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Abstract

In this study, we utilise a novel approach to segment out the ventricular system in

a series of high resolution T1-weighted MR images. We present a brain ventricles

fast reconstruction method. The method is based on the processing of brain sec-

tions and establishing a fixed number of landmarks onto those sections to recon-

struct the ventricles 3D surface. Automated landmark extraction is accomplished

through the use of the self-organising network, the Growing Neural Gas (GNG),

which is able to topographically map the low dimensionality of the network to the

high dimensionality of the contour manifold without requiring a priori knowledge
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of the input space structure. Moreover, our GNG landmark method is tolerant

to noise and eliminates outliers. Our method accelerates the classical surface re-

construction and filtering processes. The proposed method offers higher accuracy

compared to methods with similar efficiency as Voxel Grid.

1. Introduction

The cerebral ventricles are buried within the centre of the brain parenchyma

and are the source of cerebral spinal fluid, which provides nutritive and cushion-

ing support to the brain and spinal cord. Neuropathologies involving the ven-

tricles range from severe hypertrophy diagnostic for hydrocephalus, to mild and

diffuse enlargements associated with AIDS, Alzheimer’s Disease and Schizophre-

nia [14, 19]. Currently, MRI techniques are employed routinely in the diagnosis of

ventricular related diseases. In many cases, the extent of disease progression can

be determined by quantifying the extent of the change in ventricular morphology

and/or volume [14]. The usual practise in a clinical setting is to perform a high res-

olution T1-weighted MRI followed by laborious post-processing steps. The first

stage in the post-processing step is to segment out the ventricles, which can be

difficult in many cases if the patient is not properly aligned in the scanner. Next,

the ventricles must be segmented followed by volumetric quantification. These

post-processing steps are laborious and must be very accurate if the purpose of

the scan is to help determine the extent of disease progression. In very overbur-

dened medical facilities, performing this task manually may not be feasible. In

addition, in a multi-centre study or when a patient visits multiple medical facil-

ities, there is little assurance that the post-processing steps will be performed in

an identical fashion. An automated procedure may provide the means of yielding
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objective and consistent results across various institutions. It is imperative there-

fore that an accurate, rapid and automated algorithm be developed and deployed.

That is the subject of the rest of this paper.

In this work, we introduce a new and computationally inexpensive method

for the automatic selection of landmarks along the contours of 2D MRI slices of

human brain. The incremental neural network, the growing neural gas (GNG) is

used to automatically annotate the training set without using a priori knowledge of

the structure of the input patterns. Unlike other methods, the incremental character

of the model avoids the necessity to previously specify a reference shape. The

method is used for the representation of two-dimensional outline of the ventricles,

which is extended to the representation in three dimensions. As will be discussed

in Section 3, GNG does not use any a priori knowledge, as its adaptation process

is incremental based on competitive hebbian learning. To evaluate the accuracy of

the method we have tested it with other self-organising models such as Kohonen

maps and Neural Gas (NG) maps and global distance error has been applied to

measure the quality of the adaptation of the network. We also obtained a 3D

volume reconstruction of landmarked ventricles and compared our results with

other reconstruction methods.

The remaining of the paper is organised as follows. In Section 2 a review of

the most used 2D and 3D methods is presented. Section 3 describes the topology

learning process and includes an introduction to statistical shape models and its

application to automated ventricular segmentation, the GNG learning algorithm,

and the error measurement used for the adaptation process. A set of experimen-

tal results is presented in Section 4 that includes 2D and 3D representations and

comparative studies, followed by our major conclusions and future work.
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2. Related Work

There are several algorithms that have been employed to perform automatic

segmentation. These algorithms can be broadly classified into landmark and non-

landmark based approaches. Non-landmark based techniques have been published

using region-growing algorithms [41], level set [4], and rough sets based [46]

techniques have been applied in the medical imaging domain.

