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Highlights 

 

Easy preparation of a novel magnetic nanocatalyst. 

 

Simple catalyst removing by an external magnetic field. 

 

The lowest catalyst loading reported for this transformation 

 

The use of complicated and expensive organic ligands, used in related processes, is 

avoided  
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Abstract 

A new catalyst derived from osmium has been prepared, fully characterized and tested 

in the dihydroxylation of alkenes. The catalyst was prepared by wet impregnation 

methodology of OsCl3•3H2O on a commercial micro-magnetite surface. The catalyst 

allowed the reaction with one of the lowest osmium loadings for a heterogeneous 

catalyst and was selective for the monodihydroxylation of 1,5-dienes. Moreover, the 

catalyst was easily removed from the reaction medium by the simple use of a magnet. 

The selectivity of catalyst is very high with conversions up to 99%. Preliminary kinetics 

studies showed a first-order reaction rate with respect to the catalyst.  
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1. Introduction 

The syn-dihydroxylation of alkenes for the preparation of diols[1,2] is one of the most 

explored reactions in organic chemistry due to the importance of these compounds for 

the fine chemical industry and their use as intermediates for pharmaceuticals and 

agrochemicals. The most employed catalyst for this transformation is OsO4, with the 

asymmetric version of this reaction being performed using the appropriated chiral 

ligands[3-6]. The use of the aforementioned oxide has important drawbacks such as the 

high cost, its high volatility and its toxicity, which limits or makes very difficult its 

application in industry, and in the laboratory. 

In the last years a great effort has been made to prepare heterogeneous catalysts[7-11] 

which overcome these problems. Different supports having osmium salts in different 

loadings (osmium/support ratio), such as polymers (0.25-5 mol%)[12-15], silica (0.25 

mol%)[16], cinchona modified silica gel (1 mol%)[17-19], hydrotalcites (8.5 

mol%)[20,21], dendrimers (0.25-1 mol%)[22,23], polysiloxane (1 mol%)[24], imigolite 

(0.25 mol%)[25] fullerenes (3.8 mol %)[26], magnetically recoverable quaternary 

ammonium salts (2 mol%)[27], or zeolites (0.6 mol%)[28] have been reported for this 

purpose, as well as other strategies including microencapsulation (5 mol%)[29-31], ion-

exchange technique (0.5-2.5 mol%)[32-35], and the use of poly(ethylene glycol) (0.5 

mol%)[36] or ionic liquids (0.5-2 mol%)[37,38]. The majority of these catalyst 

preparation strategies suffer the need of a large and complicated work in the 

corresponding catalyst elaboration, so the initial interest has not been transformed into 

general industrial applications. 

We have recently developed a new, simple and robust method to immobilize different 

metal oxides[37-46] on the surface of the magnetite[47-49]. Here, we show the effective 

application of this new osmium impregnated on magnetite catalyst in organic synthesis 

for the syn-dihydroxylation of alkenes. 

 

2. Experimental 

2.1. General Procedure for the Preparation of Catalyst 

To a stirred solution of OsCl3•3H2O (349 mg, 1 mmol) in deionized water (120 mL) 

was added Fe3O4 (4 g, 17 mmol, powder < 5 µm, BET area: 9.86 m
2
/g). After 10 

minutes at room temperature, the mixture was slowly basified with NaOH (1M) until 

pH around 13. The mixture was stirred during one day at room temperature. After that, 

the catalyst was filtered under vacuum and washed several times with deionized water 

(3 x 10 mL). The solid was dried at 100ºC during 24 h in a standard glassware oven, 

obtaining the expected catalyst.  
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2.2. Characterization of catalyst  

XRD patterns were recorded on a Brucker D8 advance diffractometer with 

monochromatized Cu Kα radiation (λ = 0.15406 nm) at a setting of 40 kV and 40 mA. 

TEM images were obtained on a JEOL JEM-2010 electron microscope equipped with 

an X-ray detector for microanalysis (EDS). XRF analyses were obtained on a X-ray 

spectrometer PHILIPS MAGIX PRO equipped with a rhodium X-ray tube and a 

beryllium window. Surfaces areas were determined by the application of the BET 

equation to N2 adsorption isotherm at 77K. Adsorption data were obtained from a 

QUANTACROME AUTOSORB-6 equipment.  

