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Estimating VAR-MGARCH models in multiple 
steps
Abstract: This paper analyzes the performance of multiple steps estimators of vector autoregressive multivari-
ate conditional correlation GARCH models by means of Monte Carlo experiments. We show that if innovations 
are Gaussian, estimating the parameters in multiple steps is a reasonable alternative to the maximization of 
the full likelihood function. Our results also suggest that for the sample sizes usually encountered in financial 
econometrics, the differences between the volatility and correlation estimates obtained with the more effi-
cient estimator and the multiple steps estimators are negligible. However, when innovations are distributed 
as a Student-t, using multiple steps estimators might not be a good idea.
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1  Introduction
Understanding how stock market returns and volatilities move over time has been of interest to researchers 
into the time series literature. As the financial crisis has shown, stock markets move together. Evidence of 
these co-movements can be found, for example, in the fall of several international stock market indices after 
a very big investment bank in US, Lehman Brothers, declared bankruptcy in September 2008. Therefore, 
trying to model stock markets in a univariate way ignoring their interactions would be insufficient. In this 
sense, multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) models have been 
very popular to capture the volatility and covolatility of assets and markets; see, for example, Bauwens, 
Laurent, and Rombouts (2006) and Silvennoinen and Teräsvirta (2009) for a survey.

One of the problems with many MGARCH models is the difficulty to verify that the conditional variance-
covariance matrix is positive definite. Engle, Granger, and Kraft (1984) provide necessary conditions for the 
positive definiteness of the variance-covariance matrix in a bivariate ARCH setting. However, extensions of 
these results to more general models are very complicated. Moreover, imposing restrictions on the log-likeli-
hood function, in order to have the necessary conditions satisfied, is often difficult.

A model that could avoid these problems is the constant conditional correlation GARCH (CCC-GARCH) 
model proposed by Bollerslev (1990). In this model, the Gaussian maximum likelihood (ML) estimator of 
the correlation matrix is the sample correlation matrix which is always positive definite. Therefore, the only 
restrictions needed are the ones for the conditional variances to be positive. On top of that, since the cor-
relation matrix can be concentrated out of the log-likelihood function, the optimization problem becomes 
simpler. Consequently, the CCC-GARCH model has become very popular in the literature regardless of some 
limitations such as the constant correlation assumption and the incapability to explain possible volatility 
interactions. The extension proposed by Jeantheau (1998), the ECCC-GARCH model, addresses the last issue 
by allowing for volatility spillovers. Relaxing the constant correlation assumption is done by Engle (2002) 
and Tse and Tsui (2002) who propose the Dynamic Conditional Correlation GARCH (DCC-GARCH) model in 
which the correlation changes over time. However, since the correlation dynamics require more parameters, 
the estimation of the DCC-GARCH model can be computationally very heavy. One possible solution is to use 
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the correlation targeting approach, see Engle (2009), in which the intercept in the correlation equation is 
replaced by its sample counterpart. This solution is questioned by Aielli (2008) who suggests a correction to 
the DCC-GARCH model, denoted by consistent DCC-GARCH (cDCC-GARCH) model.

Alternatively, Pelletier (2006) introduces the regime switching dynamic correlation GARCH (RSDC-
GARCH) model in which the correlation is constant over time but changing between different regimes and 
driven by an unobserved Markov switching chain. This model can be thought as in between the CCC-GARCH 
model and the DCC-GARCH model, with the problem that the number of correlation parameters increases 
rapidly with the number of series considered.

When dealing with stock market returns, it is not unusual to find some dynamics in the conditional 
mean, that could be well approximated by a vector autoregressive moving average (VARMA) model; see, for 
example, McAleer and da Veiga (2008a,b). One way to estimate the parameters of the VARMA-MGARCH con-
ditional correlation model would be solving the optimization problem of the full log-likelihood function and 
therefore obtaining the estimates for all the parameters in 1 step. If a Gaussian log-likelihood function is 
specified and the true data generating process (DGP) is also Gaussian, then it is known that ML estimators 
are consistent and asymptotically normal. In the case that the true DGP is not Gaussian, then we would be 
using quasi-maximum likelihood (QML) estimators. Bollerslev and Wooldridge (1992) show that, under quite 
general conditions, QML estimators are consistent and asymptotically normal. Estimating all parameters in 1 
step would be the best we could achieve, however when there are many parameters involved, it is very heavy 
computationally, when feasible. Bollerslev (1990), Longin and Solnik (1995) and Nakatani and Teräsvirta 
(2008) are few of the papers using 1-step estimation.

Under the normality assumption, the parameters could also be estimated in 2 steps. First, the mean 
and variance parameters are estimated assuming no correlation and then, in a second step, the correlation 
parameters are estimated given the estimates from the first step; see, for example, Engle (2002). However, as 
Engle and Sheppard (2001) suggest for the DCC-GARCH model, these 2-steps estimators will be consistent and 
asymptotically normal but not efficient.

The 3-steps estimation method is mentioned in Bauwens, Laurent, and Rombouts (2006). It consists of 
estimating the mean parameters in a first step, the variance parameters in a second step, given the first step 
estimates, and finally, given all other parameter estimates, the correlation parameters in the last step. The 
second and third steps of the procedure will be equivalent to the 2-steps estimation method for a zero-mean 
series. Therefore, under normal errors, the 3-steps estimators are also consistent and asymptotically normal. 
Engle and Sheppard (2001) implement the 3-steps estimation procedure in their empirical application.

There are other papers in the literature using multiple steps estimators in multivariate GARCH models; 
see, for example, Hafner and Reznikova (2012) and Engle, Shephard, and Sheppard (2008) for a deeper dis-
cussion on the issue of estimating dynamic conditional correlation models.

Evidence gathered over the past decades shows that stock market returns are often far from having a 
normal distribution. Consequently, we find interesting to consider the estimation of the models assuming a 
Student-t distribution. In this case, the 1-step estimator is obtained by maximizing the log-likelihood function 
based on the multivariate t-distribution; see, for example, Harvey, Ruiz, and Shephard (1992) and Fioren-
tini, Sentana, and Calzolari (2003). Although there is no theoretical work studying the properties of multiple 
steps estimation when assuming a Student-t distribution, 2-steps and 3-steps estimators could be analyzed 
by means of Monte Carlo simulations. In this line of research, Bauwens and Laurent (2005) and Jondeau and 
Rockinger (2005) analyze 2-steps estimators. However, their first step is performed assuming Gaussian errors 
while we wonder what would be the behaviour of multiple steps estimators under the assumption that the 
errors are distributed as a Student-t.

In this paper, we present various Monte Carlo experiments to compare the finite sample performance of 
the more efficient 1-step estimator with the 2-steps and 3-steps estimators for different vector autoregressive 
multivariate conditional correlation GARCH models. In particular we consider VAR(1) - CCC, ECCC, DCC, cDCC 
and RSDC - GARCH(1,1) models and other extensions of these models. When the data is normally distributed, 
we find that, for the models considered and for the sample sizes usually encountered in financial econo-
metrics, differences between the 1-step and multiple steps estimators are negligible. When we change the 
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assumption on the distribution to a Student-t, we conclude that, for some models, the differences between 
the estimators could be relevant and therefore, estimating the parameters in multiple steps might not be a 
good idea.

The main contributions of this paper to the related literature are the following. First, we compare the 
performance of multiple steps estimators for different conditional correlation models and not only for the 
dynamic conditional correlation model; see Hafner and Reznikova (2012) and Engle, Shephard, and Shep-
pard (2008). Second, we analyze multiple steps estimators obtained by maximizing the log-likelihood func-
tion based on the normal distribution but also based on the Student-t distribution and we find that if errors 
follow a Student-t distribution, multiple steps estimators assuming the t distribution do not seem to be con-
sistent for some of the models. Finally, we point out that when the distribution of the errors is skewed, QML 
estimators based on symmetric distributions could be inconsistent. We also analyze the robustness of our 
findings to the model misspecification.

One potential problem of our results is their external validity. For the Monte Carlo experiments, we con-
sidered bivariate models and in some cases trivariate models. We assume that what we find for two and three 
time series could be extrapolated for any number k > 3 of time series.

The rest of the paper is structured as follows. Section 2 introduces the econometric models of interest. 
1-step and multiple steps estimators for the different models are discussed in Section 3. Section 4 describes 
the Monte Carlo experiments and presents a discussion of the results. Finally, Section 5 concludes the 
paper.

2  Econometric models
For simplicity we consider a k-variate vector autoregressive (VAR) model of order one for the mean equation 
with the following notation:

 yt = μ+Byt–1+εt (1)

where Var(εt|yt–1, … y1) = Ht, yt is a k × 1 vector of returns, μ is a k × 1 vector of constants, B is a k × k matrix of autore-
gressive coefficients and εt is a k × 1 vector of innovations as follows.
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The model is stationary if all values of z solving equation (2) are outside of the unit circle.

 |Ik–Bz| = 0 (2)

The number of mean parameters in the matrices μ and B is k(k+1). However, if B is assumed to be diagonal, 
the number of mean parameters is reduced to 2k.

The error term εt can be written as follows

ε η= 1/2
t t tH

where ηt is a k × 1 vector with E(ηt) = 0 and Var(ηt) = Ik.