Landmark based techniques can be classified as manual, semi-automatic and

automatic. Because the first two are laborious and subjective especially when

applied to 3D images, various attempts have been made to automate the process

of landmark based image registration and correct correspondences among a set of

shapes. Sousa’s et al. [43] method uses the landmarks of the mean shape of an

MRI foot data set as a reference to automatically generate the landmarks to the

training set. The distance between the given landmark point from the mean shape

and the nearest strong edge in the image is locally searched. However,the method

is arbitrary since the mean shape can be defined only for closed boundaries and

for set of images that are mainly aligned and have small variations.

Davies et al. [11] presents a method to automatically build statistical shape

models by re-paremeterising each shape from the training set and optimising an

information theoretic function to assess the quality of the model has received a lot

of attention. The quality of the model is assessed by adopting a minimum descrip-

tion length (MDL) criterion to the training set. This is a very promising method

and the models that are produced are comparable to and often better than the man-

ual built models. However, due to very large number of function evaluations and

nonlinear optimisation the method is computationally expensive.

Fatemizadeh et al. [16] have used modified growing neural gas to automati-
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cally correspond important landmark points from two related shapes by adding a

third dimension to the data points and by treating the problem of correspondence

as a cluster-seeking method by adjusting the centers of points from the two corre-

sponding shapes. This is a promising method and has been tested to both synthetic

and real data, but the method has not been tested on a large scale for stability and

accuracy of building statistical shape models.

Three-dimensional reconstruction of medical images (tissue sections, CT and

autoradiographic slices) is now an integral part of biomedical research. Recon-

struction of such data sets into 3D volumes, via the registrations of 2D sections,

has gained an increasing interest. The registration of multiple slices is of outmost

importance for the correct 3D visualization and morphometric analysis (e.g. sur-

face and volume representation) of the structures of interest. Several alignment

algorithms have been proposed in that framework. Some interesting reviews of

general medical image registration methods are presented in [6, 47, 30, 22]. The

principal 3D alignment (reconstruction from 2D images) methods may be clas-

sified in the following categories: fiducial marker-based methods [21], feature

based methods using contours, crest lines or characteristic points extracted from

the images [28, 39], and gray level-based registration techniques using the inten-

sities of the whole image [27, 2, 24, 38]. Most of the above mentioned techniques

do not simultaneously consider the two major difficulties involved in medical and

CT scanned data registration. At first, consecutive slices may differ significantly

due to distortions, discontinuities in anatomical structures, cuts and tears. These

effects are more pronounced when distant slices are involved in the registration.

From this point of view, a registration method must be robust in missing data or

outliers [27, 38]. Besides, registering the slices sequentially (the second with re-
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spect to the first, the third with respect to the second, etc.) leads to different types

of misregistration. If an error occurs in the registration of a slice with respect to

the preceding slice, this error will propagate through the whole volume. Also, if

the number of slices to be registered is large, a global offset of the volume may be

observed, due to error accumulation [2]. In [27], a fully-automated algorithm for

the alignment of 2D serially acquired sections forming a 3D volume is discussed.

The approach relies on the optimization of a global energy function, based on the

object shape, measuring the similarity between a slice and its neighborhood in the

3D volume. Slice similarity is computed using the distance transform measure in

both directions. Osechinskiy and Kruggel [37] present a flexible framework for

intensity-based slice to volume nonrigid registration algorithms with a geomet-

ric transformation deformation field parameterised by various classes of spline

functions. Algorithms are applied to cross-modality registration of histological

and magnetic resonance images of the human brain. [10] presents a protocol that

matches a series of stained histological slices of a baboon brain with an anatomi-

cal MRI scan of the same subject using an intermediate 3D-consistent volume of

blockface photographs taken during the sectioning process. While [46] presents

an automated multi-spectral MRI segmentation technique based on approximate

reducts derived from the data mining paradigm.