 

2.3. General procedure for the dihydroxylation of alkenes 

To a stirred solution of alkene (1, 1 mmol) in a mixture of acetone:H2O 2:1 (3 mL) in a 

pressure tube, OsO2-Fe3O4 (10 mg, 0.08% of osmium) and NMO (234 mg, 2 mmol) 

were added. The resulting mixture was stirred at 100 ºC during 3 hours. The catalyst 

was removed by a magnet and the resulting solution was extracted with ether. The 

organic phases were dried over MgSO4, and the solvents were removed under reduced 

pressure. The product was usually purified by chromatography on silica gel 

(hexane/ethyl acetate) to give the corresponding products 2 or 4. Physical and 

spectroscopic data as well as literature for all compounds are included as Supplementary 

data. FT-IR spectra were obtained on a Nicolet impact 400D spectrophotometer. NMR 

spectra were recorded on a Bruker AC-300 apparatus (300 MHz for 
1
H and 75 MHz for 

13
C) using CDCl3 as a solvent and TMS as internal standard for 

1
H and 

13
C; chemical 

shifts are given in δ (parts per million) and coupling constants (J) in Hertz. Mass spectra 

(EI) were obtained at 70 eV on a spectrometer Agilent GC/MS-5973N, giving fragment 

ions in m/z with relative intensities (%) in parentheses. Thin layer chromatography 

(TLC) was carried out on DC-Fertigfolien ALUGRAM plates coated with a 0.2 mm 

layer of silica gel; detection by UV254 light, staining with phosphomolybdic acid [25 g 

phosphomolybdic acid, 10 g Ce(SO4)2•4 H2O, 60 mL of concentrated H2SO4 and 940 

mL H2O]. Column chromatography was performed using silica gel 60 of 35-70 mesh. 

 

3. Results and discussion 

3.1. Synthesis of catalyst  

The catalyst was easily prepared by the typical wet impregnation methodology. The 

addition of commercial micro-particles of magnetite to an aqueous solution of OsCl3, 

followed by the increasing of the pH of the solution up to nearly 13 by addition of 2M 

aqueous solution of NaOH, filtering, washing with water and evaporation of water at 

100 ºC during 24 h rendered the catalyst (non osmium species were detected in the 

aqueous mixture, coming from the evaporated phase, which was collected in a liquid 



4 

 

nitrogen trap). The XRD analysis of freshly prepared catalyst did not provide any 

concluding information due to the low metal osmiun loading and its high dispersion, 

with exception of the support diffraction peaks (Fe3O4, see supporting data). The total 

incorporation of osmium was around 1.6%, according to the XRF and the BET area 

surface was 8.6 m
2
/g, almost the same as in the starting magnetite (9.8 m

2
/g). The 

distribution of osmium particles seems to be homogenous on the surface of magnetite, 

according to the TEM images (Figure 1), and the size distribution was 1.7±0.6 nm. The 

XPS spectra showed the presence of two osmium species in a nearly 1:1 mixture, and 

these species seemed to be OsO2 and OsO2(OH)2 according to the binding energies 

(Figure 1)[52]. 

 

 

Figure 1. X-Ray photoelectron spectroscopy and TEM image of the fresh osmium 

impregnated magnetite catalyst. 

 

3.2. Dihydroxylation reactions  

Once the catalyst was prepared and fully characterized, we faced the problem of their 

activity in dihydroxylation processes. Initial studies were performed upon the reaction 

of (E)-1-phenylprop-1-ene (1a) with 4-methylmorpholine N-oxide (NMO), as the 

oxidant, in a mixture of solvents (acetone/H2O:2/1) at 70 ºC and the effects of different 

parameters were evaluated (Table 1). First, the effect of the temperature of the reaction 

was studied (entries 1-4). When the temperature was reduced to 50 ºC the reaction took 

place, although it needed a longer reaction time to achieve similar yield. The increase of 

the temperature to 100 ºC allowed to obtain the corresponding diol 2a in 72% yield in 

only 3 hours (entry 3). However, a further increase on the temperature gave similar 

results (entry 4). Then, other solvents were tested in the reaction (entries 5-7), but the 

initial mixture of acetone:H2O gave the best results. Only in the case of using toluene, it 

was possible to obtain the diol 2a in modest yield (entry 7). The reaction failed when 

other oxidants, such as t-BuOOH, H2O2, or isoquinoline N-oxide, were used. Only using 
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trimethylamine N-oxide similar result was obtained (entry 10). The importance of the 

amount of oxidant was also evaluated (entries 12 and 13). When the amount of the 

oxidant was increased to 200 mol% the corresponding diol was obtained in 97% yield in 

only 1 hour. However, increasing the amount of the oxidant to 300 mol% did not 

improve the previous result. Finally, the amount of catalyst was optimized (entries 14-