 Ht = DtRtDt (3)

where = 1/2 1/2 1/2
1 2( , , ..., )t t t ktD diag h h h  and Rt is the conditional correlation matrix such that
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From previous equations, assuming that the conditional correlation matrix, Rt, is positive definite, it is clear 
that as long as conditional variances, hit, are positive for any i = 1, 2, …, k, the conditional variance-covariance 
matrix, Ht, will be also positive definite. The conditional variances hit are assumed to follow a GARCH(1,1) 
model. Then,

 
ω ε − −= + +(2)

1 1t t th A Gh
 (4)

where ht = [h1t h2t … hkt]′ and ε ε ε ε= ′…(2) 2 2 2
1 2[ ]t t t kt  are k × 1 vectors of conditional variances and squared errors 

respectively and ω is a k × 1 and A and G are k × k matrices of coefficients. If A and G are restricted to be diag-
onal, then volatility spillovers cannot be captured; see, for example, Bollerslev (1990) and Engle (2002). 
Alternatively, if A and G are non-diagonal, then the model allows for volatility spillovers; see, for example, 
Jeantheau (1998) and Ling and McAleer (2003). In the former case there will be 3k variance parameters to 
estimate, while in the latter that number will be k(2k+1).

Let us denote by ωi = [ω]i, αij = [A]i, j and γij = [G]i, j. The following conditions, in Jeantheau (1998), are suffi-
cient for the variances to be always positive.

ωi  >  0   αij  0   γij  0   for all i and j.

Nakatani and Teräsvirta (2008) provide necessary and sufficient conditions for ht to have positive ele-
ments for all t. They show that off-diagonal elements in G could be negative while Ht is still positive definite. 
This allows for negative volatility spillovers; see also Conrad and Karanasos (2010). The model is stationary 
in covariance if the roots of |Ik–(A+G)z| = 0 are outside of the unit circle. In the diagonal case, this condition 
is equivalent to

αii+γii < 1   for all i.

This paper considers five conditional correlation GARCH models given by different specifications of Rt in 
(3). The first and simplest one is the CCC-GARCH model where the correlations are restricted to be constant 
over time. Bollerslev (1990) shows that, under this restriction, the Gaussian ML estimator of the correlation 
matrix, Rt = R, is equal to the matrix of sample correlations of the standardized residuals, which is always 
positive definite, i.e.,
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(5)

where ν ε−1=t t tD  are the standardized errors. Notice that, in this case, the number of correlation parameters to 
be estimated is only k(k–1)/2. The ECCC-GARCH model of Jeantheau (1998) extends the CCC-GARCH model by 
allowing for volatility spillovers as A and G in (4) are non-diagonal.

The third model we consider is the DCC-GARCH in which Rt = PtQtPt with Pt = diag(Qt)–1/2 and 
δ δ δ ν ν δ− − −= − − + +′1 2 1 1 1 2 1(1 )t t t tQ Q Q  where Qt denotes the covariance matrix and Q  is the long run covariance 

(correlation) matrix. The correlation targeting approach suggests replacing Q  with the sample covariance 
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matrix of the standardized errors νt; see Engle (2009). This procedure makes the estimation easier since it 
reduces the number of correlation parameters from k(k–1)/2+2 to only 2: δ1 and δ2. If both are non-negative 
scalars satisfying δ1+δ2 < 1, then the correlation matrix, Rt, will be positive definite. Hafner and Franses (2009) 
provide a more general definition of the model where they consider coefficient matrices instead of scalar 
coefficients allowing for different dynamics on different correlations. However, this increases the number of 
parameters considerably. For simplicity, we will focus on the set up with the scalar coefficients.

The DCC-GARCH model suffers from two problems. First, as Engle and Sheppard (2001) and later Engle, 
Shephard, and Sheppard (2008) point out, when k is large the correlation targeting approach used in the 
DCC-GARCH model causes significant biases to estimators of the parameters δ1 and δ2. To fix this problem, 
Engle, Shephard, and Sheppard (2008) suggest a composite likelihood estimator which is based on the sum 
of the likelihoods obtained from smaller number of series and therefore avoid the trap of high dimensionality.  
Another solution is proposed by Hafner and Reznikova (2012), where the authors use shrinkage to target 
methods to eliminate these biases asymptotically. The second problem, as Aielli (2008) argues, is that mul-
tiple steps estimators of DCC-GARCH models with correlation targeting are inconsistent since the covariance 
matrix of the standardized residuals is not a consistent estimator of the long run covariance matrix .Q  As 
Caporin and McAleer (2009) point out as well, Aielli’s conclusion follows from the fact that the unconditional 
expectations of Qt could differ from the unconditional expectation of ν ν− −′1 1 ,t t  the former being a covariance 
matrix while the latter is a correlation matrix by construction. Aielli (2008) therefore suggests a corrected 
version of the DCC-GARCH model, denoted by cDCC-GARCH, in which δ δ δ ν ν δ∗ ∗′

− − −= − − + +1 2 1 1 1 2 1(1 )t t t tQ Q Q  where 
ν ν∗ = 1/2( ) .t t tdiag Q  He argues that in this model a natural estimator for the long run covariance matrix, ,Q  
would be the sample covariance matrix of .tν∗  The number of parameters to be estimated will be then only 2 
as in the DCC-GARCH model of Engle (2002).

We will also consider in this paper the RSDC-GARCH model introduced by Pelletier (2006). In this model 
the conditional correlations follow a switching regime driven by an unobserved Markov chain such that they 
are fixed in each regime but may change across regimes. For simplicity, we assume a two-states Markov 
process such that Rt, at any time t, could be equal to either RL or RH, which stands for low and high state 
correlation matrices, respectively. The transition probabilities matrix is given by Π = {{πL, L, πH, L}, {πL, H, πH, H}}, 
where πi, j is the probability of moving from state j to state i. Given that πj, j+πi, j = 1, the number of correlation 
parameters is k(k–1)+2.

Additionally, the extended versions of the DCC, cDCC and RSDC-GARCH models, namely EDCC, EcDCC 
and ERSDC-GARCH models are also considered. Like the ECCC-GARCH model, these extended models allow 
for volatility spillovers letting A and G to be non-diagonal.

In the next section we will discuss how to estimate the parameters of these models.

3  Estimation procedures
Multivariate GARCH models can be estimated using maximum likelihood. However, how the estimation is 
implemented in practice is one of the main problems. When the number of parameters is large, it is common 
that optimization procedures fail to find the maximum of the likelihood function. In this section we will 
describe alternative estimation methods which could be used in practice.

Let us start by introducing some notation. Let θ =( μ′, vec(B)′)′ be the vector containing all the mean 
parameters in equation (1). The vector containing all the variance parameters in (4) will be denoted by  
φ = (ω′, vec(A)′, vec(G)′)′ and ψ will be the vector with all the correlation parameters, that will change accord-
ing to the model considered in each case. For example, ψ = vech(R) for a CCC-GARCH model, while for a cDCC-
GARCH model, it will be ψ δ δ′ ′1 2=( ( ) , , ) .vech Q 1

1 Notice that the vec operator stacks the columns of a matrix while the vech operator stacks the columns of the lower triangular 
part of a matrix.
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3.1  Vector autoregressive CCC, DCC and cDCC GARCH models and their extensions

In this section we analyze three possible procedures to estimate the parameters in equations (1) and (3), 
denoted by Φ = (θ′, φ′, ψ′)′ when Rt in equation (3) is specified by the CCC-GARCH, DCC-GARCH, cDCC-GARCH 
models and their extensions, namely ECCC-GARCH, EDCC-GARCH and EcDCC-GARCH models.

3.1.1  One-step estimation

One possibility is to estimate all parameters of the model, Φ = (θ′, φ′, ψ′)′ simultaneously. If data is assumed 
to be normally distributed, this 1-step estimator will be the maximum likelihood estimator of Φ and it can be 
found by maximizing the multivariate Gaussian log-likelihood function:

Φ π ε ε−− − + ′∑ 1

=2

1( )= log  (2 ) ( log| | )
2 2

T

t t t t
t

TkL H H

From equation (3) we have that
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π ν ν

−

−

− − − ′

− − − − ′
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(6)

If errors are assumed to follow a Student-t distribution, then the function to be maximized will be the multi-
variate Student-t log-likelihood as in Fiorentini, Sentana, and Calzolari (2003):
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(7)

where η is the inverse of the degrees of freedom as a measure of tail thickness. We assume 0 < η < 0.5 in order 
to have existence of the second order moments.

As Newey and Steigerwald (1997) pointed out, one concern when maximizing the log-likelihood func-
tion based on a Student-t distribution is that estimators can be inconsistent if the data does not follow a 
Student-t distribution. However, this will not be the case as long as both the true and assumed distributions 
are symmetric.

Under Gaussianity assumption, 1-step estimators of the parameters, Φ, obtained by maximizing the cor-
responding likelihood function in (6), are consistent and asymptotically normal. In particular,

Φ Φ − −− 1 1
0 0 0 0

ˆ( )~ (0, )A
nn N A B A

where A0 is the negative expectation of the Hessian matrix evaluated at the true parameter vector Φ0 and B0 
is the expectation of the outer product of the score vector evaluated at Φ0 obtained from the likelihood func-
tion in (6).