2.1. 3D Reconstruction Methods

This section will review the most used methods and techniques for the recon-

struction of generic three-dimensional surfaces.
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2.1.1. Delaunay and alpha-shapes

Reconstruction with Delaunay methods in three dimensions consists of the

extraction of tetrahedron surfaces from the initial point cloud. The concept of

alpha-shape formalizes the intuitive notion of ”shape” for a set of points in the

space. One of the earliest approaches is based on alpha-shapes of Edelsbrunner

and Mucke [15]. Given a finite point set S, and the real parameter alpha, the

alpha-shape of S is a polytope (the generalization to any dimension of a two di-

mensional polygon and a three-dimensional polyhedron) which is neither convex

nor necessarily connected. For a large value, the alpha-shape is identical to the

convex-hull of S. If the alpha value decreases progressively non-convex shapes

with cavities are obtained. The algorithm proposed by Edelsbrunner and Mucke,

eliminates all tetrahedrons which are delimited by a surrounding sphere smaller

than α. The surface is then obtained with the external triangles from the result-

ing tetrahedron. Another approach is based on labeling the initial tetrahedrons as

interior and exterior. The resulting surface is generated from the triangles found

in and out. This idea first appeared in [5] and was later performed by Powercrust

in [1] and the algorithm called Tight Cocone [12]. Both methods have been re-

cently extended for reconstructing point clouds with noise [13, 34]. The main

advantage of most Delaunay based methods is that they fit very accurately the sur-

face defined by the original point cloud. However, this method is very sensitive to

noise and produces undesirable results since it is an interpolation based method.

Therefore, the quality of the points obtained in the digitization process determines

the feasibility of these methods. Due to the use of the whole point cloud set to ob-

tain the most accurate triangulation, considering the Delaunay rule, the digitized

points on the surface with an error considered above the limit, will be explicitly
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represented on the reconstructed surface geometry.

2.1.2. Zero Set Methods

Implicit reconstruction methods (or zero-set methods) reconstruct the surface

using a distance function which assigns to each point in the space a signed dis-

tance to the surface S. The polygonal representation of the object is obtained by

extracting a zero-set using a contour algorithm. Thus, the problem of reconstruct-

ing a surface from a disorganized point cloud is reduced to the definition of the

appropriate function f with a zero value for the sampled points and different to

zero value for the rest. Lorensen et al. [29] established the use of such methods

with the algorithm called Marching-Cubes. This algorithm has evolved in dif-

ferent variants, [23] uses a discrete function f, in [7] a polyharmonic radial basis

function is used to adjust the initial point set. Other approaches include the ad-

justment function Moving Least Squares [42, 17] and basic functions with local

support [44], based on the Poisson equation [35]. Those methods have the prob-

lem of loss of the geometry precision in areas with extreme curvature, i.e., corners,

edges. Furthermore, pretreatment of information, by applying some kind of fil-

tering technique, also affects the definition of the corners by soften them. There

are several studies related to post-processing techniques used in the reconstruction

for the detection and refinement of corners [17, 45] but these methods increase the

complexity of the solution.

2.1.3. Voxel Grid

The Voxel Grid filtering technique is based on the sampling of the input space

by using a grid of 3D voxels to reduce the number of points. This technique has

been used traditionally in the area of computer graphics to subdivide the input
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space and to reduce the number of points [8, 25]. For each voxel, a centroid is

chosen as the representative of all points. There are two approaches, the selection

of the voxel centroid or select the centroid of the points lying within the voxel. To

obtain internal points average has a higher computational cost, but offers better

results. Thus, a subset of the input space is obtained that roughly represents the

underlying surface. The Voxel Grid method presents the same problems as other

filtering techniques: impossibility of defining the final number of points that rep-

resent the surface, geometric information loss due to the reduction of the points

inside a voxel and sensitivity to noisy input spaces. This method will be compared

with our GNG landmark based 3D reconstruction, as it offers similar features for

efficient mesh reconstruction.

3. Topology Learning

One way of selecting points of interest along the contour of 2D shapes is to

use a topographic mapping where a low dimensional map is fitted to the high di-

mensional manifold of the contour, whilst preserving the topographic structure of

the data. A common way to achieve this is by using self-organising neural net-

works where input patterns are projected onto a network of neural units such that

similar patterns are projected onto units adjacent in the network and vice versa.

