la distancia existente entre las infraestructuras y la costa.</td>
</tr>
<tr>
<td></td>
<td>- Alcance de tormenta (SR): Se corresponde con el ancho de playa perdido para una tormenta dada dentro de un periodo de retorno determinado (10 años).</td>
</tr>
<tr>
<td></td>
<td>- Ancho mínimo de playa (MBW): Representa en ancho mínimo de playa requerido para que esta desempeñe su función protectora.</td>
</tr>
<tr>
<td></td>
<td>Hay que obtener varios índices de protección puntuales distanciados a juicio del experto en cuestión para luego calcular el IPP.</td>
</tr>
</tbody>
</table>
| | \[
| IPP_i = \frac{EBW}{(SR + MBW)}
| IPP_{TOTAL} = \frac{L(IPP_i > 1)}{L_{TOTAL}}
| L(IPP_i > 1): Es la longitud a lo largo de la cual el IPP_i es mayor que 1. |
| L_{TOTAL}: Longitud de la playa total. |
9. Análisis resultados BQI

Del análisis de los índices de calidad de las 96 playas analizadas se puede extraer que el índice de calidad medio de las playas de Alicante ronda el valor de 0,625 teniendo los valores máximos la playa de Les Ortigues (Guardamar) con una puntuación de 0,856 y el mínimo la playa de Les Rotes (Denia) con un valor de 0,278.

En la tabla 19 se recogen los valores medio, mínimo y máximo de los índices BQI, habiéndose ordenados los municipios de norte a sur. Del estudio de la tabla 19 se puede extraer que el mayor BQI medio recae en el municipio de Alfás del Pi con un valor de 0,804 mientras que el valor mínimo está en Denia con una media de 0,416. El municipio de Calpe resulta bastante interesante por poseer playas con unos de los mejores índices de calidad y con unos de los peores índices de calidad al mismo tiempo y esto se debe a la mala calidad de los accesos y servicios básicos de las playas de Manzanera y Morelló.

<table>
<thead>
<tr>
<th>PROVINCIA DE ALICANTE</th>
<th>Nº Playas</th>
<th>BQI Medio</th>
<th>BQI MAX</th>
<th>BQI MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVINCIA DE ALICANTE</td>
<td>96</td>
<td>0,650</td>
<td>0,856</td>
<td>0,278</td>
</tr>
<tr>
<td>DENIA</td>
<td>9</td>
<td>0,416</td>
<td>0,625</td>
<td>0,278</td>
</tr>
<tr>
<td>XABIA</td>
<td>8</td>
<td>0,698</td>
<td>0,802</td>
<td>0,373</td>
</tr>
<tr>
<td>BENITATXELL</td>
<td>1</td>
<td>0,740</td>
<td>0,740</td>
<td>0,740</td>
</tr>
<tr>
<td>TEULADA</td>
<td>4</td>
<td>0,607</td>
<td>0,722</td>
<td>0,506</td>
</tr>
<tr>
<td>BENISSA</td>
<td>2</td>
<td>0,658</td>
<td>0,660</td>
<td>0,656</td>
</tr>
<tr>
<td>CALPE</td>
<td>4</td>
<td>0,678</td>
<td>0,853</td>
<td>0,442</td>
</tr>
<tr>
<td>ALTEA</td>
<td>7</td>
<td>0,597</td>
<td>0,762</td>
<td>0,462</td>
</tr>
<tr>
<td>ALFAS DEL PI</td>
<td>1</td>
<td>0,804</td>
<td>0,804</td>
<td>0,804</td>
</tr>
<tr>
<td>BENIDORM</td>
<td>2</td>
<td>0,741</td>
<td>0,764</td>
<td>0,718</td>
</tr>
<tr>
<td>LA VILAOJOSA</td>
<td>9</td>
<td>0,720</td>
<td>0,842</td>
<td>0,518</td>
</tr>
<tr>
<td>EL CAMPELLO</td>
<td>8</td>
<td>0,711</td>
<td>0,812</td>
<td>0,599</td>
</tr>
<tr>
<td>ALICANTE</td>
<td>6</td>
<td>0,716</td>
<td>0,848</td>
<td>0,547</td>
</tr>
<tr>
<td>ELCHE</td>
<td>2</td>
<td>0,727</td>
<td>0,761</td>
<td>0,692</td>
</tr>
<tr>
<td>SANTA POLA</td>
<td>8</td>
<td>0,641</td>
<td>0,790</td>
<td>0,496</td>
</tr>
<tr>
<td>GUARDAMAR DE SEGURA</td>
<td>5</td>
<td>0,720</td>
<td>0,856</td>
<td>0,619</td>
</tr>
<tr>
<td>TORREVIEJA</td>
<td>6</td>
<td>0,651</td>
<td>0,784</td>
<td>0,454</td>
</tr>
<tr>
<td>ORIHUELA</td>
<td>8</td>
<td>0,666</td>
<td>0,848</td>
<td>0,534</td>
</tr>
<tr>
<td>PILAR DE LA HORADADA</td>
<td>6</td>
<td>0,586</td>
<td>0,690</td>
<td>0,497</td>
</tr>
</tbody>
</table>

Tabla 19. Índices de calidad medios, máximos y mínimos por municipios de la provincia de Alicante.
En la figura 34 se puede observar la distribución de todos los índices BQI de las playas de la provincia de Alicante analizadas, y para su categorización se ha decidido separar en cuatro intervalos los índices de calidad atendiendo a los mayores y menores valores obtenidos. Estos cuatro intervalos se pueden observar en la tabla 20.

<table>
<thead>
<tr>
<th>Ratios de calidad BQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
</tr>
<tr>
<td>Buena</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Mala</td>
</tr>
<tr>
<td>0,856</td>
</tr>
<tr>
<td>0,711</td>
</tr>
<tr>
<td>0,567</td>
</tr>
<tr>
<td>0,422</td>
</tr>
<tr>
<td>0,711</td>
</tr>
<tr>
<td>0,567</td>
</tr>
<tr>
<td>0,422</td>
</tr>
<tr>
<td>0,278</td>
</tr>
</tbody>
</table>

Tabla 20. Ratios de calidad BQI.

Del análisis por ratios de calidad obtenemos que 38 playas se encuentran dentro del rango establecido como Excelente, 30 dentro del rango de Bueno, 21 dentro del de Regular y 7 en el de Mala. En la figura 32 se ha representado la distribución de calidades de las playas de la provincia de Alicante.

Dentro de las playas con un índice de calidad malo el 85% de ellas pertenece al municipio de Denia, teniendo este municipio el 67% de las mismas con valores del BQI por debajo de 0,422. En la figura 33 se han representado los índices de calidad (BQI), los factores de recreo (RFI), factores biofísicos (NFI) y factores de morfodinámicos relacionados con la sedimentología (PFI). Como se puede observar las playas de Denia están fuertemente influenciadas por los procesos erosivos que estas están experimentando y esta es la principal causa de sus bajos índices de calidad en los parámetros de NFI (biofísicos) y PFI (morfodinámicos).
Como se puede observar mediante el análisis combinado de estos cuatro parámetros estudiados se pueden establecer los principales problemas de una playa, y por consiguiente las medidas correctoras aplicar y en qué campo centrarlas.

9.1 Análisis Resultados RFI (Recreo)

El índice RFI representa un factor que está relacionado con el recreo de los usuarios y que depende de las siguientes variables:

- Calidad microbiológica del agua (∝)
- Índice de masificación de la playa (IC)
- Índice de calidad medioambiental (IEQ)
- Índice de servicios y facilidades (ISerf)
- Índice de actividad (IAct)
- Índice de acceso y aparcamiento (IAcPar)
- Índice de Confort (IComf)
- Índice de calidad de las áreas colindantes (IS)
- Índice de la seguridad en la playa (IBS)

Este factor resulta interesante desde el punto de vista turístico y de explotación comercial de los recursos de la playa como es fácil apreciar en referencia a los factores que se han tenido en cuenta para la elaboración del mismo.

Dese el punto de vista del recreo la playa de la provincia de Alicante mejor puntuada es la playa Paradís en el término municipal de Villajoiosa con una puntuación de 0,838 mientras que la peor puntuada vuelve a ser la playa de Les Rotes en Denia con una puntuación de 0,304.
Figura 34. Índices de calidad de las playas de la provincia de Alicante.
En la figura 36 se puede observar la distribución de todos los índices RFI de las playas de la provincia de Alicante analizadas, y para su categorización se ha decidido separar en cuatro intervalos los índices de recreo atendiendo a los mayores y menores valores obtenidos. Estos cuatro intervalos se pueden observar en la tabla 21.