If data is assumed to follow a Student-t distribution, 1-step estimators of the parameters, Φ, computed by 
maximizing the likelihood function in (7), are consistent and asymptotically normal; see Fiorentini, Sentana, 
and Calzolari (2003). It is important to note that if the true distribution of the data is Student-t, maximum 
likelihood (ML) estimators (in this case, 1-step estimators using (7)) are more efficient than Quasi-maximum 
likelihood (QML) estimators obtained from maximizing the likelihood function under the normality assump-
tion given in (6).
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3.1.2  Two-steps estimation

It is possible to estimate the parameters of the model, Φ = (θ′, φ′, ψ′)′ in 2 steps following Engle (2002) and 
Engle and Sheppard (2001). They proposed to use 2-steps when estimating the parameters of the DCC-GARCH 
model. The idea is to separate the estimation of the correlation parameters, ψ, from the mean and variance 
parameters, θ and φ, respectively.

In the first step, the mean and variance parameters, θ and φ, are estimated by maximizing the Gaussian 
log-likelihood function in (6) in which the correlation matrix Rt is replaced by the identity matrix. Therefore, 
in the first step, the function to be maximized is the following:

θ φ π ν ν− − − ′∑ ∑1
=2 =2

1( , )= log  (2 ) log  | |
2 2

T T

t t t
t t

TkL D

If volatility spillovers are not allowed, i.e., A and G in equation (4) are restricted to be diagonal, the first 
step estimation is equivalent to estimating k univariate models separately; see Engle and Sheppard (2001) for 
details. In this sense, we note that all extended models considered in this paper require multivariate estima-
tion when estimating the variance parameters.

In the second step, given the estimates from the first step, θ̂  and φ̂,  the correlation coefficients are esti-
mated by maximizing the following function

 
ψ θ φ ν ν−=− + ′∑ 1

2
=2

1ˆ ˆ ˆ ˆ( | , ) (log  | | )
2

T

t t t t
t

L R R
 

(8)

where ν̂t  are the standardized residuals obtained in the first step.
Bollerslev (1990) shows that when the correlations are constant over time, i.e., in the CCC-GARCH model, 

the correlation coefficients estimator obtained in the second step is equal to the sample correlation matrix of 
the standardized residuals given in (5).

If data is assumed to follow a normal distribution, 2-steps estimators are also consistent. Furthermore, 
Engle and Sheppard (2001) give conditions for the DCC-GARCH model under which 2-steps estimators are also 
asymptotically normal.

Next, we also consider 2-steps estimation using the log-likelihood function based on the Student-t distri-
bution. Accordingly, in the first step the function to be maximized is the multivariate Student-t log-likelihood 
function in (7) where the correlation matrix Rt has been replaced by Ik. That is

η η
θ φ η Γ Γ π

η η η

η η
ν ν

η η

        + −− − −                
    +− + + ′    −    

∑

1
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2 2 2 2
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2 1 2

T

t t t
t

k Tk TkL T T
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Similar to the case of Gaussian innovations, when no volatility spillovers are considered, we employ 
univariate estimation for each series while when there are volatility spillovers, we solve the multivari-
ate problem. In the second step the correlation coefficients are estimated by maximizing the following 
function

 

η η
ψ η θ φ ν ν

η η
−    +− + + ′    −    

∑ 1
2

=2

1 1ˆ ˆ ˆ ˆ( , | , )= log  | | log 1
2 2 1 2

T

t t t t
t

kL R R
 

(9)

where ν̂t  are the standardized residuals obtained in the first step.
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3.1.3  Three-steps estimation

An alternative procedure that we will analyze in this paper is the estimation of Φ = (θ′, φ′, ψ′)′ in three steps. In 
the first step, the parameters of the mean equation, θ, are estimated assuming constant variance, i.e., hit = hi ∀ t,  
and assuming that the correlation matrix Rt is equal to the identity matrix for all t. Therefore, the function to 
be maximized is the following

θ π ν ν=− − − ′∑ ∑1
=2 =2

1( , ) log(2 ) log  | |
2 2

T T

i t t
t t

TkL h D

where 1/2 1/2 1/2
1 2= ( , , ..., )kD diag h h h  contains the conditional standard deviations. This is equivalent to 

OLS estimation for the univariate mean equations, given that the variance-covariance matrix is block 
diagonal.

In the second step, the parameters of the variance equation, φ, are estimated given the estimates of the 
parameters of the mean equation, θ̂,  and substituting the correlation matrix Rt by Ik. This leads to the maxi-
mization of the following function:

φ θ π ν ν− − − ′∑ ∑� �2
=2 =2

1ˆ( | )= log(2 ) log  | |
2 2

T T

t t t
t t

TkL D

where ν ε−=� 1ˆt t tD  and ε̂t  are the residuals obtained in the first step. After obtaining θ̂  and φ̂  from the two pre-
vious steps, in the last step, the correlation coefficients are estimated by maximizing the following function

 
ψ θ φ ν ν−− + ′∑ 1

3
=2

1ˆ ˆ ˆ ˆ( | , )= (log  | | )
2

T

t t t t
t

L R R
 

(10)

where ν̂t  are the standardized residuals obtained from the second step. When the correlations are constant 
over time, the correlation coefficients estimator obtained in the third step is, as in the two steps estimation 
procedure, equal to the sample correlation matrix of the standardized residuals given in (5).

Under the Gaussianity assumption, 3-step estimators are also consistent and their asymptotic distribu-
tion is very similar to that of the 2-step estimators; see Engle and Sheppard (2001).

When using the log-likelihood function based on the Student-t distribution, the three steps estimation is 
performed in a similar manner. In the first step, the mean parameters, θ, are estimated along with the inverse 
of the degrees of freedom assuming homoscedastic innovations, i.e., hit = hi ∀ t. The function to be maximized 
in the first step is the following

η η
θ η Γ Γ π

η η η

η η
ν ν

η η

        + −− − −                
    +− + + ′    −    

∑

1

=2

1 1 1 2( , , )= log log log log( )
2 2 2 2

1log  | | log 1
2 1 2

i

T

t t
t

k Tk TkL h T T

kD

In the second step, the variance parameters, φ, and the inverse of the degrees of freedom, η, are estimated 
conditional on the mean parameter estimates, θ̂.  The function to be maximized is the following

η η
φ η θ Γ Γ π

η η η

η η
ν ν

η η

        + −− − −                
    +− + + ′    −    

∑ � �

2

=2

1 1 1 2ˆ( , | )= log log log log( )
2 2 2 2

1log  | | log 1
2 1 2

T

t t t
t

k Tk TkL T T

kD

Finally, in the third step, the correlation coefficients and the inverse of the degrees of freedom are estimated 
by maximizing the following function

Brought to you by | Universidad de Alicante
Authenticated | acarnero@ua.es author's copy

Download Date | 5/8/14 10:21 AM



M.A. Carnero and M.H. Eratalay: Estimating VAR-MGARCH models in multiple steps      347

 

η η
ψ η θ φ ν ν

η η
−    +− + + ′    −    

∑ 1
3

=2

1 1ˆ ˆ ˆ ˆ( , | , )= log  | | log 1
2 2 1 2

T

t t t t
t

kL R R
 

(11)

where ν̂t  are the standardized residuals obtained in the second step.

3.2  Vector autoregressive RSDC-GARCH model

The mean, variance and correlation parameters Φ = (θ′, φ′, ψ′)′ when Rt in equation (3) is specified by the 
RSDC-GARCH model can also be estimated in multiple steps.

Let us denote by Ωt–1 all previous information up to t–1 and let f(‧) be the likelihood function obtained 
under the assumption of either a Gaussian or a Student-t distribution. The 1-step estimator of Φ would be 
obtained by maximizing the following log-likelihood function:

 
Φ Ω −∑ 1

=2
( )= log ( | )

T

t t
t

L f Y
 

(12)

where

f(Yt|Ωt–1) = f(Yt|St = L, Ωt–1) × Pr(St = L|Ωt-1)+f(Yt|St = H, Ωt–1) × Pr(St = H|Ωt–1)

The function f(Yt|St, Ωt–1) is the likelihood function of Yt conditional on the state St, that can be L or H, and all 
previous information. The function f(Yt|Ωt–1) is the likelihood when the state is marginalized out. On the other 
hand, Pr(St|Ωt–1) denotes the probability of being in a certain state, St, conditional on previous information. 
This probability can be computed using Hamilton filter (Hamilton 1994, Chapter 22). In the case of a model 
with only two states, as the one analyzed in this section, Pr(St|Ωt–1) is given by:

1 , , , 

1 1 2 1 2

1 1 2 1 2 1 1 2 1 2

Pr( = | ) ( 1 ) ( 1)

( | = , ) Pr( = | )
( | = , ) Pr( = | ) ( | = , ) ( 1 Pr( = | ))

t t H H L L H H

t t t t t

t t t t t t t t t t

S L

f Y S L S L
f Y S L S L f Y S H S L

Ω π π π

Ω Ω

Ω Ω Ω Ω

−

− − − − −

− − − − − − − − − −

= − + + − ×

×
×

× + × −

and consequently, Pr(St = H|Ωt–1) = 1–Pr(St = L|Ωt–1). The long run probabilities for each state are used as initial 
conditions for the iterative process.