As a result of this mapping a representation of the input patterns is achieved that

in postprocessing stages allows one to exploit the similarity relations of the in-

put patterns. Such models have been successfully used in applications such as

speech processing [26], robotics [40, 32] and image processing [36]. However,

most common approaches are not able to provide good neighborhood and topol-

ogy preservation if the logical structure of the input patten is not known a priori.

9



In fact, the most common approaches specify in advance the number of neurons in

the network and a graph that represents topological relationships between them,

for example, a two-dimensional grid, and seek the best match to the given input

pattern manifold. When this is not the case the networks fail to provide good

topology preserving as for example in the case of Kohonen’s algorithm.

The approach presented in this paper is based on self-organising networks

trained using the Growing Neural Gas learning method [18]. This is an incremen-

tal training algorithm where the number of units in the network are determined by

the unifying measure for neighborhood preservation [20], the topographic prod-

uct. The links between the units in the network are established through competi-

tive hebbian learning [31]. As a result the algorithm can be used in cases where the

topological structure of the input pattern is not known a priori and yields topology

preserving maps of feature manifold [33].

3.1. Statistical Shape Models

When analysing biological shapes it is convenient and usually effective to de-

scribe them using statistical shape models. The most well known statistical shape

models are Cootes et al. [9] Point Distribution Models (PDMs) that models the

shape of an object and its variation by using a set of np landmark points from a

training set of Si shapes. In this work, PDM represents the ventricles as a set of

np automatically extracted landmarks (in our case 64, 100, 144 and 169 neurons)

in a vector x = [xi0 ] x = [xi0 , xi1 , ..., xinp−1 , yi0 , yi1 , ..., yinp−1 ]
T . In order to gen-

erate flexible shape models the Si shapes are aligned (translated, rotated, scaled)

and normalised (removing the centre-of-gravity and placing it at the origin) to a

common set of axes. The modes of variations of the ventricles are captured by

applying principal component analysis (PCA). The ith shape in the training set
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can be back-projected to the input space by a linear model of the form:

x = x + Φβi (1)

where x is the mean shape, Φ describes a set of orthogonal modes of shape vari-

ations, and βi is a vector of weights for the ith shape. To ensure that the above

weight changes describe reasonable variations we restrict the weight βi to the

range −2
√
λ ≤ βi ≤ 2

√
λ, where λ defines the corresponding eigenvalues of x.

In all our experiments we have taken maximum number of eigenvalues λ = 6. The

shape is then back-projected to the input space using Equation (1). PCA works

well as long as good correspondences exist. To obtain the correspondences and

represent the contour of the ventricles a self-organising network GNG was used.

3.2. Growing neural gas

With Growing Neural Gas (GNG) [18] a growth process takes place from min-

imal network size and new units are inserted successively using a particular type

of vector quantisation [26]. To determine where to insert new units, local error

measures are gathered during the adaptation process and each new unit is inserted

near the unit which has the highest accumulated error. At each adaptation step

a connection between the winner and the second-nearest unit is created as dic-

tated by the competitive hebbian learning algorithm. This is continued until an

ending condition is fulfilled, as for example evaluation of the optimal network

topology based on the topographic product [20]. This measure is used to detect

deviations between the dimensionality of the network and that of the input space,

detecting folds in the network and, indicating that is trying to approximate to an

input manifold with different dimensions. In addition, in GNG networks learning
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parameters are constant in time, in contrast to other methods whose learning is

based on decaying parameters.

In the remaining of this Section we describe the growing neural gas algorithm

and ending condition as used in this work. The network is specified as:

• A setN of nodes (neurons). Each neuron c ∈ N has its associated reference

vector wc ∈ Rd. The reference vectors can be regarded as positions in the

input space of their corresponding neurons.

• A set of edges (connections) between pairs of neurons. These connections

are not weighted and its purpose is to define the topological structure. An

edge aging scheme is used to remove connections that are invalid due to the

motion of the neuron during the adaptation process.