<table>
<thead>
<tr>
<th>Ratións de calidad RFI</th>
<th>0,838</th>
<th>0,705</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buena</td>
<td>0,705</td>
<td>0,571</td>
</tr>
<tr>
<td>Regular</td>
<td>0,571</td>
<td>0,438</td>
</tr>
<tr>
<td>Mala</td>
<td>0,438</td>
<td>0,304</td>
</tr>
</tbody>
</table>

Tabla 21.Ratións de calidad RFI

Del análisis por ratio de calidad obtenemos que 37 playas se encuentran dentro del rango establecido como Excelente, 34 dentro del rango de Bueno, 22 dentro del de Regular y 3 en el de Mala. En la figura 35 se ha representado la distribución de calidades de las playas de la provincia de Alicante.

El 100% de las playas englobadas con ratio de calidad malo en recreo pertenecen al término municipal de Denia.

Figura 35. Ratios de calidad del RFI playas provincia de Alicante.
Figura 36. Índices de recreo de las playas de la provincia de Alicante
9.1.1 Calidad Microbiológica del agua (\(\alpha\)).

Del estudio de los índices de calidad microbiológica del agua se puede deducir que prácticamente la totalidad de las playas poseen unos índices muy buenos a excepción de algunas playas de la zona de Denia que poseen índices de moderados a buenos.

Es de remarcar que ninguna de las playas analizadas ha presentado una calidad microbiológica del agua deficiente o mala como puede apreciarse en la figura 37.

9.1.2 Masificación de la playa (IC).

Tras el análisis de la masificación de las playas de la provincia de Alicante se puede extraer como conclusión que se trata de un problema muy presente en el litoral alicantino con acentuada prevalencia en el 68% de las playas analizadas.

Tan solo 31 de las 96 playas analizadas no presentan problemas de masificación como puede apreciarse en la figura 38 donde vienen representados todos los coeficientes de masificación calculados para las playas de la provincia de Alicante.

Este factor tiene una gran importancia turística y además se ve acrecentado de manera progresiva si la playa está sufriendo algún tipo de proceso erosivo debido a que con la pérdida de ancho de playa la superficie útil pos usuario se ve disminuida lo que hace que aumente la masificación y por consiguiente hará disminuir el índice IC.
9.1.3 Índice de Calidad Medioambiental (IEQ).

Este índice da una valoración global entre 0 y 1 a los aspectos de calidad de agua y calidad de arena desde el punto de vista estético e higiénico. Debido a que a este índice se le ha dado más peso que al resto dentro del cálculo del RFI, en la figura 40 se observa como presenta una cierta similitud de tendencias en relación al índice de recreo. Este índice de calidad medioambiental es bastante subjetivo ya que todos los parámetros medidos se realizan a través de una
inspección visual. Tras el estudio de este factor no se aprecia una tendencia clara, pero lo que sí que se puede observar es la existencia de 3 términos municipales que despuntan respecto al resto y estos son Orihuela, Villajoyosa y Xabia.

En la figura 39 se han ordenado los valores del índice de calidad medioambiental y se puede apreciar como los valores más recurrentes se encuentran entre 0,8 y 0,6 hallándose el 58,3% de las playas alicantinas en este rango.

Figura 39. Índices de calidad Mediambiental.

En la tabla 22 se han establecido 4 rangos de calidad para el índice de calidad medioambiental. A partir de estos 4 rangos se han clasificado las playas en aquellas que poseen un índice de calidad medioambiental excelente, regular, malo o deficiente.

<table>
<thead>
<tr>
<th>RANGO DE CALIDAD IEQ</th>
<th>1</th>
<th>0,76</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCELENTE</td>
<td>0,75</td>
<td>0,51</td>
</tr>
<tr>
<td>REGULAR</td>
<td>0,5</td>
<td>0,26</td>
</tr>
<tr>
<td>MALO</td>
<td>0,25</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 22.Ratios de calidad RFI.
Figura 40. Índices de calidad medioambiental (IEQ) e índices de recreo (RFI) de las playas de la provincia de Alicante (1 Excelente; 0 Deficiente).
En la figura 41, se puede observar que tan solo el 30% de las playas de la provincia de Alicante tendría una calidad medioambiental excelente viendo como el mayor peso se encuentra en la calidad medioambiental clasificada como regular con un 44% de las playas en este tramo.

![CALIDAD MEDIOAMBIENTAL]

Figura 41. Ratios de calidad del índice de Calidad Medioambiental de las playas de la provincia de Alicante.

9.1.4 Índice de servicios y facilidades (ISerf)

Dentro de este índice se ha de tener en cuenta que se le ha dotado de puntuación nula a aquellas playas que no presentan todos los índices básicos. Siendo estos los siguientes:

<table>
<thead>
<tr>
<th>Playa Urbana</th>
<th>Playa Urbanizada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socorrista</td>
<td></td>
</tr>
<tr>
<td>Duchas o lavapiés</td>
<td>Duchas o lavapiés</td>
</tr>
<tr>
<td>Papeleras</td>
<td>Papeleras</td>
</tr>
<tr>
<td>Restaurantes, bares o quioscos</td>
<td></td>
</tr>
<tr>
<td>Facilidades para personas discapacitadas</td>
<td></td>
</tr>
<tr>
<td>Puntos de información</td>
<td></td>
</tr>
<tr>
<td>Facilidades Sanitarias</td>
<td>Facilidades Sanitarias</td>
</tr>
</tbody>
</table>

Tabla 23. Facilidades básicas tenidas en cuenta para el índice de servicios y facilidades.

A fin de realizar un análisis de este índice en las playas de la provincia de Alicante se han calculado los índices de servicios y facilidades de todas las playas y después se ha elaborado el índice medio para cada municipio obteniéndose los resultados expuestos en la figura 42.
En la figura 43 se han establecido como municipio que necesitan mejorar aquellos cuyo ISERF se encuentra por debajo de 0,5 y esto supone el 61% de los municipios de la provincia de Alicante han de incrementar el nivel y cantidad de servicios ofertados.

El principal problema que presentan las playas alicantinas en cuanto a servicios es que el 46,9% de las mismas carecen de algún servicio básico. Este hecho indica que se ha de prestar especial interés por parte de las autoridades en cuanto a este aspecto, ya que por ejemplo hay municipios como Altea en los que ninguna de sus playas cubre la totalidad de servicios básicos.
9.1.5 Índice de actividad (IAcT)

En la figura 44 se puede apreciar que los valores obtenidos para los índices de actividad arrojan unos resultados bastante buenos para las playas de la provincia de Alicante no existiendo ninguna que esté valorada con la puntuación de 0 que se corresponde con la presencia de aspectos molestos y comportamientos indeseables.

9.1.6 Índice de acceso y aparcamiento (IAcPar)

Las playas de la provincia de Alicante por lo general no presentan problemas de accesibilidad ya que la gran mayoría están dotadas de aparcamientos para el acceso mediante vehículo privado o líneas de transporte público que conectan la playa con los núcleos urbanos colindantes. Solo se puede apreciar deficiencias clara en 3 de las playas analizadas, siendo estas El Acequión (Torrevieja), Bras del Port (Santa Pola) y Las Pesqueras (Elche).

En la figura 45 se puede observar la distribución de los índices de acceso y aparcamiento de todas las playas sujetas al estudio.
9.1.7 Índice de Confort (IComf)

El índice de confort es un parámetro que mide aspectos como el ancho de la playa, la presencia de obstáculos, la pendiente, abrasividad de las arenas de la playa, etc. Este índice representa el confort del usuario de la playa en términos de comodidad. Una puntuación de 1 se correspondería con una playa confortable y una puntuación de 0 se correspondería con una playa no confortable.

El la figura 46 se puede apreciar la distribución de índices de confort de las playas de la provincia de Alicante de manera ordenada, de mayor a menor confort. Se puede apreciar que tan solo un 17% de las playas presentan carencias de confort, entendiendo por carencia de confort el haber obtenido una puntuación inferior a 0,5 para este parámetro.
La distribución del confort en las playas de la provincia de Alicante viene representada en la figura 47.

9.1.8 Índice de calidad de las áreas colindantes (IS)

Este índice incluye, a su vez dos sub-índices diferentes: el índice del paisaje (IL) y el índice del valor estético (IA). El índice del paisaje (IL) consiste en tres factores diferentes con igual peso: el porcentaje de superficie artificial en el entorno (en una franja de 500 metros alrededor de la playa), el porcentaje de estructuras de defensa en comparación con la longitud de la playa, y el porcentaje de agua encerrada por puertos y/o estructuras marinas en una franja de 200 metros mar adentro desde la playa seca. El índice final que se obtiene es un promedio de los tres porcentajes y el resultado se divide por 100.

En la figura 48 se ha realizado la distribución de los citados índices a fin de obtener una perspectiva de la calidad de las áreas colindantes en relación al recreo que estas presentan para los usuarios. Como bien es sabido, la costa de la provincia de Alicante es una pieza clave dentro del atractivo turístico de la zona. Esto se ve reflejado en la figura 48 donde solo el 11,46% de las playas tendrían deficiencias en cuanto a la calidad de las áreas colindantes a la playa desde el punto de vista del recreo.