Alternatively, the estimation of Φ = (θ′, φ′, ψ′)′ can be done in two steps. In the first step, estimates of 
the mean and variance parameters are obtained from maximizing the function in (12) where the correlation 
matrix Rt is substituted by the identity matrix. In the second step, the estimation of the correlation parameters 
will be done by maximizing the log-likelihood function taking the mean and variance parameter estimates 
from previous step as given.

Another alternative is the estimation of Φ = (θ′, φ′, ψ′)′ in three steps. In the first step, estimates of the 
mean parameters are obtained from maximizing the function in (12) where the variance and correlation 
matrix Rt are assumed to be constant. In the second step, variance parameters are estimated conditional on 
the mean parameters obtained in the previous step, and finally, the estimation of the correlation parameters 
will be done by maximizing the log-likelihood function taking the mean and variance parameter estimates 
from the two previous steps as given.

Pelletier (2006) estimates a RSDC-GARCH model by using data on four exchange rate series. After 
demeaning the data, the correlation parameters are separately estimated from the variance parameters. This 
corresponds to what we have called the 3-step estimation procedure without paying much attention to the 
mean parameters or a 2-step estimation method for a zero mean series.

Finally, the asymptotic properties of the 1-step and multiple steps estimators of the RSDC-GARCH model 
under the Gaussianity assumption are similar and can be found in Pelletier (2006).

Brought to you by | Universidad de Alicante
Authenticated | acarnero@ua.es author's copy

Download Date | 5/8/14 10:21 AM



348      M.A. Carnero and M.H. Eratalay: Estimating VAR-MGARCH models in multiple steps

A summary of the well-known theoretical results about ML estimation is shown in the following table

Distribution   Estimator

True   Assumed   1-step   2-steps   3-steps

Gaussian   Gaussian   Consistent   Consistent   Consistent
Student-t   Student-t   Consistent    
Student-t   Gaussian   Consistent   Consistent   Consistent
Gaussian   Student-t   Consistent    

Consistency of the 1-step ML estimator, under certain regularity conditions, is known from the general maximum 
likelihood theory. In particular, Bollerslev (1990) proves the consistency of the 1-step Gaussian ML estimator for 
the CCC-GARCH model, while Jeantheau (1998) proves it for the ECCC-GARCH model. Fiorentini, Sentana, and 
Calzolari (2003) and Newey and Steigerwald (1997) provide the conditions under which the 1-step Student-t ML 
estimator is consistent. The consistency of the 1-step Gaussian QML estimators is given in Bollerslev and Wool-
dridge (1992) and for multiple steps estimators is given in Newey and McFadden (1994). Engle and Shephard 
(2001) prove the consistency of Gaussian QML multiple steps estimators for the DCC-GARCH model, Aielli (2011) 
proves it for cDCC-GARCH model and Pelletier (2006) proves it for RSDC-GARCH model.

In the next section we will confirm the previous theoretical results in finite samples and study the cases 
for which no theory is provided, more specifically, what the behavior of multiple steps estimators is when a 
Student-t distribution is assumed for the innovations.

4  Monte Carlo experiments
In this section we analyze the finite sample performance of 1-step, 2-step and 3-step estimators of first order 
Vector Autoregressive CCC, DCC, cDCC, RSDC-GARCH models and their extensions to include volatility spill-
overs, namely ECCC, EDCC, EcDCC, ERSDC-GARCH. To compare different estimators, true parameter values 
are reported together with the Monte Carlo mean and standard deviation of the parameter estimates. In addi-
tion, kernel density estimates of different estimators of each parameter are plotted to compare the perfor-
mance of multiple steps estimators for each sample size. Since the main interest of practitioners in this area is 
not only the estimation of the parameters but more importantly, the estimation of the underlying conditional 
variances and covariances, we will also look at the estimates of volatilities and correlations to compare dif-
ferent estimators. For RSDC-GARCH models the correlations are driven by an unobservable Markov chain and 
therefore, estimates of the correlation parameters will be analyzed instead of correlation estimates.

We have carried out Monte Carlo experiments in which 1000 time-series vectors of dimension 2 or 3 
for sample sizes T = 200, 500, 1000 and 5000 are generated according to the relevant model and distribu-
tion function for the innovations. Then, the parameters of the model are estimated using 1-step, 2-step and 
3-step estimators assuming either a Gaussian or a Student-t distribution for the errors. All simulations are 
performed by MATLAB computer language.

Next, we describe in detail the three different experiments we have carried out. In the first one, we simu-
late time series vectors following the vector autoregressive multivariate GARCH models considered assuming 
first a Gaussian distribution for the innovations and then, a Student-t distribution. Parameters, volatilities 
and correlations are then estimated assuming the true data generating process and differences between 1-step 
and multiple steps estimators are analyzed. In a second experiment we anayze the robustness of the results 
to the error distribution. With this objective, first we simulate data assuming a Gaussian distribution for the 
innovations and estimate the true model under the assumption that errors follow a Student-t distribution. 
Second, time series vectors are generated using a Student-t distribution for the errors and then, true models 
are estimated under the Gaussianity assumption. In addition, we use a skewed Student-t distribution to gen-
erate the data and estimate the true model under the assumption that errors follow a symmetric distribution, 
Gaussian or Student-t. Finally, in the third and last experiment we analyze how good or bad volatilities and 
correlations generated from a given model can be estimated using a different model.
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4.1  Innovations distributed as a Gaussian or Student-t

We start by considering the case in which data is generated and estimated assuming a normal distribution. 
Let us consider a bivariate model given by equations (1) to (3) with a diagonal matrix B and Rt = R as given by 
the CCC-GARCH model. The unconditional mean and variance are fixed to 1. The mean and variance persis-
tences are set to be different from each other but quite high. Therefore, in this basic bivariate model, we have 
11 parameters to estimate. The true parameter values as well as Monte Carlo means and standard deviations 
of 1-step and multiple steps estimators are given in Table 1. Two main patterns, as expected for consistent 
estimators, emerge from this table. First, the differences between the Monte Carlo means and true parameter 
values go to zero as the sample size increases. Second, the Monte Carlo standard deviations of the three 
estimators considered decrease as the sample size increases. It is remarkable the similarities of the Monte 
Carlo means and standard deviations of the three estimators. In general, it seems that the 1-step estimator 
provides estimates with Monte Carlo means slightly closer to the parameter values and Monte Carlo standard 
deviations slightly smaller than the ones obtained for multiple-steps. However, the differences among the 
three estimators are practically negligible. On the other hand, we cannot conclude that in finite samples, 
multiple steps estimators over/under estimate the parameters in a systematic manner. In order to graphically 
illustrate the distribution, in finite samples, of the different estimators, Figure 1 plots kernel density estimates 
obtained from 1-step, 2-step and 3-step estimators for the parameter values considered in Table 1 and sample 
size T = 500. As the figure shows, the three estimators give very similar results, even for relatively small sample 
sizes2.

Table 1 Monte Carlo means and standard deviations of 1-step, 2-step and 3-step estimators of a bivariate Gaussian VAR(1)-CCC-
GARCH model.

Parameter   Value   1-step   2-step   3-step

    T  = 500   T  = 1000   T  = 5000   T  = 500   T  = 1000   T = 5000   T  = 500   T  = 1000   T = 5000

μ1   0.20   0.207   0.204   0.201   0.207   0.204   0.201   0.208   0.204   0.201
    (0.050)   (0.036)   (0.016)   (0.050)   (0.037)   (0.017)   (0.053)   (0.039)   (0.017)

μ2   0.40   0.403   0.403   0.400   0.403   0.403   0.400   0.403   0.404   0.400
    (0.060)   (0.043)   (0.017)   (0.061)   (0.044)   (0.018)   (0.062)   (0.044)   (0.018)

β11   0.80   0.793   0.796   0.799   0.793   0.796   0.799   0.792   0.796   0.799
    (0.028)   (0.020)   (0.009)   (0.029)   (0.020)   (0.009)   (0.030)   (0.022)   (0.010)

β22   0.60   0.596   0.598   0.600   0.597   0.598   0.600   0.596   0.597   0.600
    (0.038)   (0.026)   (0.011)   (0.039)   (0.027)   (0.012)   (0.039)   (0.027)   (0.012)

ω1   0.10   0.180   0.124   0.103   0.182   0.123   0.103   0.183   0.124   0.103
    (0.179)   (0.079)   (0.019)   (0.183)   (0.072)   (0.019)   (0.184)   (0.075)   (0.019)

ω2   0.05   0.270   0.120   0.053   0.273   0.132   0.053   0.290   0.146   0.054
    (0.308)   (0.177)   (0.015)   (0.311)   (0.198)   (0.015)   (0.339)   (0.231)   (0.031)

α11   0.10   0.108   0.103   0.099   0.109   0.103   0.099   0.106   0.102   0.099
    (0.044)   (0.030)   (0.012)   (0.044)   (0.030)   (0.013)   (0.043)   (0.030)   (0.013)