The GNG learning algorithm is given below:

1. Start with two neurons a and b at random positions wa and wb in Rd.

2. Generate at random an input pattern ξ according to the data distribution

P (ξ) of each input pattern. In our case since the input space is 1D, the

input pattern is the (x, y) coordinate of the edges. Typically, for the training

of the network we generated 1000 to 10000 input patterns depending on the

complexity of the input space.

3. Find the nearest neuron (winner neuron) s1 and the second nearest s2.

4. Increase the age of all the edges emanating from s1.

5. Add the squared distance between the input signal and the winner neuron to

a counter error of s1 such as:

∆error(s1) = ‖ws1 − ξ‖2 (2)
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6. Move the winner neuron s1 and its topological neighbours (neurons con-

nected to s1) towards ξ by a learning step εw and εn, respectively, of the

total distance:

∆ws1 = εw(ξ − ws1) (3)

∆wsn = εw(ξ − wsn) (4)

for all direct neighbours n of s1.

7. If s1 and s2 are connected by an edge, set the age of this edge to 0. If it does

not exist, create it.

8. Remove the edges larger than amax . If this results in isolated neurons (with-

out emanating edges), remove them as well.

9. Every certain number λ of input patterns generated, insert a new neuron as

follows:

• Determine the neuron q with the maximum accumulated error.

• Insert a new neuron r between q and its further neighbour f :

wr = 0.5(wq + wf ) (5)

• Insert new edges connecting the neuron r with neurons q and f , re-

moving the old edge between q and f .

10. Decrease the error variables of neurons q and f multiplying them with a

consistent α. Initialize the error variable of r with the new value of the error

variable of q and f .
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11. Decrease all error variables by multiplying them with a constant γ.

12. If the stopping criterion is not yet achieved (in our case the stopping crite-

rion is the number of neurons), go to step 2.

Our method is able to find a fixed number of landmarks placing them in an ac-

curate way. The method is tolerant to noise and automatically delete outliers by

using edge length average and reorder landmarks by using the own neural network

neighborhood structure. The landmarks obtained for each of the acquired section

serve automatically for building a tensor that represents the 3D surface.

The algorithm was tested with different number of neurons so that the best

topological map can be achieved. The testing involved two cases were the number

of neurons were too few or too excessive for the training set of the images. In the

former the topological map is lost, not enough neurons to represent the contour of

the ventricles and in the later an overfit is performed.

3.3. Error Minimisation

The goal of training a network is to minimise the expected quantisation or

distortion error. In our case is to find the values of the reference vectors wc, c ∈

Rd of the input pattern distribution P (ξ) such that the error:

E =
∑
∀ξ∈Rd

‖ wsξ−ξ ‖2 P (ξ) (6)

is minimised, where sξ is the nearest neuron to the input pattern ξ.

Previous work [3], demonstrates that the distortion error for Kohonen maps is

very big compared to NG and GNG but for NG the results are slightly better to

GNG, since it has less distortion error thus better topology preservation, but the

learning time is 20 times higher compared to GNG. However, as the number of
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neurons increases the distortion error decreases and stabilises for both networks.

For both Kohonen and NG in the adaptation rule it is assumed that the numbers

of weights are known and are not allowed to change. GNG overcomes this as it is

a growth mechanism and new neurons are inserted based on local error measure-

ments. Thus, GNG can give better preservation compared to the other two and

when tested to a larger scale of data set.

4. Experiments

The data set was obtained from the MNI BIC Centre for Imaging at McGill

University, Canada. These images are 1 mm thick, 181 × 217 pixels per slice

(1.0mm2 in-plane resolution), 3% noise and 20% INU. These images are used

as ground truth segmentation, as every voxel in the entire volume has been cor-

rectly labelled to a tissue class by the McGill Institute. The entire brain volume

consisted of 181 slices, from which we extracted those that contained ventricles

(slices 49 − 91). The images are 16 bit grey scale, which were manually seg-

mented to remove all but the outline of the ventricles. Since most typical clinical

MRI volumes are on average 5mm thick, we selected 4 groups of 5 contiguous

slices to produce our point distribution model. Several experiments have been

carried out to demonstrate the validity of our proposal. Different versions of the

used methods have been developed and tested on a desktop machine with an Intel

Core i3 540 3.07Ghz. All these methods have been coded in C ++.