16), finding that a good result was obtained when 0.4 mol% of osmium was added 

(entry 12). However, similar yield was obtained when a lower amount of osmium (0.08 

mol%) was added (entry 16), but the reaction time had to be increased up to 3 hours in 

order to achieve the same yield (96%). In order to test the formation of toxic volatile 

osmium species, after performing the reaction at 100 ºC and removing carefully the 

catalyst and the solution, the walls and the cap of pressure tube were washed with 

methanol and water. This washing solution was analyzed by ICP-MS, with the amount 

of osmium in this washing solution being lower than 0.01% of the initial charged 

osmium. When the reaction was repeated with only 0.04 mol% of catalyst, the yield 

decreased drastically (entry 17), and in this case, when the reaction was repeated 

increasing the reaction time to 3 h the yield kept modest (27%). In almost all cases, the 

only compound detected by GC-MS analysis of the crude mixture was the product 2a, 

and variable amounts of starting alkene 1a. To the best of our knowledge, the optimal 

conditions found for this reaction involved the use of the lowest catalyst loading ever 

reported, without taking in account the possible recyclability. 

 

 

Table 1. Optimization of reaction conditions
a
 

 

Entry T 

(ºC) 

Solvent Oxidant (mol%) Conversion 

(%)
b 

t (h) Yield 

(%)
c 

1 70 acetone:H2O (2:1) NMO (130) 65 24 63 

2 50 acetone:H2O (2:1) NMO (130) 43 48 43 

3 100 acetone:H2O (2:1) NMO (130) 72 3 72 

4 130 acetone:H2O (2:1) NMO (130) 71 3 71 
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5 100 H2O NMO (130) 10 24 0 

6 100 PhMe:H2O (2:1) NMO (130) 10 24 0 

7 100 PhMe NMO (130) 45 24 40 

8 100 acetone:H2O (2:1) t-BuOOH (130) 15 24 0 

9 100 acetone:H2O (2:1) H2O2 (130) 5 24 0 

10 100 acetone:H2O (2:1) (CH3)3N-O (130) 55 3 52 

11 100 acetone:H2O (2:1) isoquinoline N-oxide (130) 2 24 0 

12 100 acetone:H2O (2:1) NMO (200) 99 1 97 

13 100 acetone:H2O (2:1) NMO (300) 90 1 89 

14
d 

100 acetone:H2O (2:1) NMO (200) 90 1 87 

15
e 

100 acetone:H2O (2:1) NMO (200) 84 1 77 

16
f 

100 acetone:H2O (2:1) NMO (200) 55 (99)
g 

1 55 

(96)
g 

17
h 

100 acetone:H2O (2:1) NMO (200) 20 (33)
i 

1 12 

(27)
i 

a 
Reactions performed using 1a (1 mmol) in 3 mL of solvent. 

b
 Calculated from GC analysis of crude mixture.  

c 
Isolated yield.  

d
 Reaction performed with 0.8 mol% of catalyst.  

e
 Reaction performed with 0.2 mol% of catalyst.  

f
 Reaction performed with 0.08 mol% of catalyst.  

g 
The result after 3 hours of reaction appear in parenthesis.  

h 
Reaction performed with 0.04 mol% of catalyst.  

i
 The result after 48 hours of reaction appear in parenthesis 
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The evolution of yield of compound 2a with the time at different catalyst loadings is 

depicted in Figure 2. Assuming that the equation rate is simple and that the reaction 

conditions permit a pseudo-first order approximation for all reagents, the equation rate 

could be expressed as Ln r0i = α Ln [catalyst]i + constant.  

 

 

Figure 2. Plot-time yield for the standard preparation of compound 2a using different 

amounts of catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h].  

 

The estimation of the initial reaction rate for each trial and their representation 

permitted us to calculate the value of the reaction order for the catalyst (Figure 3), with 

the obtained value (1.1) being very close to a first order.  