No se ha de perder de vista que éste índice está relacionado al recreo, por lo que desde el punto de vista medioambiental presentaría resultados opuestos como se aprecia en la figura 49 donde se han comparado los índices de recreo (RFI) con los índices biofísicos (NFI).
Como se puede apreciar ambos índices presentan una tendencia antagonista y cuando ambos se encuentran próximos con valores medios aceptables es cuando se obtienen los mejores índices de calidad de las playas. Este hecho se aprecia en la figura 63 donde se han expuesto los principales índices ponderados que influyen en la obtención del índice de calidad de las playas (BQI).

9.1.9 Índice de la seguridad en la playa (IBS)

El índice de seguridad es un factor que revisa la presencia de 12 indicadores: instalaciones de seguridad, medios de transporte, material de comunicación, material de rescate, material sanitario, sistemas de alerta de emergencia, boyas, señalización de áreas peligrosas y zonas de actividades, evaluación de riesgos, plan de prevención de emergencias, indicadores de accidentalidad y pautas ante riesgo de fuerte oleaje.

En función de la presencia o no de estos indicadores la playa obtendrá una mejor valoración o peor. Para el análisis de este índice se ha optado por agrupar los índices obtenidos de las playas por municipios a fin de ver qué municipio es está peor situado en el ranking, por lo que se deberían mejorar sus servicios. En la figura 50 viene representado este estudio y de ello se extrae que la playa de Los Tiestos del municipio de Benitaxel tiene un problema de falta de indicadores de seguridad ya que solo posee plan de prevención de emergencias y pautas ante fuerte oleaje.
Esta playa tiene muy buena calidad de agua y ambiental y no padece de masificación. Sin embargo debido al dificil acceso a la misma y a su pequeña extensión no posee de ningún tipo de instalaciones de seguridad.

Figura 50. Índices de seguridad medios de las playas de los municipios de la provincia de Alicante.

En la figura 51 se ha representado la distribución del índice de seguridad por playas, observándose como el 66,67% de las playas de la provincia de Alicante tienen un índice de seguridad superior a 0,75 lo que significa que al menos tienen 9 de los 12 indicadores de seguridad planteados.

Figura 51. Índices de seguridad de las playas de la provincia de Alicante.
9.2 Análisis resultados NFI

El índice RFI está relacionado con los factores biofísicos de las playas y depende de las siguientes variables:

- Índice de condiciones naturales (IN)
- Índice de polución del agua y la arena (IWSP)
- Índice físico de calidad (IPQ)

El índice biofísico (NFI) presenta una tendencia similar al índice de calidad medioambiental como era de esperar. En la figura 53 se han representado de manera ordenada los índices biofísicos apreciándose que el 91,6% de las playas presentan índices por encima de 0,5.

A fin de obtener una visión más general se ha decidido agrupar los índices biofísicos medios de cada comunidad a fin de proceder a su estudio. De los resultados expuestos en la figura 52 puede apreciarse cómo los municipios que poseen sus playas integradas dentro del marco urbano son los que presentan un NFI inferior. Este claro ejemplo sucede con Benidorm, cuyas playas de Poniente y Levante se encuentran en el pleno corazón de la urbe.

Figura 52. Índices biofísicos medios de las playas de los municipios de la provincia de Alicante.
Figura 53. Índices biofísicos de las playas de la provincia de Alicante.

Relación entre factores biofísicos e índice de calidad medioambiental (neces).
9.2.1 Índice de condiciones naturales (IN)

Este aspecto ha sido citado en el punto 5.1 que muestra los efectos de la limpieza mecanizada de playas, y no se corresponde con una práctica que favorezca las condiciones naturales de la misma debido a que precisamente estas actuaciones tienen un grave impacto sobre especies que se encuentra en las arenas de las playas como isópodos, talitridos o invertebrados acuáticos.

En el presente estudio se han seguido las directrices de los autores Ariza et al. (2010), sin embargo se ha de proponer una modificación de este parámetro ya que se ha considerado errónea su medición.

En la figura 54, donde se recogen los índices de condiciones naturales, se puede apreciar cómo estos se presentan en lotes por zonas apreciándose 3 zonas que despuntan del resto:

1. Entre Guardamar y Santa Pola que coincide con las dunas de Santa Pola
2. El Carabassí en Alicante, también por la presencia de dunas
3. Final del término municipal de Campello e inicio de el de Villajoiosa, debido a que la masa crítica de ambas zonas se encuentra dividida entre Alicante/El Campello y Benidorm por lo que este litoral está menos influenciado por la acción humana, cosa que no significa que no tenga presión urbanística.

Este índice de condiciones naturales da un gran peso a la presencia de dunas, cosa que discrimina en gran medida las playas de grava. Debido a este hecho también se ha de proponer una corrección que equipare las puntuaciones entre playas de grava y arena en cuanto a las condiciones naturales.
Figura 54. Índices de condiciones naturales de las playas de los municipios de la provincia de Alicante.
9.2.2 Índice de polución del agua y la arena (IWSP)

El índice IWSP indica las veces que una playa ha sido cerrada al baño por razones de polución. Como puede apreciarse en la figura 55 la mayoría de las playas de la provincia de Alicante no han presentado ningún tipo de episodio de polución.

Cabe remarcar las deficiencias existentes en el municipio de Alicante en las playas del Postiguet, Albufera y Almadraba y en el municipio de Denia en las playas de Nova Punta y Les Rotes. Todas estas playas se encuentran cerca de instalaciones portuarias y presentan la salida natural de las aguas de lluvia de sendas localidades al mar. Además, es bien sabido que en periodos de lluvias torrenciales la playa de la Albufera, encajada en la ciudad de Alicante, llega prácticamente a desaparecer pudiéndose observar la pluma originada por la suciedad que arrastran las aguas de lluvia al desembocar en esta playa.

![Índice de polución del agua y la arena (IWSP)](image)

Figura 55. Índices de condiciones naturales de las playas de los municipios de la provincia de Alicante.

Dentro de este índice cabe remarcar que se ha percatado una deficiencia en cuanto a los factores medidos, ya que únicamente cuentan con el cierre de la playa como punto adverso. Se sugiere introducir dentro de este punto el índice \(\alpha \) de calidad de aguas empleado en el cálculo del factor de recre (RFI) así como el estudio de la calidad de las arenas mediante el análisis de las mismas.

Para el análisis de las arenas se proponen los siguientes parámetros a ser medidos o tenidos en cuenta:

1) Frecuencia con la que se realizan las operaciones de limpieza y que medios se emplean para ello.
 a) Limpieza mecánica.
 b) Limpieza manual.
2) Parámetros microbiológicos.
a) Coliformes fecales o E. coli.
b) Estreptococos fecales.
c) Hongos y levaduras.
d) Candida albicans.

3) Parámetros físico-químicos.
 - Mercurio
 - Cadmio
 - Plomo
 - Cobre
 - Zinc
 - Cromo
 - Arsénico
 - Níquel
 - E7PCB’s (Suma de las congéneres IUPAC nº 28, 52, 101, 118, 138, 153 y 180)
 - Hidrocarburos Totales
 - Carbono Orgánico Total

Dentro del análisis de calidad de las arenas cabe destacar la labor del municipio de Benidorm dentro de su control, ya que es el único municipio que lleva algún tipo de control sobre este parámetro.

9.2.3 Índice físico de calidad (IPQ)

El IPQ representa los cambios físicos originados por el hombre en las propiedades físicas de las playas. Este subíndice mide las variaciones sufridas dentro de la superficie de playa a lo largo de los últimos 10 años.

Sólo el 67% de las playas sujetas al estudio presentan un índice IPQ superior a 0,5. Este hecho ha sido representado en la figura 56 y remarca la fuerte presión del ser humano en el litoral alicantino.
Por otro lado en la figura 57 se muestra el estudio realizado por municipios observándose los valores medios del índice físico de calidad (IPQ). Se aprecia que los municipios de Benidorm y Denia presentan las peores valoraciones.

![IPQ (MEDIOS)](image)

Figura 57. IPQ medios por municipio de la provincia de Alicante.

En la figura 58 se han recogido los valores IPQ obtenidos para todas las playas sujetas al estudio apreciándose como en el norte de la provincia se han desarrollado mayores cambios originados por el hombre en las propiedades físicas de las mismas. Las playas están ordenadas de sur a norte en la figura 58.

9.3 Análisis resultados PFI

El índice PFI está relacionado con la pérdida o aporte de sedimentos de las playas y depende de la siguiente variable:

- Índice de protección (IPP)

Este factor es orientativo y para ser concluyente debería de ir acompañado de un estudio detallado de la evolución morfodinámica de la playa a lo largo de un extenso período de tiempo para detectar el estado de la misma, o lo que es lo mismo, definir si está en un proceso erosivo, acrecidional o estabilizado.