4.1. Variability and Comparison with Other Neural Networks

Figure 1 shows the modes of variation for all four groups by varying the first

shape parameter βi{±3σ} over the training set. The qualitative results show that
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GNG leads to correct extraction of corners of anatomical shapes and are compact

when the topology preservation of the network is achieved (Figure 3).

Figure 1: The first mode (m = 1) of variation for the four groups of 5 contiguous slices taken

from MR brain data. Range of variation −2
√
λ ≤ βi ≤ 2

√
λ.

Figure 2 shows two shape variations from the automatically generated land-

marks that were superimposed to groups 4 and 3 from the training set. These

modes effectively capture the variability of the training set and present only valid

shape instances. It is interesting to note that whilst there is significant difference

between 64, and 169 nodes -not enough nodes to represent the object at specific

time constraints (Image A) and too many nodes (Image D)- the mapping with 100

is good and has no significant difference with the mapping of 144 nodes. The

reason is that for the current size of the images the distance between the nodes is

short enough so adding extra nodes does not give more accuracy in placement.

Table 1 shows the total variance achieved by maps containing varying number
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Figure 2: Superimposed shape instances to groups 4 and 3 from the training set.

Figure 3: Automatic annotation with network size of 64 (Image A, E), 100 (Image B, F), 144

(Image C, G) and 164 (Image D, H) neurons for two groups of the MRI volumes of the ventricles.
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Table 1: A quantitative comparison of various nodes adapted to the ventricle model with total

variance per group

Groups 64 (nodes) 100 (nodes) 144 (nodes) 169 (nodes)

VT1 9.8340 1.9385 3.9668 3.9235

VT2 13.1873 1.7284 4.3672 3.1617

VT3 6.7822 2.0109 3.2260 4.0057

VT4 2.2567 1.6198 2.8398 3.5861

of nodes (64, 100, 144, 169) used for the automatic annotation (Figure 3). The

map of 100 nodes is the most compact since it achieves the least variance com-

pared to 64, 144 and 169 nodes among the four groups. Figure 4 shows superim-

posed the mean shapes of each group and for all neurons. The red shape referring

to the 100 neurons is the most compact mean shape. We have tested and com-

pared our method with two other SOMs, the Kohonen map and the NG map. The

quantitative results show that GNG is significantly faster compared to Kohonen

and NG, and the learning time is not so significant in GNG with the insertion of

neurons compared to the other two where the adaptation process slows dramati-

cally as the number of neurons increases. The better representation of the GNG

over the NG network is also calculated by taking the Mean Squared Error (MSE)

between the original shape and the back-projected from the PCA space. Figure 5

shows the comparative diagram.

Kohonen and NG networks assume that the numbers of weights are known a

priori and do not change during the adaptation process. GNG overcomes this as it

is a growth mechanism and new nodes are inserted based on local error measure-
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Figure 4: The means of the four groups and for different neurons. The blue outlines represent

the means of the 64, 144 and 169 neurons. The red outline represents the most compact mean

achieved with the mapping of 100 neurons.

Figure 5: Mean Squared Error for NG and GNG.
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ments. Thus, GNG can give better preservation compared to the other two. The

quantitative results show that GNG is significantly faster compared to Kohonen

and NG. Figure 6 shows a comparative diagram of the learning time of various

SOMs and at different number of nodes. The adaptation with 64 nodes is only 3

sec with GNG compared to the 57 sec and 52 sec with Kohonen and NG, but with

64 nodes the topology preservation in most of the shapes is lost independent of

the selection of the SOM. A good adaptation with 100 and 144 nodes takes 6 and

11 seconds respectively at 1000 patterns to adapt to the contour of the ventricles.