α22   0.05   0.061   0.054   0.050   0.061   0.054   0.050   0.061   0.054   0.050
    (0.036)   (0.023)   (0.009)   (0.037)   (0.024)   (0.009)   (0.035)   (0.023)   (0.009)

γ11   0.80   0.706   0.772   0.796   0.705   0.773   0.796   0.705   0.772   0.797
    (0.203)   (0.096)   (0.027)   (0.206)   (0.089)   (0.027)   (0.208)   (0.093)   (0.027)

γ22   0.90   0.660   0.822   0.897   0.656   0.810   0.897   0.637   0.796   0.896
    (0.322)   (0.192)   (0.021)   (0.325)   (0.212)   (0.021)   (0.355)   (0.243)   (0.035)

ρ12   0.20   0.199   0.201   0.200   0.198   0.199   0.200   0.198   0.199   0.200
    (0.044)   (0.031)   (0.014)   (0.043)   (0.031)   (0.014)   (0.043)   (0.031)   (0.014)

2 In order to check the robustness of the results, we have also considered different scenarios by changing the parameter values in 
Table 1 and repeated the Monte Carlo experiment. All the results are similar and they are not included in the paper to save space 
but they are available from the authors upon request.
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We have also computed the estimated volatilities and correlations obtained from 1-step, 2-step and 
3-step estimators. For a sample size T, let us denote by , 

ˆs
i th  the estimated volatilities of series i at time t 

obtained from estimator s (1-step, 2-step or 3-step) and denote by hi, t the true volatility of series i at time t. 
Then, the difference between the estimated and the true volatility of series i could be summarized for each 
estimator s by

 
∆ = −∑ , , 

=1

1ˆ ˆ( )
T

s s
i i t i t

t
h h h

T  
(13)

Similarly, the difference between the estimated and the true correlation of series i and j could be summarized 
for each estimator s by

 
∆ = −∑ , , 

=1

1ˆ ˆ( )
T

s s
ij ij t ij t

t
p p p

T  
(14)

Figure 2 plots kernel density estimates of the differences between the estimated and the true volatilities 
and correlations measured as in (13) and (14) for a VAR(1)-CCC-GARCH(1,1) model with parameter values as in 
Table 1 and sample sizes T = 200, T = 500 and T = 1000. As the graph illustrates, 1-step, 2-steps and 3-steps esti-
mators provide very similar estimated volatilities and correlations. As the sample size increases, differences 
between estimated and true volatilities and correlations are becoming closer to zero. Alternatively, we have 
also computed the relative deviations of the estimated volatilities and correlations from their true values, i.e., 

−− , , , , 

, , 

ˆ ˆ
;  

ss
ij t ij ti t i t

i t ij t

p ph h
h p

 and the corresponding plots are very similar to the ones in Figure 2.

We have repeated the Monte Carlo experiments simulating the data from different models. Kernel density 
estimates of the differences between the estimated and the true volatilities and correlations in VAR(1)-DCC, 
cDCC and RSDC-GARCH(1,1) models and their extensions were computed. All the graphs are very similar to 
Figure 2. Consequently, our results suggest that under normal innovations, using multiple steps estimators is 
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Figure 1 Kernel density estimates for estimated parameters of a Gaussian VAR(1)-CCC-GARCH(1,1) model with T = 500.
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Figure 2 Kernel density estimates of deviations from estimated to true volatility and true correlation in a Gaussian VAR(1)-CCC-
GARCH(1,1) model.

a reasonable strategy to estimate volatilities and correlations in all the models considered. This finding sup-
ports, for finite samples, the theoretical asymptotic results summarized in Section 3.

Next, we consider the case in which data is generated and estimated assuming a Student-t distribution and 

we repeat the simulations for all the models. The number of degrees of freedom used in the simulations is 
η
1 = 5.  

For DCC-GARCH, cDCC-GARCH models and their extended versions, the results are similar to the ones obtained  

under the normal assumption showing that 1-step, 2-step and 3-step estimators provide volatilities and corre-
lations estimates which are very close. These findings are in line with the results in Bauwens and Laurent (2005) 
and Jondeau and Rockinger (2005) who show that, for the DCC-GARCH model, estimating mean and variance 
parameters separately from the correlation parameters provides similar outcomes to 1-step estimation.

However, for the other models considered, namely the VAR(1)-CCC-GARCH(1,1), VAR(1)-ECCC-GARCH(1,1), 
VAR(1)-RSDC-GARCH(1,1) and VAR(1)-ERSDC-GARCH(1,1) models, important differences appear when estimat-
ing the correlations (or correlation parameters and transition probabilities for the RSDC and ERSDC-GARCH 
model) with different estimators. In this case, 1-step estimator provides the best estimates. Figure 3 plots kernel 
density estimates of the differences between the estimated and the true volatilities and correlations in the 
VAR(1)-CCC-GARCH(1,1) model. Volatilities and correlations seem to be underestimated when using multiple 
steps estimators. The figure corresponding to the VAR(1)-ECCC-GARCH model is very similar to Figure 3. For the 
RSDC-GARCH model, Figure 4 contains kernel density estimates of the differences between the estimated and 
the true volatilities and of the correlation parameters and the transition probabilities, instead of differences 
from estimated to true correlations. As we can see, estimates obtained with multiple steps estimators seem to 
be far from the ones obtained with the 1-step estimator. The figure corresponding to the VAR(1)-ERSDC-GARCH 
model is very similar to Figure 4. Therefore, our results suggest that multiple steps estimators obtained assum-
ing that innovations are distributed as a Student-t, do not have good properties, even when the assumption for 
the innovations is the correct one. This finding points out that multiple steps estimators computed under the 
assumption that the distribution of the innovations is Student-t, could be inconsistent.

Brought to you by | Universidad de Alicante
Authenticated | acarnero@ua.es author's copy

Download Date | 5/8/14 10:21 AM



352      M.A. Carnero and M.H. Eratalay: Estimating VAR-MGARCH models in multiple steps

-0.5 0 0.5
0

2

4

6

8

10

-0.5 0 0.5
0

2

4

6

8

10

-0.2 -0.1 0 0.1 0.2
0

5

10

15

20

-0.5 0 0.5
0

2

4

6

8

10

-0.5 0 0.5
0

2

4

6

8

10

-0.2 -0.1 0 0.1 0.2
0

5

10

15

20

-0.5 0 0.5
0

2

4

6

8

10

-0.5 0 0.5
0

2

4

6

8

10

-0.2 -0.1 0 0.1 0.2
0

5

10

15

20

1 s
2 s
3 s
Zero line

Sample size: 200 Sample size: 500 Sample size: 1000

∆ h1
s ∆ h1

s ∆ h1
s

∆ h2
s ∆ h2

s ∆ h2
s

∆ p12
s ∆ p12

s ∆ p12
s

Figure 3 Kernel density estimates of deviations from estimated to true volatility and true correlation in a VAR(1)-CCC-
GARCH(1,1) model with Student-t innovations.
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Figure 4 Kernel density estimates of deviations from estimated to true volatility, of estimated correlation parameters and of 
estimated transition probabilities in a VAR(1)-RSDC-GARCH(1,1) model with Student-t innovations.
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The comparison between 1-step and 2-step estimators helps us to measure the efficiency loss when esti-
mating the correlation parameters separately from the mean and variance parameters; see Engle (2002) and 
Engle and Sheppard (2001). As we have seen, when the errors are assumed to be Gaussian, the small sample 
behavior of 1-step and 2-step estimators is very similar but, when the estimation is based on the Student-t 
distribution, in some cases 2-step estimators deviate from 1-step estimators.

Comparing 2-step and 3-step estimators helps us to analyze the effects of separating the estimation of 
mean and variance parameters; see Bauwens, Laurent, and Rombouts (2006). Our results show that, when 
the errors are assumed to be Gaussian or Student-t, the small sample behavior of 2-step and 3-step estimators 
is also very similar.

4.2  Robustness to the error distribution

We are also interested in analyzing how robust the different models and estimators are to the distribution 
of innovations. In that sense, we have carried out an experiment which consists of generating data from the 
models considered with errors following a Gaussian distribution and estimating the true model assuming a 
Student-t distribution for the innovations. Also, we simulate data in which innovations follow a Student-t dis-
tribution and estimate the true model assuming Gaussian errors. Finally, we generate the data using a skewed 
Student-t distribution and estimate the true model under the assumption that errors follow a symmetric dis-
tribution, Gaussian or Student-t. The results of the first two experiments are the expected ones. When the 
data is generated using a Student-t distribution for the errors and estimated assuming Gaussian errors, differ-
ences between 1-step and multiple steps seem to be negligible. Comparing this case to the case in which the 
true and assumed error distributions are both normal, the estimated densities now have fatter tails. When we 
simulate the data with Gaussian errors and estimate the model under the Student-t distribution assumption, 
similar results are obtained to the case when the true and the assumed distribution are both Student-t. This 
was expected since a Student-t distribution approximates a Gaussian distribution when the parameter for 
the degrees of freedom is sufficiently large. In fact, in the experiments for this case, we obtained very large 
estimates for the degrees of freedom of the Student-t distribution.