De manera orientativa resulta interesante ver que tan solo el 30% de las playas de la provincia no se encuentran dentro de un probable proceso erosivo, esto se ha identificado con que la valoración obtenida por la playa sea mayor de 0,75.
Figura 58. Índices de condiciones naturales de las playas de los municipios de la provincia de Alicante.
Como se aprecia en las figuras 59 y 60 aproximadamente el 70% de las playas de la provincia de Alicante presentan deficiencias en cuanto a su índice de protección, lo que se relaciona directamente con que están sufriendo, o son susceptibles de sufrir, procesos erosivos. Estos procesos erosivos están relacionados con la pérdida de sedimentos de las playas.

Dentro del rango de valoraciones negativas resulta preocupante el valor 0 obtenido por las siguientes playas:

- Les Marines (Denia)
- MarinetaCasiana (Denia)
- PopeTango (Xabia)
- Portitxol (Xabia)
- L’Andragó (Teulada)
- Morelló (Calpe)
- Solsida (Altea)
- L’Olla (Altea)
- Cap Blanc (Altea)
- Racó Conill (Villajoyosa)
- Bras del Port (Santa Pola)
- C. Piteras (Torrevieja)
- Punta Prima (Orihuela)
- C. Cerrada (Orihuela)

9.4 Análisis conjunto

A fin de obtener una visión global del estado de las playas de la provincia de Alicante se ha realizado un análisis conjunto de los índices que intervienen en el Cálculo del BQI. En la figura 63 se han recogido los valores de los índices de recreo (RFI), de factores biofísicos de la playa (NFI) y de la pérdida o aporte de sedimentos (PFI) ponderados. El que estén ponderados los tres factores significa que los valores de los mismos en la figura 63 están afectados por el peso que se le ha dado a cada factor.
Figura 60. Índices de protección de las playas de la provincia de Alicante.
Del estudio de la tendencia de estos tres factores se puede apreciar como los factores de recreo (RFI) y de condiciones biofísicas de la playa (NFI) presentan una tendencia antagonista por norma general. Este hecho se puede explicar a través del hecho de que la oferta de un gran número de servicios en una playa va ligada a su conexión con la urbe y por tal a la distorsión del medio natural de la playa por parte de los usuarios y por parte de las condiciones de contorno en las que se encuentra inmersa la misma. Por otro lado, un factor que resulta decisivo y sigue la tendencia del índice de calidad es el de la pérdida o aporte de sedimentos (PFI).