 

Figure 3. Correlation between initial rates and catalyst amount for the standard 

preparation of compound 2a [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h].  
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The magnetite support was tested in order to confirm that it was inert, and after 24 hours 

the starting alkene was recovered unmodified. Other transition metal oxides 

impregnated on magnetite such as cobalt, nickel, copper, ruthenium, palladium, iridium, 

or platinum were also tested in the reaction, but none of them showed activity. Finally, 

the reaction was performed in absence of catalyst, and the starting material was 

recovered after 24 hours. 

Once the activity of the catalyst was demonstrated, the problem of the recyclability was 

faced. After the reaction, the catalyst was kept inside the vessel using a magnet, 

decanting the liquid reaction media. Then, the catalyst was washed with diethyl ether, 

and re-used under the same reaction conditions described in the entry 16 of Table 1. 

Unfortunately, the yield obtained in the second cycle was only 40% after 24 hours of 

reaction. The ICP-MS analysis of the reaction solution, after the first trial, showed the 

presence of osmium (5.1% of the initial amount) and iron (0.01% of the initial amount). 

Meanwhile, the XRF data of used catalyst showed 1.4% of osmium amount, in good 

agreement with the ICP-MS analysis of reaction solution. The XPS studies showed that 

the iron species in the initial and in the recovered catalyst were the same. In the case of 

oxygen, the expected decrease of the relative intensity between oxygen bonded to 

osmium and to iron was also detected, being in both cases the same species (see 

supplementary data). However, just one species of osmium (OsO2) on the surface of 

catalyst was detected (Figure 4). However, it should be pointed out that the initial 

catalyst data had showed the presence of OsO2 and OsO2(OH)2 in a 1:1 ratio. So, the 

decrease on the catalyst activity would be due to the partial leaching of the OsO2(OH)2 

species as well as its transformation to OsO2 in the reaction media. Finally, it should 

notice that the simple removal of catalyst by a magnet is quite efficient since more than 

97% of initial mass was recovered according to its weight. 

 

 

Figure 4. X-Ray photoelectron spectroscopy and TEM image of the recycled osmium 

impregnated magnetite catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h]. 
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The analysis of the TEM images of the used catalyst showed a slight process of 

sinterization of the particles. Initially the particles of osmium had a distribution of size 

of 1.7 ± 0.6 nm, and after the reaction the distribution was 2.2 ± 0.7 nm, but this change 

is not sufficient to explain the lost of its activity (Figure 5). The BET area of the 

recycled catalyst was 11.9 m
2
/g, which is in the range of starting values.  

 

 

Figure 5. Particle size of fresh and recycled [NMO (200 mol%), Me2CO:H2O (2:1), 100 

ºC, 3 h] osmium oxide derivatives on the surface of magnetite. 

 

To know if the reaction took place by the leached osmium to the organic medium, we 

performed the standard dihydroxylation of alkene 1a (Table 1, entry 16). After that, the 

catalyst was removed carefully by a magnet at high temperature. The solvents of the 

above solution, without catalyst, were removed under low pressure and dodec-1-ene, 

NMO, acetone and water were added to the above residue. The resulting mixture was 

heated again at 100 ºC for 3 h. The analysis of crude mixture, after hydrolysis, revealed 

the formation of compound 2a in 93% (catalyzed process) and product (2j) with only 

21% yield (compare with entry 10 in Table 2). Therefore, we could not exclude that the 

final leached osmium was partially responsible for the reaction results. 
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With the best conditions in hand, the scope of the reaction was evaluated (Table 2). The 

reaction gave excellent yields independently of the substitution of the alkene (entries 1-

5). A slight decrease in the yields was observed when 1,1-disubstituted alkenes were 

used (entries 4 and 5). Then, the influence of the configuration of the alkene was 

evaluated performing the reaction with (Z)- and (E)-stilbene (entries 6 and 7), and better 

result was obtained in the case of the E-isomer. The reaction with the Z-isomer rendered 

the expected diol in lower yield (compare entries 6 and 7), and 16% of the diol arising 

from the isomerization of the starting Z-alkene to the E-isomer, followed by a 

dihydroxylation process. However, the related aliphatic alkenes did not show this 

isomerization process (entries 8 and 9), and only the syn-dihydroxylation products were 

detected for the reaction of (Z)- and (E)-hex-3-ene. Excellent results were achieved 

when aliphatic alkenes were tested, with independence of the nature of the alkene, such 