Figure 6: Learning time for various SOMs and at various nodes.

4.2. Voxel vs GNG comparison

Results have been compared with the Voxel Grid method. Different parame-

ters for GNG have been tested and compared using quality measures. Voxel Grid

method and visualization have been done using the PCL library.

In this experiment we demonstrate the accuracy of the representation gener-

ated by the GNG network structure compared with other filtering methods such as
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the Voxel Grid.

The GNG method provides a lower mean error and therefore better adaptation

to the original input space, maintaining a better quality of representation in areas

with a high degree of curvature and eliminating the noise generated by the sen-

sor. The Voxel Grid method eliminates noise with the sacrifice of information loss

of the input space and therefore a worse adaptation. The experiments were per-

formed with a fixed number of points, and in the case of GNG it has been tested

with different number of input signals generated by iteration, obtaining better re-

sults with a higher number of adjustments with the sacrifice of higher computation

time.

In Figure 7, it can be observed how the adaption of the filtered points obtained

with the Voxel Grid method produces less accurate results than the ones obtained

using the GNG method. This improper adjustment for all the sections finally

generates a less accurate markers respect to the original input space. Voxel Grid

method produces worse results compared to GNG method. It is shown how for a

large number of sections the mean error obtained using the Voxel Grid method is

higher than the one obtained using GNG.

Figure 8 shows how the GNG method is more robust to noise than the Voxel

Grid method. The maximum error for the ventricle slices indicate the robustness

of the method for noisy inputs. The maximum error is calculated as the highest

error for all the sections. The lowest maximum error is obtained using the GNG

method with different number of input signals. We can visually appreciate how

highest peaks of error are produced by the Voxel Grid method.

Voxel Grid method presents other drawbacks as it does not allow specifying

a fixed number of points, as the number of points is given by the voxel size used
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for building the grid. We forced the convergence to an approximate number in our

experiments, making it comparison fairer. By contrast, the GNG neural network

allows us to specify the exact number of end points that represent the input space.

Figure 9 shows the boxplot of the mean error for all the sections. The box-

plot shows that filtered sections using Voxel Grid method generates less accurate

results compared to GNG (larger mean error). Moreover, the boxplot also shows

how the Voxel Grid method produces more outliers, thus higher errors for all the

analysed sections.

Figure 9: Voxel Grid versus GNG mean errors (in millimeters).

4.3. 3D Reconstruction

This section shows the result of the interpolated mesh obtained by the tested

methods: GNG, Poisson method, and poisson based method combined with vox-
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elgrid [35].

Figure 10 shows how Poisson surface reconstruction method, applied directly

to the contours, it obtains a poor reconstruction since the method is not able to

deal outliers and noise introduced in the acquisition process.

Figure 10: 3D volume generated using Poisson surface reconstruction method.

Figure 11 shows that using voxel grid as a preprocessing step to filter the

data, poisson surface reconstruction method improves the generated representa-

tion. However, overall process is delayed as a preprocessing step (VG) has to be

included. Moreover, this representation has a significant loss of accuracy in some

areas which corresponds with corners and is not able to represent deformations in

the ventricles that can provide doctors with evidence of some illness.

Figure 12 shows results obtained with our GNG method that combined land-

marks obtained from 2D slices to build the 3D model. As can be appreciated the
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Figure 11: Poisson reconstruction combined with voxel grid downsampling.

representation is more accurate than the one obtained with the previous method.

It integrates in the same algorithm stages for: filtering, noise reduction, outlier

removal and 3D reconstruction, improving the runtime of the process.