Si se comparan las tendencias de los índices de calidad de las playas urbanizadas con las urbanas a través de las figuras 61 y 62, se puede apreciar como las playas urbanizadas poseen factores de calidad más estables que las playas urbanas.
Figura 63. Análisis conjunto de índices que intervienen en la clasificación de la calidad de las playas.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>BQI</th>
<th>Tipo de Playa</th>
<th>P1</th>
<th>RFI</th>
<th>RFI (Ponderado)</th>
<th>P2</th>
<th>NFI</th>
<th>NFI (Ponderado)</th>
<th>P3</th>
<th>PFI</th>
<th>PFI (Ponderado)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les Ortigues (Guardamar)</td>
<td>0.86</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.66</td>
<td>0.20</td>
<td>0.40</td>
<td>0.93</td>
<td>0.37</td>
<td>0.30</td>
<td>0.95</td>
<td>0.28</td>
</tr>
<tr>
<td>La Fossa Levante (Calpe)</td>
<td>0.85</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.84</td>
<td>0.50</td>
<td>0.10</td>
<td>0.79</td>
<td>0.08</td>
<td>0.30</td>
<td>0.91</td>
<td>0.27</td>
</tr>
<tr>
<td>Saladar Urbanova (Alicante)</td>
<td>0.85</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.71</td>
<td>0.21</td>
<td>0.40</td>
<td>0.84</td>
<td>0.34</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>C. Bosque (Orihuela)</td>
<td>0.85</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.79</td>
<td>0.48</td>
<td>0.10</td>
<td>0.72</td>
<td>0.07</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Agua Amarga (Alicante)</td>
<td>0.85</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.57</td>
<td>0.17</td>
<td>0.40</td>
<td>0.94</td>
<td>0.38</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Centro (Villajoyosa)</td>
<td>0.84</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.78</td>
<td>0.47</td>
<td>0.10</td>
<td>0.73</td>
<td>0.07</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>El Arenal Boll (Calpe)</td>
<td>0.83</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.80</td>
<td>0.48</td>
<td>0.10</td>
<td>0.67</td>
<td>0.07</td>
<td>0.30</td>
<td>0.95</td>
<td>0.29</td>
</tr>
<tr>
<td>Carrer del Mar (El Campello)</td>
<td>0.81</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.78</td>
<td>0.47</td>
<td>0.10</td>
<td>0.85</td>
<td>0.08</td>
<td>0.30</td>
<td>0.86</td>
<td>0.26</td>
</tr>
<tr>
<td>Muchavista (El Campello)</td>
<td>0.81</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.73</td>
<td>0.44</td>
<td>0.10</td>
<td>0.85</td>
<td>0.08</td>
<td>0.30</td>
<td>0.95</td>
<td>0.28</td>
</tr>
<tr>
<td>El Albir (Alfaz del Pi)</td>
<td>0.80</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.75</td>
<td>0.45</td>
<td>0.10</td>
<td>0.91</td>
<td>0.09</td>
<td>0.30</td>
<td>0.88</td>
<td>0.26</td>
</tr>
<tr>
<td>La Granadella (Xabia)</td>
<td>0.80</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.65</td>
<td>0.20</td>
<td>0.40</td>
<td>0.86</td>
<td>0.34</td>
<td>0.30</td>
<td>0.88</td>
<td>0.26</td>
</tr>
<tr>
<td>El Ambolo (Xabia)</td>
<td>0.80</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.55</td>
<td>0.16</td>
<td>0.40</td>
<td>0.90</td>
<td>0.36</td>
<td>0.30</td>
<td>0.91</td>
<td>0.27</td>
</tr>
<tr>
<td>La Grava (Xabia)</td>
<td>0.80</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.76</td>
<td>0.46</td>
<td>0.10</td>
<td>0.91</td>
<td>0.09</td>
<td>0.30</td>
<td>0.84</td>
<td>0.25</td>
</tr>
<tr>
<td>El Arenal (Xabia)</td>
<td>0.80</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.77</td>
<td>0.46</td>
<td>0.10</td>
<td>0.85</td>
<td>0.08</td>
<td>0.30</td>
<td>0.84</td>
<td>0.25</td>
</tr>
<tr>
<td>Estudiantes Varade (Villajoyosa)</td>
<td>0.79</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.69</td>
<td>0.21</td>
<td>0.40</td>
<td>0.79</td>
<td>0.32</td>
<td>0.30</td>
<td>0.90</td>
<td>0.27</td>
</tr>
<tr>
<td>Varadero (Santa Pola)</td>
<td>0.79</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.78</td>
<td>0.47</td>
<td>0.10</td>
<td>0.85</td>
<td>0.08</td>
<td>0.30</td>
<td>0.79</td>
<td>0.24</td>
</tr>
<tr>
<td>Bonnou (Villajoyosa)</td>
<td>0.79</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.78</td>
<td>0.23</td>
<td>0.40</td>
<td>0.72</td>
<td>0.29</td>
<td>0.30</td>
<td>0.88</td>
<td>0.26</td>
</tr>
<tr>
<td>El Acequión (Torrevieja)</td>
<td>0.78</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.66</td>
<td>0.39</td>
<td>0.10</td>
<td>0.91</td>
<td>0.09</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Baeza (El Campello)</td>
<td>0.78</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.47</td>
<td>0.14</td>
<td>0.40</td>
<td>0.85</td>
<td>0.34</td>
<td>0.30</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>San Joan (Alicante)</td>
<td>0.78</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.73</td>
<td>0.44</td>
<td>0.10</td>
<td>0.66</td>
<td>0.07</td>
<td>0.30</td>
<td>0.93</td>
<td>0.28</td>
</tr>
<tr>
<td>Rebollas Tuseles (Guardamar)</td>
<td>0.77</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.57</td>
<td>0.17</td>
<td>0.40</td>
<td>0.94</td>
<td>0.37</td>
<td>0.30</td>
<td>0.74</td>
<td>0.22</td>
</tr>
<tr>
<td>Levante (Benidorm)</td>
<td>0.76</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.72</td>
<td>0.43</td>
<td>0.10</td>
<td>0.55</td>
<td>0.05</td>
<td>0.30</td>
<td>0.93</td>
<td>0.28</td>
</tr>
<tr>
<td>Del Carritxar (El Campello)</td>
<td>0.76</td>
<td>Playa Urbanizada</td>
<td>0.30</td>
<td>0.55</td>
<td>0.16</td>
<td>0.40</td>
<td>0.96</td>
<td>0.38</td>
<td>0.30</td>
<td>0.72</td>
<td>0.22</td>
</tr>
<tr>
<td>La Rota (Altea)</td>
<td>0.76</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.78</td>
<td>0.47</td>
<td>0.10</td>
<td>0.56</td>
<td>0.06</td>
<td>0.30</td>
<td>0.80</td>
<td>0.24</td>
</tr>
<tr>
<td>Los Náufragos (Torrevieja)</td>
<td>0.76</td>
<td>Playa Urbana</td>
<td>0.60</td>
<td>0.75</td>
<td>0.45</td>
<td>0.10</td>
<td>0.73</td>
<td>0.07</td>
<td>0.30</td>
<td>0.80</td>
<td>0.24</td>
</tr>
<tr>
<td>Nombre</td>
<td>BQI</td>
<td>Tipo de Playa</td>
<td>P1</td>
<td>RFI</td>
<td>RFI (Ponderado)</td>
<td>P2</td>
<td>NFI</td>
<td>NFI (Ponderado)</td>
<td>P3</td>
<td>PFI</td>
<td>PFI (Ponderado)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>La Caleta (Villajoyosa)</td>
<td>0,76</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,73</td>
<td>0,22</td>
<td>0,40</td>
<td>0,90</td>
<td>0,36</td>
<td>0,30</td>
<td>0,61</td>
<td>0,18</td>
</tr>
<tr>
<td>Las Pesqueras (Elche)</td>
<td>0,76</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,62</td>
<td>0,18</td>
<td>0,40</td>
<td>0,88</td>
<td>0,35</td>
<td>0,30</td>
<td>0,74</td>
<td>0,22</td>
</tr>
<tr>
<td>Montañar (Xabia)</td>
<td>0,76</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,63</td>
<td>0,38</td>
<td>0,10</td>
<td>0,81</td>
<td>0,08</td>
<td>0,30</td>
<td>1,00</td>
<td>0,30</td>
</tr>
<tr>
<td>La Cala (Villajoyosa)</td>
<td>0,76</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,78</td>
<td>0,47</td>
<td>0,10</td>
<td>0,85</td>
<td>0,08</td>
<td>0,30</td>
<td>0,68</td>
<td>0,20</td>
</tr>
<tr>
<td>La Mata (Torrevieja)</td>
<td>0,75</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,72</td>
<td>0,22</td>
<td>0,40</td>
<td>0,84</td>
<td>0,34</td>
<td>0,30</td>
<td>0,64</td>
<td>0,19</td>
</tr>
<tr>
<td>C. Capitán (Orihuela)</td>
<td>0,74</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,78</td>
<td>0,47</td>
<td>0,10</td>
<td>0,67</td>
<td>0,07</td>
<td>0,30</td>
<td>0,68</td>
<td>0,20</td>
</tr>
<tr>
<td>Los Tiestos (Benitachel)</td>
<td>0,74</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,51</td>
<td>0,15</td>
<td>0,40</td>
<td>0,80</td>
<td>0,32</td>
<td>0,30</td>
<td>0,89</td>
<td>0,27</td>
</tr>
<tr>
<td>Paradís (Villajoyosa)</td>
<td>0,73</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,84</td>
<td>0,25</td>
<td>0,40</td>
<td>0,77</td>
<td>0,31</td>
<td>0,30</td>
<td>0,57</td>
<td>0,17</td>
</tr>
<tr>
<td>La Caleta (Xabia)</td>
<td>0,72</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,62</td>
<td>0,19</td>
<td>0,40</td>
<td>0,87</td>
<td>0,35</td>
<td>0,30</td>
<td>0,63</td>
<td>0,19</td>
</tr>
<tr>
<td>Les Playetes (Telulada)</td>
<td>0,72</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,75</td>
<td>0,22</td>
<td>0,40</td>
<td>0,72</td>
<td>0,29</td>
<td>0,30</td>
<td>0,70</td>
<td>0,21</td>
</tr>
<tr>
<td>Cabo Roig (Orihuela)</td>
<td>0,72</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,78</td>
<td>0,47</td>
<td>0,10</td>
<td>0,83</td>
<td>0,08</td>
<td>0,30</td>
<td>0,57</td>
<td>0,17</td>
</tr>
<tr>
<td>Poniente (Benidorm)</td>
<td>0,72</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,65</td>
<td>0,39</td>
<td>0,10</td>
<td>0,30</td>
<td>0,03</td>
<td>0,30</td>
<td>1,00</td>
<td>0,30</td>
</tr>
<tr>
<td>La Glea (Orihuela)</td>
<td>0,71</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,71</td>
<td>0,21</td>
<td>0,40</td>
<td>0,71</td>
<td>0,28</td>
<td>0,30</td>
<td>0,72</td>
<td>0,22</td>
</tr>
<tr>
<td>El Moncayo/Campo (Guardamar)</td>
<td>0,71</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,75</td>
<td>0,22</td>
<td>0,40</td>
<td>0,88</td>
<td>0,35</td>
<td>0,30</td>
<td>0,43</td>
<td>0,13</td>
</tr>
<tr>
<td>La Barreta (Altea)</td>
<td>0,70</td>
<td>Playa Urbana</td>
<td>0,30</td>
<td>0,67</td>
<td>0,20</td>
<td>0,40</td>
<td>0,82</td>
<td>0,33</td>
<td>0,30</td>
<td>0,55</td>
<td>0,17</td>
</tr>
<tr>
<td>Arenales Carabassi (Elche)</td>
<td>0,69</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,54</td>
<td>0,16</td>
<td>0,40</td>
<td>0,69</td>
<td>0,28</td>
<td>0,30</td>
<td>0,85</td>
<td>0,25</td>
</tr>
<tr>
<td>C. Mare de Deu (Santa Pola)</td>
<td>0,69</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,57</td>
<td>0,17</td>
<td>0,40</td>
<td>0,98</td>
<td>0,39</td>
<td>0,30</td>
<td>0,43</td>
<td>0,13</td>
</tr>
<tr>
<td>Las Villas Húguercas (El Pilar)</td>
<td>0,69</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,67</td>
<td>0,20</td>
<td>0,40</td>
<td>0,81</td>
<td>0,32</td>
<td>0,30</td>
<td>0,55</td>
<td>0,17</td>
</tr>
<tr>
<td>Playa Lisa (Santa Pola)</td>
<td>0,68</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,78</td>
<td>0,47</td>
<td>0,10</td>
<td>0,81</td>
<td>0,08</td>
<td>0,30</td>
<td>0,46</td>
<td>0,14</td>
</tr>
<tr>
<td>C. Moscayesdaca (Orihuela)</td>
<td>0,68</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,73</td>
<td>0,44</td>
<td>0,10</td>
<td>0,72</td>
<td>0,07</td>
<td>0,30</td>
<td>0,57</td>
<td>0,17</td>
</tr>
<tr>
<td>Mascarat (Altea)</td>
<td>0,68</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,57</td>
<td>0,17</td>
<td>0,40</td>
<td>0,62</td>
<td>0,25</td>
<td>0,30</td>
<td>0,88</td>
<td>0,26</td>
</tr>
<tr>
<td>Del Puerto (El Campello)</td>