Next, we analyze the case in which innovations follow a skewed distribution. For this purpose, we gener-
ate random vectors from a skewed multivariate Student-t distribution following Bauwens and Laurent (2005). 
At each time t, a k dimensional random vector η∗

t  is given by:

1 2

( ) | |
| | (| |, | |, , | |)

t t

t t t kt

x
x x x x
η λ τ∗ =

= ... ′

where xt follows a multivariate Student-t distribution with zero mean and unit variance and λ(τ) is a k × k 
diagonal matrix such that:
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Ber  is a Bernoulli distribution with probability of success 
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 and the elements of τ are 

mutually independent. Given that in the GARCH set up, the elements of ηt are zero mean random numbers 

with unit variance, η∗
t  should be standardized such that 
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 where:
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To perform this experiment and the experiment of Section 4.3, we take as parameter values the estimates 
obtained from real data where we have considered daily returns of three European stock market indices, 
BEL-20 (Brussels), DAX (Frankfurt) and FTSE-100 (London) for the period January 8, 2002–April 30, 2009.  

The table below contains some descriptive statistics of the returns series, computed as
−

 
×   1

100 log  ,t

t

p
p

 of 
sample size 1774.

  Mean   SD   Skewness   Kurtosis

BEL-20   –0.02   1.45   –0.05   9.12
DAX   –0.01   1.74   0.15   7.80
FTSE-100   –0.01   1.41   –0.03   10.30

Using the first two returns series, we estimate all the models considered, i.e., VAR(1)-CCC, DCC, cDCC 
and RSDC-GARCH models and their extensions [VAR(1)-ECCC, EDCC, EcDCC, ERSDC-GARCH] with no mean 
transmissions under the assumption that innovations are distributed as a Student-t. The results are given in 
Table 2 where series 1 and 2 correspond to BEL-20 and DAX, respectively.

We first generate bivariate series with skewness parameters ξ1 = ξ2 = exp(0.4) for both series, which implies 
a skewness of 1.5. Later we take ξ1 = exp(0.4) and ξ2 = exp(–0.7) (implying a skewness of –2 for the second 
series) to see how the results change. Notice that when ξ1 = ξ2 = 1, we have a symmetric multivariate Student-t 
distribution.

For each model considered, 1000 bivariate time series vectors of sample sizes T = 500 and T = 1000 have 
been generated assuming that innovations follow a skewed Student-t distribution with skewness 1.5 for both 
series or with skewness {1.5, –2} for the first and second series, respectively and with degrees of freedom 5. 
Then, the true model is estimated assuming Gaussian or Student-t errors but ignoring skewness.

Figure 5 plots kernel density estimates of the differences between the estimated and the true volatili-
ties and true correlations in five of the models considered when data has been generated using a positively 
skewed Student-t distribution with the same skewness for both series and estimated assuming Gaussian 
innovations. In this figure, where T = 500, the rows correspond to a different model and the columns repre-
sent the kernel densities estimates of the relative deviations of estimated volatilities and correlations from the 
true ones calculated respectively as:3

 

, ,

=1 ,

ˆ1ˆ
sT
i t i ts

i
t i t

h h
h

T h
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 − =  
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(15)
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 − =  
  

∑
 

(16)

As we can see, for the five models in the figure, the kernel densities of the relative deviations of 1-step and 
multiple steps estimates of volatilities (correlations) from the true ones follow each other closely. It seems 
that the large positive skewness assumed in the data generating process results in overestimating the condi-
tional correlations while the conditional volatility estimates do not seem to be affected much.

3 Relative deviations are prefered to absolute ones, although conclusions do not change if absolute deviations are plotted.
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Table 2 One-step parameter estimates of different models fitted to two real time series assuming Student-t innovations.

  VAR(1)-CCC-GARCH   VAR(1)-DCC-GARCH   VAR(1)-cDCC-GARCH   VAR(1)-RSDC-GARCH

μ1   0.0936   0.0956   0.0963   0.0920
μ2   0.1090   0.1143   0.1136   0.1100
β11   0.0087   0.0002   0.0006   0.0030
β22   –0.0503   –0.0488   –0.0469   –0.0485
ω1   0.0185   0.0156   0.0149   0.0160
ω2   0.0191   0.0152   0.0141   0.0156
α11   0.0877   0.0963   0.0978   0.0894
α22   0.0732   0.0775   0.0790   0.0717
γ11   0.8987   0.8938   0.8950   0.8998
γ22   0.9195   0.9170   0.9181   0.9218
ρ12   0.7950      

12
Lρ         0.7298
12
Hρ         0.8924

δ1     0.0376   0.0390  
δ2     0.9453   0.9465  
πLL         0.9816
πHH         0.9682

  VAR(1)-ECCC-GARCH   VAR(1)-EDCC-GARCH   VAR(1)-EcDCC-GARCH   VAR(1)-ERSDC-GARCH

μ1   0.0937   0.0958   0.0966   0.0924
μ2   0.1093   0.1147   0.1140   0.1102
β11   0.0088   –0.0006   –0.0007   0.0025
β22   –0.0498   –0.0494   –0.0476   –0.0486
ω1   0.0177   0.0137   0.0120   0.0140
ω2   0.0162   0.0123   0.0107   0.0129
α11   0.0947   0.1038   0.1039   0.0950
α21   0.0034   0.0113   0.0125   0.0075
α12   0.0001   0.0000   0.0000   0.0000
α22   0.0692   0.0685   0.0681   0.0660
γ11   0.8789   0.8831   0.8858   0.8902
γ21   0.0001   0.0000   0.0000   0.0000
γ12   0.0086   0.0042   0.0041   0.0043
γ22   0.9225   0.9192   0.9205   0.9235
ρ12   0.7949      

12
Lρ         0.7280
12
Hρ         0.8921

δ1     0.0388   0.0411  
δ2     0.9448   0.9474  
πLL         0.9814
πHH         0.9686

Figure 6 plots the same estimates as Figure 5 but now the estimation has been done assuming a Student-t 
distribution for the innovations. Similar conclusions can be made about the 1-step correlation estimates for 
all models. We notice that in the CCC and ECCC-GARCH models, the differences between 1-step and multiple 
steps estimates of the correlations are very large.

On the other hand, when the series have different skewness and the estimation is performed assuming 
Gaussian errors, volatilities and correlations seem to be underestimated in all these five models. The figures 
corresponding to different skewness are not included in the paper to save space. One-step correlation esti-
mates seem to be slightly less affected by the skewness than the multiple step estimates. As well when the 
estimation is based on Student-t errors, the 1-step estimators underestimate the volatilities and correlations. 
In general, 1-step estimators are less affected by the skewness than multiple steps estimators, except for the 
volatility estimates of ECCC-GARCH model. In the case of DCC and cDCC-GARCH models, the multiple steps 
estimates deviate slightly from the 1-step estimates. It should be noted that one of the series have higher 
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Figure 5 Kernel density estimates of deviations from estimated to true volatility and true correlation for some of the models 
considered. Series have been generated assuming Student-t innovations with same skewness parameter and models have 
been estimated assuming Gaussian innovations. T = 500.
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Figure 6 Kernel density estimates of deviations from estimated to true volatility and true correlation for some of the models 
considered. Series have been generated assuming Student-t innovations with same skewness parameter and models have 
been estimated assuming Student-t innovations. T = 500.
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skewness when λ = {exp(0.4), exp(–0.7)} compared to the case when λ = {exp(0.4), exp(0.4)} and this could 
be the reason behind the underestimation of volatilities and correlations with both Gaussian and Student-t 
errors.

For the RSDC-GARCH model, multiple steps estimators of conditional volatilities behave similar to the 
1-step estimators as illustrated in Figure 4 and this does not seem to depend on the skewness. Figure 7 plots 
kernel density estimates of estimated correlation parameters when the series have the same skewness and 
errors are assumed to follow a Gaussian or Student-t distribution. As we can see, when the estimations are 
based on Gaussian errors, the 1-step and multiple steps estimators of the correlation parameters are behaving 
similarly. Although the corresponding figure is not included in the paper, when the skewnesses of the two 
series are different, the multiple steps estimates of RL and πLL deviate slightly from the 1-step estimates. When 
Student-t errors are used in the estimation, the differences between the behavior of 1-step and multiple steps 
estimators become more apparent.

For the extended models, results are very similar and also results do not change when T = 1000. To save 
space, the corresponding figures are not included in the paper, but they are available from authors upon 
request.

Newey and Steigerwald (1997) argue that when the true distribution is not symmetric, the 1-step estimator 
based on Student-t innovations is not consistent in general. This is confirmed in our experiments since when 
T = 500, we can see in Figure 6 that 1-step QML estimators based on Student-t errors are overestimating the 
correlations, and this overestimation does not disappear as the sample size increases.

Finally, when the data generating process is symmetric and the estimation is based on Gaussian errors, 
the kernel density estimates of relative differences between 1-step and multiple steps estimates of the volatili-
ties and correlations from the true values are very close to each other for all the models and their extensions 
as mentioned before. When the estimation is based on Student-t errors, the multiple steps volatility estimates 
of all extended models and the multiple steps correlation estimates of CCC and ECCC-GARCH models are far 
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Figure 7 Kernel density estimates of estimated correlation parameters for the RSDC-GARCH model. Series have been gener-
ated assuming Student-t innovations with same skewness, and models have been estimated assuming Gaussian and Student-t 
errors, respectively. T = 500.
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from the true ones. The multiple steps volatility and correlation estimates of DCC and cDCC-GARCH models 
follow closely the 1-step estimates and are not far from the true values as in Figure 2. All the figures with the 
results are not reported in the paper, but are available from the authors upon request.