as terminal or internal (entries 8-15). The tolerance of other functional groups was also 

tested using allylic ether or ester moieties, obtaining the corresponding diol with similar 

results (entries 16 and 17). Unfortunately, when the reaction was performed with a 

conjugated alkene, the yield decreased somewhat (entry 18), and the reaction failed 

when a (Z/E)-mixture of β-bromostyrene was used, recovering unchanged the starting 

material (entry 19). Finally, it should be pointed out that the selectivity of the reaction 

was nearly 100% since the only product detected by GC-MS from the crude mixture 

was the expected diol 2 and the corresponding unchanged alkene 1, with the exception 

of the (Z)-stilbene case (entry 7). 

 

Table 2. Dihydroxylation of alkenes
a
  

 

Entry Alkene Compound Conversion (%)
b
 Yield (%)

c 

1 (E)-1-phenylprop-1-ene 2a 99 96 

2 styrene 2b 90 87 

3 1-phenylprop-1-ene 2c 99 98 

4 methylenecyclopentane 2d 72 71 

5 1,1-diphenylethene 2e 75 73 

6 (E)-stilbene 2f 90 87 
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7 (Z)-stilbene 2g 75 54
d 

8 (E)-hex-3-ene 2h 83 81 

9 (Z)-hex-3-ene 2i 80 77 

10 dodec-1-ene 2j 99 99 

11 4-phenylbut-1-ene 2k 95 93 

12 cyclohexene 2l 80 79 

13 cyclooctene 2m 95 92 

14 1-methylcyclohex-1-ene 2n 85 84 

15 1H-indene 2o 70 66 

16 allyloxybenzene 2p 85 80 

17 allyl benzoate 2q 90 75 

18 methyl cinnamate 2r 65 49 

19 (Z/E)-β-bromostyrene 2s 0 0
e 

a 
Reactions performed using 1 (1 mmol), NMO (2 mmol) in acetone (2 mL) and water (1 

mL) at 100 ºC during 3 h. 

b
 Calculated from GC analysis of crude mixture. 

c
 Isolated yield. 

d
 Compound 2f was isolated in 16% yield. 

e
 Starting material recovered unchanged. 

 

 

The same reaction conditions were applied to afford the hydroxylation of dienes 

(Scheme 1). However, the only isolated product from the reaction media was the diol 

arising from a monodihydroxylation process in low yields using 400 mol% of oxidant, 

with the starting reagent being the other product detected by CG-MS from the crude 

reaction media. The catalyst was selective for this process, because the double 

dihydroxylation product was not detected even when a large excess of oxidant was 
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added (800 mol%). It should be pointed that the reaction gave the monohydroxylation 

products in similar yields (4a: 49%, 4b: 42%), with only 200 mol% of oxidant. 

 

 

Scheme 1. Selective dihydroxylation of 1,5-dienes. 

 

4. Conclusion 

In conclusion, we have demonstrated that the impregnated osmium on magnetite system 

is a good catalyst for the dihydroxylation of alkenes, with one of the lowest osmium 

loadings described for heterogeneous catalyst so far. An interesting selectivity was 

achieved in the case of 1,5-diines, with only the monodihydroxylation process being 

performed. Moreover, the catalyst is easily removed from the reaction medium just by 

the use of a simple magnet. 
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Captions: 

Table 1. Optimization of reaction conditions 

Table 2. Dihydroxylation of alkenes 

 

Scheme 1. Selective dihydroxylation of 1,5-dienes 

 

 

Figure 1. X-Ray photoelectron spectroscopy and TEM image of the fresh osmium 

impregnated magnetite catalyst. 

Figure 2. Plot-time yield for the standard preparation of compound 2a using different 

amounts of catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h]. 

Figure 3. Correlation between initial rates and catalyst amount for the standard 

preparation of compound 2a [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h].  

Figure 4. X-Ray photoelectron spectroscopy and TEM image of the recycled osmium 

impregnated magnetite catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h]. 