<td>0,68</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,71</td>
<td>0,21</td>
<td>0,40</td>
<td>0,75</td>
<td>0,30</td>
<td>0,30</td>
<td>0,54</td>
<td>0,16</td>
</tr>
<tr>
<td>El Charco (Villajoyosa)</td>
<td>0,67</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,60</td>
<td>0,18</td>
<td>0,40</td>
<td>0,96</td>
<td>0,38</td>
<td>0,30</td>
<td>0,36</td>
<td>0,11</td>
</tr>
<tr>
<td>Albatera (Alicante)</td>
<td>0,67</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,78</td>
<td>0,47</td>
<td>0,10</td>
<td>0,36</td>
<td>0,04</td>
<td>0,30</td>
<td>0,54</td>
<td>0,16</td>
</tr>
<tr>
<td>La Llobella (Benissa)</td>
<td>0,66</td>
<td>Playa Urbana</td>
<td>0,30</td>
<td>0,55</td>
<td>0,16</td>
<td>0,40</td>
<td>0,97</td>
<td>0,39</td>
<td>0,30</td>
<td>0,35</td>
<td>0,11</td>
</tr>
<tr>
<td>S. Pola Este (Santa Pola)</td>
<td>0,66</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,76</td>
<td>0,46</td>
<td>0,10</td>
<td>0,79</td>
<td>0,08</td>
<td>0,30</td>
<td>0,41</td>
<td>0,12</td>
</tr>
<tr>
<td>La Fustera (Benissa)</td>
<td>0,66</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,66</td>
<td>0,20</td>
<td>0,40</td>
<td>0,79</td>
<td>0,32</td>
<td>0,30</td>
<td>0,46</td>
<td>0,14</td>
</tr>
<tr>
<td>Nombre</td>
<td>BQI</td>
<td>Tipo de Playa</td>
<td>P1</td>
<td>RFI</td>
<td>RFI (Ponderado)</td>
<td>P2</td>
<td>NFI</td>
<td>NFI (Ponderado)</td>
<td>P3</td>
<td>PFI</td>
<td>PFI (Ponderado)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>Els Vivers (Guardamar)</td>
<td>0,65</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,55</td>
<td>0,16</td>
<td>0,40</td>
<td>0,66</td>
<td>0,26</td>
<td>0,30</td>
<td>0,74</td>
<td>0,22</td>
</tr>
<tr>
<td>L’Ampolla (Teulada)</td>
<td>0,65</td>
<td>Playa Urbana</td>
<td>0,30</td>
<td>0,54</td>
<td>0,32</td>
<td>0,10</td>
<td>0,57</td>
<td>0,06</td>
<td>0,30</td>
<td>0,89</td>
<td>0,27</td>
</tr>
<tr>
<td>Del Cuartel (El Campello)</td>
<td>0,64</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,60</td>
<td>0,18</td>
<td>0,40</td>
<td>0,95</td>
<td>0,38</td>
<td>0,30</td>
<td>0,28</td>
<td>0,08</td>
</tr>
<tr>
<td>Levante (Santa Pola)</td>
<td>0,63</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,74</td>
<td>0,45</td>
<td>0,10</td>
<td>0,61</td>
<td>0,06</td>
<td>0,30</td>
<td>0,41</td>
<td>0,12</td>
</tr>
<tr>
<td>Gran Platja (Santa Pola)</td>
<td>0,63</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,75</td>
<td>0,45</td>
<td>0,10</td>
<td>0,85</td>
<td>0,08</td>
<td>0,30</td>
<td>0,31</td>
<td>0,09</td>
</tr>
<tr>
<td>Les Deveses (Denia)</td>
<td>0,63</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,69</td>
<td>0,21</td>
<td>0,40</td>
<td>0,56</td>
<td>0,23</td>
<td>0,30</td>
<td>0,64</td>
<td>0,19</td>
</tr>
<tr>
<td>CentroRoquetas (Guardamar)</td>
<td>0,62</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,69</td>
<td>0,42</td>
<td>0,10</td>
<td>0,73</td>
<td>0,07</td>
<td>0,30</td>
<td>0,43</td>
<td>0,13</td>
</tr>
<tr>
<td>Mil Palmeras (El Pilar)</td>
<td>0,62</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,70</td>
<td>0,42</td>
<td>0,10</td>
<td>0,72</td>
<td>0,07</td>
<td>0,30</td>
<td>0,42</td>
<td>0,12</td>
</tr>
<tr>
<td>El Torres (Villajoyosa)</td>
<td>0,61</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,67</td>
<td>0,40</td>
<td>0,10</td>
<td>0,84</td>
<td>0,08</td>
<td>0,30</td>
<td>0,43</td>
<td>0,13</td>
</tr>
<tr>
<td>El Rincón (El Pilar)</td>
<td>0,60</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,61</td>
<td>0,18</td>
<td>0,40</td>
<td>0,89</td>
<td>0,36</td>
<td>0,30</td>
<td>0,21</td>
<td>0,06</td>
</tr>
<tr>
<td>Postiguet (Alicante)</td>
<td>0,60</td>
<td>Playa Urbanizada</td>
<td>0,60</td>
<td>0,58</td>
<td>0,35</td>
<td>0,10</td>
<td>0,36</td>
<td>0,04</td>
<td>0,30</td>
<td>0,72</td>
<td>0,22</td>
</tr>
<tr>
<td>Los LocosSalaret (Torrevieja)</td>
<td>0,60</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,74</td>
<td>0,44</td>
<td>0,10</td>
<td>0,85</td>
<td>0,08</td>
<td>0,30</td>
<td>0,24</td>
<td>0,07</td>
</tr>
<tr>
<td>Almadraba (El Campello)</td>
<td>0,60</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,53</td>
<td>0,16</td>
<td>0,40</td>
<td>0,77</td>
<td>0,31</td>
<td>0,30</td>
<td>0,43</td>
<td>0,13</td>
</tr>
<tr>
<td>PuertoTorre (El Pilar)</td>
<td>0,58</td>
<td>Playa Urbanizada</td>
<td>0,60</td>
<td>0,66</td>
<td>0,39</td>
<td>0,10</td>
<td>0,66</td>
<td>0,07</td>
<td>0,30</td>
<td>0,42</td>
<td>0,13</td>
</tr>
<tr>
<td>Manzanera (Calpe)</td>
<td>0,58</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,61</td>
<td>0,18</td>
<td>0,40</td>
<td>0,87</td>
<td>0,35</td>
<td>0,30</td>
<td>0,18</td>
<td>0,05</td>
</tr>
<tr>
<td>C. Piteras (Torrevieja)</td>
<td>0,56</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,81</td>
<td>0,48</td>
<td>0,10</td>
<td>0,78</td>
<td>0,08</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>L’Andragó (Teulada)</td>
<td>0,55</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,68</td>
<td>0,20</td>
<td>0,40</td>
<td>0,87</td>
<td>0,35</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Pinet (Santa Pola)</td>
<td>0,55</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,53</td>
<td>0,16</td>
<td>0,40</td>
<td>0,89</td>
<td>0,35</td>
<td>0,30</td>
<td>0,13</td>
<td>0,04</td>
</tr>
<tr>
<td>Aguamarina (Orihuela)</td>
<td>0,55</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,70</td>
<td>0,21</td>
<td>0,40</td>
<td>0,71</td>
<td>0,29</td>
<td>0,30</td>
<td>0,19</td>
<td>0,06</td>
</tr>
<tr>
<td>Almadraba (Alicante)</td>
<td>0,55</td>
<td>Playa Urbanizada</td>
<td>0,60</td>
<td>0,51</td>
<td>0,31</td>
<td>0,10</td>
<td>0,49</td>
<td>0,05</td>
<td>0,30</td>
<td>0,64</td>
<td>0,19</td>
</tr>
<tr>
<td>Portixol (Xabia)</td>
<td>0,54</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,66</td>
<td>0,20</td>
<td>0,40</td>
<td>0,85</td>
<td>0,34</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C. Cerrada (Orihuela)</td>
<td>0,53</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,75</td>
<td>0,45</td>
<td>0,10</td>
<td>0,85</td>
<td>0,08</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Punta Prima (Orihuela)</td>
<td>0,53</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,75</td>
<td>0,22</td>
<td>0,40</td>
<td>0,77</td>
<td>0,31</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>L’Olla (Altea)</td>
<td>0,53</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,59</td>
<td>0,18</td>
<td>0,40</td>
<td>0,87</td>
<td>0,35</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Solsida (Altea)</td>
<td>0,53</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,56</td>
<td>0,17</td>
<td>0,40</td>
<td>0,89</td>
<td>0,36</td>
<td>0,30</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Cap Negret (Altea)</td>
<td>0,52</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,60</td>
<td>0,18</td>
<td>0,40</td>
<td>0,73</td>
<td>0,29</td>
<td>0,30</td>
<td>0,18</td>
<td>0,05</td>
</tr>
<tr>
<td>Nombre</td>
<td>BQI</td>
<td>Tipo de Playa</td>
<td>P1</td>
<td>RFI (Ponderado)</td>
<td>P2</td>
<td>NFI (Ponderado)</td>
<td>P3</td>
<td>PFI</td>
<td>PFI (Ponderado)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>-----</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Mojón (El Pilar)</td>
<td>0,52</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,70</td>
<td>0,42</td>
<td>0,10</td>
<td>0,74</td>
<td>0,07</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Racó Conill (Villajoyosa)</td>
<td>0,52</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,51</td>
<td>0,15</td>
<td>0,40</td>
<td>0,91</td>
<td>0,36</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Portet (Teulada)</td>
<td>0,51</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,73</td>
<td>0,44</td>
<td>0,10</td>
<td>0,55</td>
<td>0,05</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Bovetes (Denia)</td>
<td>0,50</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,60</td>
<td>0,36</td>
<td>0,10</td>
<td>0,68</td>
<td>0,07</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Río SecoRocamar (El Pilar)</td>
<td>0,50</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,65</td>
<td>0,39</td>
<td>0,10</td>
<td>0,84</td>
<td>0,08</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bras del Port (Santa Pola)</td>
<td>0,50</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,49</td>
<td>0,15</td>
<td>0,40</td>
<td>0,87</td>
<td>0,35</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Almadraba (Denia)</td>
<td>0,49</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,66</td>
<td>0,40</td>
<td>0,10</td>
<td>0,61</td>
<td>0,06</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap Blanc (Altea)</td>
<td>0,46</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,64</td>
<td>0,38</td>
<td>0,10</td>
<td>0,79</td>
<td>0,08</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Cura (Torrevieja)</td>
<td>0,45</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,58</td>
<td>0,35</td>
<td>0,10</td>
<td>0,79</td>
<td>0,08</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morelló (Calpe)</td>
<td>0,44</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,60</td>
<td>0,36</td>
<td>0,10</td>
<td>0,79</td>
<td>0,08</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SetlaMirarrosa (Denia)</td>
<td>0,40</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,56</td>
<td>0,33</td>
<td>0,10</td>
<td>0,61</td>
<td>0,06</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Marines (Denia)</td>
<td>0,38</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,53</td>
<td>0,32</td>
<td>0,10</td>
<td>0,66</td>
<td>0,07</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Molinos (Denia)</td>
<td>0,38</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,42</td>
<td>0,25</td>
<td>0,10</td>
<td>0,42</td>
<td>0,04</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PopeTango (Xabia)</td>
<td>0,37</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,48</td>
<td>0,14</td>
<td>0,40</td>
<td>0,57</td>
<td>0,23</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NovaPuntaR (Denia)</td>
<td>0,35</td>
<td>Playa Urbana</td>
<td>0,60</td>
<td>0,30</td>
<td>0,18</td>
<td>0,10</td>
<td>0,28</td>
<td>0,03</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MarinetaCasiana (Denia)</td>
<td>0,33</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,52</td>
<td>0,16</td>
<td>0,40</td>
<td>0,42</td>
<td>0,17</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les Rotes (Denia)</td>
<td>0,28</td>
<td>Playa Urbanizada</td>
<td>0,30</td>
<td>0,37</td>
<td>0,11</td>
<td>0,40</td>
<td>0,32</td>
<td>0,13</td>
<td>0,30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 24. Ranking de calidad de las playas de la provincia de Alicante.
10. Conclusiones