To sum up, our results suggest that even though the data generating process is skewed, when the estima-
tion is based on Gaussian errors, multiple-steps estimators could still be preferred to 1-step estimators given 
that their performances are very similar. On the other hand, as noted by Newey and Steigerwald (1997), if 
the data generating process is skewed, the 1-step QML estimator based on Student-t errors is not consistent. 
Hence, when the true distribution is skewed, one should be cautious in using 1-step or multiple-steps estima-
tors based on Student-t errors.

4.3  Robustness to model

The next question we address is how bad (or well) volatilities and correlations can be estimated when the 
model is misspecified. We analyze the differences between true conditional volatilities and correlations 
and the estimated ones when the model used to generate the data is different from the estimated model. To 
perform this experiment, parameter values are taken from the estimates obtained from daily returns of the 
three European stock market indices considered before. Using the returns series, we estimate all the models 
considered, i.e., VAR(1)-CCC, DCC, cDCC and RSDC-GARCH models and their extensions [VAR(1)-ECCC, EDCC, 
EcDCC, ERSDC-GARCH] with no mean transmissions assuming Gaussian errors. The results are given in 
Tables 3 and 4 in which series 1, 2 and 3 correspond to BEL-20, DAX and FTSE-100, respectively.

Table 3 Parameter estimates of different models fitted to three real time series assuming Gaussian innovations.

  VAR(1)-CCC-GARCH   VAR(1)-DCC-GARCH   VAR(1)-cDCC-GARCH   VAR(1)-RSDC-GARCH

  1-Step   2-Steps   3-Steps   1-Step   2-Steps   3-Steps   1-Step   2-Steps   3-Steps   1-Step   2-Steps  3-Steps

μl   0.1017   0.0937   -0.0167   0.0982   0.0937   -0.0167   0.1008   0.0936   -0.0166   0.0851   0.0936  -0.0166
μ2   0.1110   0.0843   -0.0061   0.1041   0.0843   -0.0061   0.1065   0.0843   -0.0062   0.0927   0.0843  -0.0061
μ3   0.0690   0.0465   -0.0128   0.0646   0.0463   -0.0128   0.0669   0.0465   -0.0128   0.0611   0.0465  -0.0128
β11   -0.0297   -0.0055   0.0641   -0.0277   -0.0055   0.0640   -0.0278   -0.0055   0.0641   -0.0245   -0.0055  0.0640
β22   -0.0934   -0.0549   -0.0465   -0.0748   -0.0549   -0.0466   -0.0738   -0.0549   -0.0465   -0.0743   -0.0549  -0.0466
β33   -0.0991   -0.1033   -0.0821   -0.0938   -0.1027   -0.0821   -0.0935   -0.1034   -0.0820   -0.0888   -0.1034  -0.0820
ω1   0.0288   0.0218   0.0210   0.0248   0.0218   0.0209   0.0240   0.0218   0.0210   0.0233   0.0218  0.0210
ω2   0.0259   0.0210   0.0201   0.0226   0.0210   0.0201   0.0213   0.0210   0.0201   0.0212   0.0210  0.0201
ω3   0.0171   0.0102   0.0097   0.0143   0.0094   0.0098   0.0131   0.0102   0.0097   0.0173   0.0102  0.0098
α11   0.0940   0.1331   0.1231   0.1118   0.1331   0.1231   0.1183   0.1331   0.1231   0.0874   0.1331  0.1231
α22   0.0774   0.0955   0.0927   0.0887   0.0955   0.0927   0.0933   0.0955   0.0927   0.0687   0.0955  0.0927
α33   0.0777   0.1045   0.1041   0.0935   0.0938   0.1041   0.0985   0.1045   0.1041   0.0779   0.1045  0.1041
γ11   0.8819   0.8573   0.8673   0.8705   0.8573   0.8673   0.8695   0.8573   0.8673   0.8956   0.8573  0.8673
γ22   0.9095   0.8977   0.9011   0.9005   0.8977   0.9011   0.9004   0.8977   0.9011   0.9217   0.8977  0.9011
γ33   0.9063   0.8921   0.8936   0.8948   0.9015   0.8936   0.8948   0.8921   0.8936   0.9088   0.8921  0.8936
ρ12   0.7911   0.7865   0.7866                  

12
Lρ                     0.6571   0.6674  0.6455
12
Hρ                     0.8782   0.8802  0.8773

ρ13   0.7751   0.7642   0.7644                  
13
Lρ                     0.6286   0.6286  0.6060
13
Hρ                     0.8695   0.8702  0.8658

ρ23   0.8050   0.8013   0.8016              
23
Lρ                     0.6477   0.6633  0.6371
23
Hρ                     0.9054   0.9087  0.9063

δ1         0.0411   0.0459   0.0494   0.0405   0.0439   0.0449      
δ2         0.9215   0.9172   0.9116   0.9272   0.9226   0.9217      
πLL                     0.8718   0.8934  0.8681
πHH                     0.9272   0.9213  0.9207
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Table 4 Parameter estimates of different models fitted to three real time series assuming Gaussian innovations (continued).

  VAR(1)-ECCC-GARCH   VAR(1)-EDCC-GARCH   VAR(1)-EcDCC-GARCH   VAR(1)-ERSDC-GARCH

  1-Step   2-Steps   3-Steps   1-Step   2-Steps   3-Steps   1-Step   2-Steps   3-Steps   1-Step   2-Steps   3-Steps

μ1   0.0997   0.1021   –0.0167   0.1119   0.1021   –0.0167   0.1232   0.1021   –0.0167   0.0817   0.1021   –0.0167
μ2   0.1097   0.0705   –0.0061   0.1184   0.0706   –0.0061   0.1333   0.0706   –0.0061   0.0892   0.0706   –0.0061
μ3   0.0683   0.0472   –0.0128   0.0806   0.0471   –0.0128   0.0821   0.0471   –0.0129   0.0595   0.0471   –0.0128
β11   –0.0267   –0.0160   0.0641   –0.0283   –0.0160   0.0641   –0.0359   –0.0160   0.0641   –0.0237   –0.0160   0.0641
β22   –0.0903   –0.0453   –0.0466   –0.0686   –0.0453   –0.0466   –0.0805   –0.0453   –0.0465   –0.0739   –0.0453   –0.0466
β33   –0.0956   –0.1023   –0.0820   –0.0861   –0.1022   –0.0820   –0.0983   –0.1023   –0.0821   –0.0871   –0.1022   –0.0820
ω1   0.0322   0.0210   0.0196   0.0309   0.0210   0.0196   0.0305   0.0210   0.0195   0.0244   0.0210   0.0195
ω2   0.0245   0.0183   0.0172   0.0292   0.0183   0.0172   0.0266   0.0183   0.0172   0.0189   0.0183   0.0172
ω3   0.0168   0.0105   0.0097   0.0161   0.0105   0.0096   0.0168   0.0105   0.0096   0.0150   0.0105   0.0096
α11   0.0772   0.1081   0.0767   0.1023   0.1082   0.0767   0.1140   0.1081   0.0766   0.0690   0.1082   0.0766
α21   0.0032   0.0331   0.0249   0.0177   0.0331   0.0249   0.0183   0.0331   0.0248   0.0066   0.0331   0.0248
α31   0.0224   0.0337   0.0228   0.0377   0.0338   0.0228   0.0404   0.0338   0.0228   0.0128   0.0338   0.0228
α12   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
α22   0.0794   0.0676   0.0676   0.0941   0.0676   0.0676   0.1001   0.0677   0.0676   0.0689   0.0676   0.0676
α32   0.0038   0.0000   0.0000   0.0036   0.0000   0.0000   0.0039   0.0000   0.0000   0.0000   0.0000   0.0000
α13   0.0476   0.0488   0.0742   0.0672   0.0487   0.0742   0.0657   0.0487   0.0742   0.0502   0.0487   0.0742
α23   0.0000   0.0000   0.0052   0.0000   0.0000   0.0052   0.0000   0.0000   0.0053   0.0000   0.0000   0.0053
α33   0.0599   0.0748   0.0832   0.0847   0.0748   0.0832   0.0882   0.0748   0.0832   0.0717   0.0747   0.0832
γ11   0.8399   0.7986   0.8360   0.8055   0.7985   0.8360   0.8012   0.7985   0.8364   0.8507   0.7985   0.8364
γ21   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
γ31   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0001   0.0000   0.0000   0.0000   0.0000   0.0000
γ12   0.0083   0.0000   0.0000   0.0079   0.0000   0.0000   0.0078   0.0000   0.0000   0.0000   0.0000   0.0000
γ22   0.9065   0.9023   0.9054   0.8777   0.9022   0.9054   0.8749   0.9022   0.9054   0.9181   0.9022   0.9054
γ32   0.0029   0.0000   0.0000   0.0027   0.0000   0.0000   0.0027   0.0000   0.0000   0.0000   0.0000   0.0000
γ13   0.0000   0.0453   0.0137   0.0000   0.0454   0.0137   0.0008   0.0454   0.0134   0.0198   0.0454   0.0134
γ23   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
γ33   0.8883   0.8838   0.8885   0.8532   0.8837   0.8885   0.8463   0.8837   0.8885   0.9036   0.8837   0.8885
ρ12   0.7921   0.7853   0.7870                  