Figure 5. Particle size of fresh and recycled [NMO (200 mol%), Me2CO:H2O (2:1), 100 

ºC, 3 h] osmium oxide derivatives on the surface of magnetite. 
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Table 1. Optimization of reaction conditions
a
 

 

Entry T 

(ºC) 

Solvent Oxidant (mol%) Conversion 

(%)
b 

t (h) Yield 

(%)
c 

1 70 acetone:H2O (2:1) NMO (130) 65 24 63 

2 50 acetone:H2O (2:1) NMO (130) 43 48 43 

3 100 acetone:H2O (2:1) NMO (130) 72 3 72 

4 130 acetone:H2O (2:1) NMO (130) 71 3 71 

5 100 H2O NMO (130) 10 24 0 

6 100 PhMe:H2O (2:1) NMO (130) 10 24 0 

7 100 PhMe NMO (130) 45 24 40 

8 100 acetone:H2O (2:1) t-BuOOH (130) 15 24 0 

9 100 acetone:H2O (2:1) H2O2 (130) 5 24 0 

10 100 acetone:H2O (2:1) (CH3)3N-O (130) 55 3 52 

11 100 acetone:H2O (2:1) isoquinoline N-oxide (130) 2 24 0 

12 100 acetone:H2O (2:1) NMO (200) 99 1 97 

13 100 acetone:H2O (2:1) NMO (300) 90 1 89 

14
d 

100 acetone:H2O (2:1) NMO (200) 90 1 87 

15
e 

100 acetone:H2O (2:1) NMO (200) 84 1 77 

16
f 

100 acetone:H2O (2:1) NMO (200) 55 (99)
g 

1 55 

(96)
g 

17
h 

100 acetone:H2O (2:1) NMO (200) 20 (33)
i 

1 12 



18 

 

(27)
i 

a 
Reactions performed using 1a (1 mmol) in 3 mL of solvent. 

b
 Calculated from GC analysis of crude mixture.  

c 
Isolated yield.  

d
 Reaction performed with 0.8 mol% of catalyst.  

e
 Reaction performed with 0.2 mol% of catalyst.  

f
 Reaction performed with 0.08 mol% of catalyst.  

g 
The result after 3 hours of reaction appear in parenthesis.  

h 
Reaction performed with 0.04 mol% of catalyst.  

i
 The result after 48 hours of reaction appear in parenthesis 
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Table 2. Dihydroxylation of alkenes
a
  

 

Entry Alkene Compound Conversion (%)
b
 Yield (%)

c 

1 (E)-1-phenylprop-1-ene 2a 99 96 

2 styrene 2b 90 87 

3 1-phenylprop-1-ene 2c 99 98 

4 methylenecyclopentane 2d 72 71 

5 1,1-diphenylethene 2e 75 73 

6 (E)-stilbene 2f 90 87 

7 (Z)-stilbene 2g 75 54
d 

8 (E)-hex-3-ene 2h 83 81 

9 (Z)-hex-3-ene 2i 80 77 

10 dodec-1-ene 2j 99 99 

11 4-phenylbut-1-ene 2k 95 93 

12 cyclohexene 2l 80 79 

13 cyclooctene 2m 95 92 

14 1-methylcyclohex-1-ene 2n 85 84 

15 1H-indene 2o 70 66 

16 allyloxybenzene 2p 85 80 

17 allyl benzoate 2q 90 75 

18 methyl cinnamate 2r 65 49 

19 (Z/E)-β-bromostyrene 2s 0 0
e 
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a 
Reactions performed using 1 (1 mmol), NMO (2 mmol) in acetone (2 mL) and water (1 

mL) at 100 ºC during 3 h. 

b
 Calculated from GC analysis of crude mixture. 

c
 Isolated yield. 

d
 Compound 2f was isolated in 16% yield. 

e
 Starting material recovered unchanged. 
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Scheme 1. Selective dihydroxylation of 1,5-dienes 
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Figure 1. X-Ray photoelectron spectroscopy and TEM image of the fresh osmium 

impregnated magnetite catalyst. 
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Figure 2. Plot-time yield for the standard preparation of compound 2a using different 

amounts of catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h].  
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Figure 3. Correlation between initial rates and catalyst amount for the standard 

preparation of compound 2a [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h].   
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Figure 4. X-Ray photoelectron spectroscopy and TEM image of the recycled osmium 

impregnated magnetite catalyst [NMO (200 mol%), Me2CO:H2O (2:1), 100 ºC, 3 h]. 
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Figure 5. Particle size of fresh and recycled [NMO (200 mol%), Me2CO:H2O (2:1), 100 

ºC, 3 h] osmium oxide derivatives on the surface of magnetite. 
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