El presente estudio detallado de la calidad y gestión de las playas de la provincia de Alicante se presenta como un documento de ayuda a los técnicos que se encuentran desarrollando labores en relacionadas con la gestión y el mantenimiento de las playas.

Para conseguir este objetivo se ha presentado en primera instancia un desarrollo teórico de los principales factores que alteran la morfodinámica litoral, tratando de hacerlos comprensibles para cualquier tipo de experto. En este primer punto se ha tratado de llegar al mayor rango posible de técnicos que se encuentran trabajando en la materia en cuestión, ya sean especialistas en el campo legal, administrativo, medioambiental o ingenieril.

La premisa principal que se ha perseguido en el primer punto del estudio ha sido el mostrar que la playa es un ente vivo que experimenta cambios estacionales que no han de ser tratados como problemas erosivos, y para ello se han explicado los principales procesos que rigen los movimientos de los sedimentos desde el punto de vista de la ingeniería costera.

En el punto segundo del estudio se ha elaborado el desarrollo teórico en el que se basa la ingeniería costera intentando mostrar los aspectos más importantes y hacerlos comprensibles al mismo tiempo. Una vez introducidos los procesos que gobiernan los cambios producidos en las playas y el origen de los mismos se ha desarrollado en el punto tercero el marco legal que actualmente es aplicable en el dominio público marítimo-terrestre, siendo este el marco en el que se encuentra emplazada la playa desde un punto de vista de la ingeniería costera.

En el punto cuarto se ha desarrollado un apartado que muestra las diversas competencias que posee cada ente administrativo en relación a la gestión de las playas, siendo un punto ambiguo y de difícil interpretación en ocasiones por tener solapamientos y no dar una suficiente cobertura a problemas que afectan a varias comunidades autónomas, problema que ha sido remarcado con más detalle en el punto sexto del estado del arte de la gestión costera.

En relación al mantenimiento de playas, se ha querido introducir en el punto quinto los problemas medioambientales y ecológicos asociados a la limpieza mecanizada de playas, un problema totalmente desconocido en la
actualidad y que está soportado por diversas investigaciones científicas que muestran cómo esta práctica erradica la presencia de un ecosistema que las arenas de las playas dan cabida y que su presencia es muestra de la gran calidad medioambiental de un playa.

Uno de los puntos más novedosos que se presentan en el estudio es el tratamiento científico de la gestión de playas mediante la ejecución del estado del arte en cuanto al tema se refiere. Se han identificado diversos autores de prestigio que han dedicado sus investigaciones al estudio de los procesos que intervienen en la gestión explicando cómo clasificarlos, analizarlos y mejorarlos para aumentar la calidad de las playas.

La gestión de playas se puede definir como todos aquellos procesos impuestos por parte de un ente competente que van encaminados a mantener un equilibrio entre el ecosistema costero existente y la presión que tiene sobre el mismo la actividad humana. La gestión de las playas resulta de suma importancia debido a que el 24% de la costa españolas son playas, y gran parte de este espacio está sometido a una gran presión urbanísticas por encontrarse asentados grandes núcleos poblacionales a su alrededor.

Para una correcta gestión de un sistema costero se establecen cuatro puntos básicos que han de desarrollarse conjuntamente por los entes competentes, ya que en base a su desarrollo se derivará un adecuado equilibrio entre los recursos disponibles y su empleo Micallef and Williams (2002). Estos cuatro puntos fundamentales son el análisis, el planeamiento, la gestión y la monitorización. El presente trabajo se ha basado en el análisis por tratarse de un punto esencial y ser el primero en la cadena para poder llegar a una correcta gestión. El análisis consiste en conocer la situación existente, identificar los problemas y definir los resultados que se pretenden conseguir.

Para conocer la situación existente se ha llevado a cabo un análisis pormenorizado de todas las playas de la provincia de Alicante realizando encuestas sistemáticas a las personas responsables de la gestión y mantenimiento de playas. Las encuestas realizadas vienen recogidas en un anexo al presente trabajo, además se presenta otro más donde la información obtenida ha sido analizada y empleada para caracterizar el índice de calidad de cada una de las playas de la provincia de Alicante acorde a los estudio de Ariza et al. (2010). Mediante los diversos parámetros incluidos en este índice se ha podido realizar un estudio comparativo de las playas de la provincia de Alicante detectando cuáles son las faltas de cada una de ellas. Esta herramienta de análisis, que también sirve para la monitorización, arroja información precisa de cómo poder subsanar las deficiencias encontradas en cada una de las playas. La gestión de las playas resulta de suma importancia debido a que el 24% de la costa españolas son playas, y gran parte de este espacio está sometido a una gran presión urbanísticas.

El primer problema detectado en cuanto a la gestión de playas radica en que los modelos implantados en España son locales y como se aventura en

Hugo Tinoco López

117
Eurosion (2004), los modelos de gestión locales tradicionales no resultan una buena vía en la gestión de los problemas erosivos ya que la escala espacial de muchos de estos problemas supera el ámbito local. A esto además cabe sumar que las competencias en materia de gestión de playas se encuentran diversificadas entre diversos entes u organismos públicos que carecen de una coordinación apropiada.

Este aspecto además se ha visto intensificado en la Comunidad Valenciana con ejemplos como la no participación de esta comunidad en ENPLAN. ENPLAN es un proyecto europeo cofinanciado por la Iniciativa Comunitaria Interreg IIIB-Medoc para la elaboración de una metodología común y compartida de aplicación de la Evaluación Ambiental Estratégica. Cataluña, Murcia y Andalucía han participado en este programa pero la Comunidad Valenciana no. La evaluación ambiental resulta una herramienta de diagnóstico que sirve para activar alertas tempranas de actuación, tarea que ha de estar englobada dentro de la gestión de playas.

Cabe destacar que en la revisión bibliográfica sobre la gestión de playas siempre se ha encontrado una dualidad antagonista dentro de la gestión de playas. Esta dualidad es la función de recreo que posee la playa asociada al valor ambiental de la misma. Según McLachlan, Defeo, Jaramillo, and Short (2013) la clave de orientar una gestión hacia la conservación o el recreo reside en el control del acceso a las playas, tanto espacial como temporal. Es fácil entender que esta consideración resulta un tanto utópica como tal, pero posible de ejecutar de una manera indirecta mediante el control y mejora de parámetros básicos de la playa como accesibilidad, seguridad y conectividad, siempre conservando el factor medioambiental.

Los índices de calidad de las playas se plantean como un instrumento que acerque a la población una información valiosa de diversos aspectos de las playas y que sirva como elemento persuasoría a las autoridades para iniciar actuaciones encaminadas a mejorar las mismas para el usuario. El turismo es uno de los principales motores económicos de la provincia de Alicante, debido a ello resultaría fácil emplear estos índices objetivos para la concienciación de los órganos de control sobre los problemas que están sufriendo algunas zonas de la provincia.

Un ejemplo de ello es Denia, la cual ha obtenido los peores índices de calidad de playas de toda la provincia, con la playa de les Rotes con el mínimo valor calculado de la provincia. Hacer públicos estos resultados haría que se pusiese en marcha un planeamiento de mejora de esta playa por parte del municipio de Denia ya que la mala puntuación obtenida ejercería una presión clara sobre los entes que tengan potestad para cambiar la situación.