12
Lρ                     0.6634   0.6721   0.6667
12
Hρ                     0.8818   0.8823   0.8819

ρ13   0.7770   0.7677   0.7670                  

13
Lρ                     0.6365   0.6416   0.6295

13
Hρ                     0.8714   0.8743   0.8734

ρ23   0.8054   0.7990   0.8013                  

23
Lρ                     0.6570   0.6688   0.6611

23
Hρ                     0.9074   0.9099   0.9098

δ1         0.0592   0.0483   0.0465   0.0570   0.0455   0.0432      
δ2         0.8985   0.9249   0.9278   0.9043   0.9296   0.9342      
πLL                     0.8836   0.9089   0.8941
πHH                     0.9257   0.9258   0.9214

As we can see in both Tables 3 and 4, 3-steps estimates of the mean parameters are the same, as expected, 
since the mean equation is the same for all the models. Correlation estimates for the CCC and ECCC models 
are also very similar. The correlation parameter estimates of the dynamic correlation models are significantly 
different from zero, suggesting that correlations are not constant during this period. When looking at the 
other parameters, as expected, the differences between 1-step, 2-step and 3-step estimates are not very large. 
Figures 8 and 9 plot the volatilities and correlations estimates, respectively using different models. Similar 
plots were obtained for the EDCC, EcDCC and ERSDC models and are available from the authors upon request. 
We can see that the three different estimators provide very similar estimates. The graphs containing the cor-
relation estimates obtained from DCC and cDCC models suggest that the correlation between the returns of 
these markets in the period analyzed has been changing over time.
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Figure 8 1-Step, 2-step and 3-step estimates of the volatilities of BEL-20, DAX and FTSE-100 observed from January 8, 2002 to 
April 30, 2009, assuming Gaussian innovations.
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Figure 9 1-Step, 2-step and 3-step estimates of the correlations between the returns on BEL-20, DAX and FTSE-100 indices 
observed from January 8, 2002 to April 30, 2009, assuming Gaussian innovations.
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For the Monte Carlo experiments, we take the 1-step estimates obtained in this empirical exercise as the 
true parameter values to generate the data sets. The first set of experiments considers VAR(1)-CCC, ECCC, DCC, 
cDCC and RSDC-GARCH models. For each model, we generate 1000 trivariate time series vectors of sample 
size 1000 and given each of the time series vectors, we estimate the five models considered. We perform these 
25 experiments assuming a Gaussian error distribution for generating the data and also for estimating the 
parameters. In a second set of experiments the extended models, VAR(1)-ECCC, EDCC, EcDCC and ERSDC- 
GARCH models are considered in a similar way counting up to 15 more experiments.

The results are reported in Tables 5 and 6, in which the models used to generate the data appear in the 
first column and the estimated models are in the second row. For each series, each replication and at each 
time t, the relative and absolute relative differences between estimated volatility (correlation) and true4 vola-
tility (correlation) are calculated and then the average is computed across the number of series k, replications 
R and sample size T. For example, for the volatilities, the relative and the absolute relative difference between 
the estimated and the true ones is given by

 

, , , ,
, ,

=1 =1 =1 =1 =1 =1, ,

ˆ ˆ1 1 and | |
r rT R k T R k
i t i t i t i ttrue true

h est h est
t r i t r ii t i t

h h h h
ratio ratio

TRk h TRk h

 − −
= =   

∑∑∑ ∑∑∑
 

(17)

where in our case, k = 3, R = 1000 and T = 1000. We also calculate, in a similar manner, the ratio for the covari-
ance estimates ,

ˆ ,ij th  where i≠j. The ratios corresponding to the 1-step estimation of a model that is correctly 
specified is, by construction, equal to 0. Therefore, the ratios reported in Tables 5 and 6 are relative ratios and 
they should be read as a measure of the performance of the corresponding estimator in a certain model when 
estimating the volatility (correlation or covariance), relative to the 1-step estimator in the correctly specified 
model. The results are reported in three parts: volatilities, correlations and covariances. In general, we can 
see that the ratios and absolute ratios are close to zero, indicating that, on average, volatilities and correla-
tions are relatively well estimated even when using a misspecified model.

When we look at the volatility ratios in Table 5, we can see that the largest ratio is 0.0155 and it appears 
when the true volatilities are generated by the VAR(1)-ECCC-GARCH model and estimated by the VAR(1)-DCC-
GARCH in 3-step. Other large ratios correspond to the 3-steps estimators of all the models considered when the 
data have been generated by the VAR(1)-ECCC-GARCH model. On the other hand, the largest absolute ratio for 
the volatility is 0.0291 and it appears when the true volatilities are generated by the VAR(1)-RSDC-GARCH model 
and estimated by VAR(1)-ECCC-GARCH model in three steps; followed by 0.0259 and 0.0245 which correspond to 
the 3 steps VAR(1)-ECCC-GARCH estimates of the volatilities generated by the VAR(1)-DCC-GARCH and VAR(1)-
cDCC-GARCH models. These results are not surprising and suggest that it seems hard for the constant correla-
tion models to capture the volatilities generated by the dynamic correlation models and also for the dynamic 
correlation models to capture the volatilities generated by the VAR(1)-ECCC-GARCH model. When looking at 
Table 6, where the results are presented for the extended models, similar conclusions arise. Although, now all 
models allow for volatility spillovers, we can see that the largest ratio and absolute ratio appear when the true 
volatilities are generated by the VAR(1)-EDCC-GARCH model and estimated by the VAR(1)-ECCC-GARCH.

When we look at the correlation ratios in Table 5, results are again, the expected ones. We can see that 
the largest ratio (in modulus) is –0.0064 and it appears when the true correlations are generated by the 
VAR(1)-ECCC-GARCH model and estimated by the VAR(1)-DCC-GARCH in 3 steps. The largest absolute ratios 
are obtained when the true correlations are dynamic and they are estimated by a constant correlation model. 
On the other hand, the absolute ratios for the correlations estimated by the VAR(1)-DCC-GARCH and VAR(1)-
cDCC-GARCH models are relatively much closer to zero; implying that they can capture well the correlations 
generated by the constant correlation models and also the correlations generated by each other. A similar 
comment can be made for the VAR(1)-CCC-GARCH and VAR(1)-ECCC-GARCH models. Table 6 presents the 
results for the extended models and similar conclusions can be reached.

4 In order to better interpret the numbers, true volatility is computed substituting the true parameter values by the 1-step esti-
mates of the correct model.
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In general terms, when volatilities and correlations that have been generated by a particular model are 
estimated by another model, their estimates seem to be worse as the number of steps used in the estima-
tion increase. Nevertheless, volatilities and correlations are relatively well estimated even when using a mis-
specified model. The largest average ratio and absolute ratio are 5.18% and 9.91%, respectively, that could 
be interpreted as follows: on average, multiple steps estimates of volatilities (correlations) deviate from the 
corresponding true volatilities (correlations) at most about 5.2% (and about 10% in absolute terms) more than 
the amount that 1-step estimates of the correctly specified model deviates.

5  Conclusions
In this paper we have carried out several Monte Carlo experiments to study the performance in finite samples 
of 1-step and multiple steps estimators of vector autoregressive multivariate conditional correlation GARCH 
models. Although 1-step estimators are preferable because of their theoretical properties, they are not always 
feasible and therefore, estimating the parameters of a model in multiple steps could be a reasonable alterna-
tive. Our results indicate that, when the distribution of the errors is Gaussian, multiple steps estimators have 
a very good performance even in small samples. However, when the estimation is based on Student-t errors, 
we find that multiple steps estimators do not always perform well even when the data follows a Student-t 
distribution.

Our results also show that if the true error distribution is Student-t but estimation is based on the Gauss-
ian distribution, kernel density estimates of the estimates of volatility and correlation obtained from 1-step 
and multiple steps estimators are quite similar. Analogously, if the true error distribution is Gaussian but 
estimation is based on the Student-t distribution, we obtain similar results as when the true and assumed 
distribution is a Student-t. When errors are distributed as a skewed Student-t but the estimation is performed 
assuming symmetric innovations, we find that kernel density estimates of the difference between 1-step 
and multiple steps estimates of volatilities and correlations from their true values are very similar when the 
estimation is based on a Gaussian distribution. However, this is not true when the estimation is based on 
Student-t errors. In any case, when the true distribution is skewed, one should be cautious in using 1-step or 
multiple-steps estimators based on Student-t errors since both are inconsistent estimators.

Finally, we also analyze the robustness of our results to the misspecification of the model when the estima-
tion is based on Gaussian errors. We find that, on average, volatilities and correlations are relatively well esti-
mated even when using a misspecified model. The multiple-steps estimates of volatilities (correlations) deviate 
from the true values at most by 10% more than what 1-step estimates of the correctly specified model do.
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