La hipótesis contraria sucedería en las playas que tengan los mejores índices, las cuales estarían más solicitadas por lo que factores como la comodidad, calidad del agua, masificación, condiciones naturales y polución se verían afectadas de manera negativa por lo que en una nueva revisión el índice
de esta playa se vería mermado. Con todo esto se podría conseguir un equilibrio en el que las playas con peores resultados en el presente estudio se vean afectadas con mejoras y las mejores playas vean mermadas sus puntuaciones consiguiendo un cierto balance auto-estable.

Todo ello junto con programas de monitorización eficientes constituiría un sistema para la detección precoz de los posibles problemas a los que se encuentra sometida la costa ya sean medioambientales o relacionados con el recreo. Según Micallef and Williams (2002) la monitorización es un punto imprescindible a llevar a cabo para conseguir una gestión estratégica satisfactoria.

A continuación se va a centrar la atención en los resultados del análisis del índice de calidad de playas expuestos en el punto 9 del presente trabajo. El índice de calidad implementado es el derivado de los estudios de Ariza et al. (2010), ya que esto ha servido como punto de partida para futuras investigaciones que van encaminadas a generar un índice de calidad propio con diversas modificaciones sobre índices considerados poco acertados que han sido empleados por estos autores.

Se han analizado todas las playas de la provincia de Alicante, lo que supone un total de 96 playas que poseen un índice de calidad medio de 0,65 estando sus valores comprendidos entre los valor de 0,856 el máximo y 0,278 el mínimo. Los índices de calidad oscilan entre los valores de 1 si es de calidad excelente y 0 si es muy deficiente. Dentro de las playas con un índice de calidad malo el 85% de ellas se encuentra en el término municipal de Denia, del estudio de este municipio se ha podido observar como las playas del término municipal de Denia está fuertemente influenciadas por procesos erosivos lo que influye en que sus índices biofísicos y morfodinámicos sean muy bajos y las penalicen en gran medida.

Del análisis combinado de los factores de recreo (RFI), biofísicos (NFI) y morfodinámicos (PFI) se pueden detectar fácilmente las carencias de cada playa y término municipal tal y como se parecía en la figura 33. Se ha preparado una tabla anexa al en la que se recoge el estudio de todos los parámetros de manera resumida con sus correspondientes ponderaciones. Esta base de datos generada ha sido empleada para el estudio parámetro a parámetro de todas las playas de la provincia de Alicante que se muestra en el punto 9 del presente trabajo.

Se ha detectado en el estudio que con los índices de recreo suelen presentar resultados antagonistas a los índices biofísicos y morfodinámicos, lo que era de esperar debido a la dualidad antagonista propia de estos que ya ha sido introducida previamente. Los mejores resultados suelen darse para playas que presentan un cierto equilibrio entre sus parámetros y que a pesar de que presenten parámetros con grandes diferencias por su naturalidad antagonista no presentan riesgos de erosión.

Un aspecto importante que se ha notificado es que, a excepción de la playa de Nova Punta de Denia, la calidad microbiológica de las aguas de las
playas de la provincia de Alicante es muy buena cosa que no sucede con su masificación. En la figura 38 es fácil apreciar los problemas de masificación que sufren las playas de la provincia de Alicante que son fruto de que el turismo de playa sea el motor económico de la misma.

Por otro lado dentro de los índices que Ariza et al. (2010) considera como parte del factor de recreo, el índice de calidad medioambiental (IEQ) parece poco apropiado debido a la subjetividad de su medición, este valora la calidad estética e higiénica de una playa mediante inspección visual. Sin embargo, ateniéndose al proceso establecido por estos autores se ha percibido que un 44% de las playas de la provincia de Alicante están englobadas en lo que se ha establecido para el presente trabajo como calidad medioambiental regular (figura 41 valores de 0,75 a 0,51).

En cuanto al estudio de los servicios que presenta cada playa, los parámetros medidos vienen recogidos en la tabla 23 y resulta interesante el que para una provincia que basa su economía en el turismo de playa el 61% de las playas analizadas presenten deficiencias en cuanto a los servicios que estas proporcionan. Se ha identificado una grave deficiencia en el municipio de Altea donde ninguna de sus playas cubre la totalidad de los servicios básicos que se deberían de ofertar al usuario.

En relación a la accesibilidad por medios de transporte públicos y privados a las playas de la provincia de Alicante se ha observado que por lo general estas no presentan problemas ya que la gran mayoría están dotadas de acceso por medios de transporte públicos y parkings para el acceso mediante el vehículo privado. En lo que se refiere a la seguridad se observa en la figura 51 como el municipio de El Campello alberga la mayor parte de las playas que presentan deficiencias en materia de seguridad por carecer de varios de los parámetros expuestos en el punto 9.1.9. Las playas que se encuentran en la zona de peligro son las siguientes: Los Tiestos del municipio de Benitaxel, El Carritxar, Baeza y Playa del Cuartel del término municipal de El Campello, Pinet de Santa Pola y la playa del Rebollo en Guardamar.

Dejando a un lado los factores que influyen en el índice de recreo y pasando a los que influyen en el índice biofísico se puede apreciar como el índice biofísico (NFI) presenta una tendencia similar al factor de calidad medioambiental (IEQ), cosa que es de esperar por su estrecha relación. Cabe destacar que el 91,6% de las playas de la provincia de Alicante presentan un índice biofísico mayor de 0,5. Sin embargo, dentro del factor de condiciones naturales (IN) se estima erróneo el que Ariza et al. (2010) hayan dado el máximo valor a las playas que se limpien mediante métodos mecánicos debido a que como se ha mostrado en el punto 5.1 del presente estudio este hecho afecta a la fauna existente en las arenas cuyo presencia es indicativo de una gran calidad medioambiental de las mismas. Un gran peso otorgado para este índice se relaciona con el hecho de que la playa aún conserve su fuente de sedimentos de carácter eólico o dunas, hecho que se refleja en la figura 54.
Continuando con los factores relacionados con el índice biofísico (NFI), cabe remarcar las deficiencias presentadas en cuanto a polución del agua y arena en las playas del Postiguet, la Albufera y la Almadraba en el municipio de Alicante y por las playas de Nova Punta y Les Rotes en el municipio de Denia. Estas deficiencias se deben a la cercanía de estas playas a instalaciones portuarias y por tratarse de salidas naturales de aguas de lluvia al mar con el consiguiente arrastre de contaminantes que ello provoca. De todas formas, el factor de polución del agua y arena (IWSP) presentado por Ariza et al. (2010) parece inadecuado debido a que solo tiene en cuenta los periodos de cierre de la playa como elemento adverso sin centrarse en los parámetros expuestos en el punto 9.2.2 que resultaría interesante tener en cuenta.

Por último, dentro del estudio de los parámetros biofísicos, se ha detectado cómo únicamente un 15.6% del total de las playas de la provincia de Alicante no ha sufrido ningún tipo de afección que haya originado cambios físicos provocados por el hombre. Este hecho está en la línea de la fuerte presión urbanística que sufre, ha sufrido la costa alicantina. Además estos resultados están íntimamente relacionados con que el 70% de las playas estén sufriendo o sean susceptibles de sufrir procesos erosivos, hipótesis extraída del estudio del índice de protección (PFI) desarrollado en el punto 9.3.

Como conclusión de lo anteriormente citado se puede decir que las playas de la provincia de Alicante presentan grandes deficiencias, que han de ser mejoradas y puestas en el punto de mira de las autoridades o entes competentes, en los siguientes campos:

- Masificación.
- Escasez de servicios y facilidades.
- Problemas erosivos y falta de protección.

El presente análisis sirve de punto de partida de una tesis doctoral en la que se desarrolle un índice de calidad mejorado que de un mayor ajuste a la realidad de las playas de la costa levantina y a su vez sea aplicable de manera global a cualquier playa del mundo. Además se persigue la eliminación de cualquier tipo de parámetro que introduzca resultados subjetivos o de difícil medición. Así como también, se pretende establecer coeficientes de ponderación para cada uno de los factores a tener en cuenta que sean más flexibles y se adecúan mejor a la diversidad que presentan las playas fuera de la región que ha sido sujeta al estudio del presente trabajo.
Bibliografía

Cacho, N. (2010). Asturias es ya la región que más costa tiene delimitada por mojones de hormigón. La Nueva España.

Hugo Tinoco López

123

Murcia, D. G. Medio Natural. (2005). Proyecto ENPLAN de evaluación ambiental de planes y programas. La evaluación ambiental estratégica (EAE) aplicada a la gestión del medio natural de la región de Murcia.: Consejería de Medio Ambiente y Ordenación del Territorio de la Comunidad Autónoma de la Región de Murcia.