5. Conclusions

In this paper, we have used an incremental self-organising neural network

(GNG) to automatically annotate landmark points on a training set of ventricle

outlines. We have shown that the low dimensional incremental neural model

(GNG) adapts successfully to the high dimensional manifold of the contour of

the ventricles, allowing good eigenshape models to be generated completely au-

tomatically from the training set. The accuracy of our automated segmentation

algorithm is better compared to the self-organising networks NG and Kohonen
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Figure 12: GNG 3D Volume Reconstruction.

both in quality and in execution time. In addition, we have shown that the opti-

mum number of neurons required to represent the contour depends mainly on the

resolution of the input space and if it is not sufficient then the topology preserva-

tion is lost or overfit. Finally, we have extended this method so that it generates

3D models from landmarked ventricle slices. We have compared our results with

voxel grid method combined with poisson reconstruction. Our method acceler-

ates the classical surface reconstruction and filtering processes. It is also tolerant

to noise and eliminates outliers

As a further work, the generalisability of this model needs to be determined

by applying it to various phantoms and other MRI standards. In addition, we will

investigate what is the most suitable number of neurons for classifying ventricles.

Lastly, we will investigate applying this technology to other brain tissue compo-
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nents in an effort to generate a complete MRI segmentation utility.

Acknowledgements

This work was partially funded by the Spanish Government DPI2013-40534-

R grant and Valencian Government GV/2013/005 grant. Experiments were made

possible with a generous donation of hardware from NVDIA.

References

[1] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust,

unions of balls, and the medial axis transform. Computational Geometry,

19:127 – 153, 2001.

[2] A. Andreasen, A.M. Drewes, J.E. Assentoft, and N.E. Larsen. Computer-

assisted alignment of standard serial sections without use of artificial land-

marks. a practical approach to the utilization of incomplete information in 3-

d reconstruction of the hippocampal region. Journal of Neuroscience Meth-

ods, 45(3):199 – 207, 1992.

[3] Anastassia Angelopoulou, Alexandra Psarrou, Jose Garia-Rodriguez, and

Kenneth Revett. Automatic landmarking of 2d medical shapes using the

growing neural gas network. In Proceedings of the First International Con-

ference on Computer Vision for Biomedical Image Applications, CVBIA’05,

pages 210–219, Berlin, Heidelberg, 2005. Springer-Verlag.

[4] C. Baillard, P. Hellier, and P. Barillot. Segmentation of 3D brain structures

using level sets and dense registration. IEEE Workshop on mathematical

Methods on Biomedical Image Analysis, pages 94–101, 2000.

27



[5] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape

representation. ACM Trans. Graph., 3(4):266–286, October 1984.

[6] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM

Computing Surveys, 24:325–376, 1992.

[7] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.

McCallum, and T. R. Evans. Reconstruction and representation of 3d objects

with radial basis functions. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’01, pages 67–

76, New York, NY, USA, 2001. ACM.

[8] C. Connolly. Cumulative generation of octree models from range data. In In

proceeding of: Robotics and Automation, pages 25–32, 1984.

[9] T. F. Cootes, C. J. Taylor, D. H. Cooper, and Graham J. Training models of

shape from sets of examples. 3rd British Machine Vision Conference, pages

9–18, 1992.

[10] Julien Dauguet, Thierry Delzescaux, Franoise Cond, Jean-Franois Man-

gin, Nicholas Ayache, Philippe Hantraye, and Vincent Frouin. Three-

dimensional reconstruction of stained histological slices and 3d non-linear

registration with in-vivo MRI for whole baboon brain. Journal of Neuro-

science Methods, 164(1):191 – 204, 2007.

[11] H. Rhodies Davies, J. Carole Twining, F. Tim Cootes, C. John Waterton, and

J. Chris Taylor. A minimum description length approach to statistical shape

modeling. IEEE Transaction on Medical Imaging, 21(5):525–537, 2002.

28



[12] Tamal K. Dey and Samrat Goswami. Tight cocone: a water-tight surface

reconstructor. In Proceedings of the eighth ACM symposium on Solid mod-

eling and applications, SM ’03, pages 127–134, New York, NY, USA, 2003.

ACM.

[13] Tamal K. Dey and Samrat Goswami. Probable surface reconstruction from

noisy samples. Computational Geometry, 35:124 – 141, 2006.

[14] Y. Ding, J.P. McAllister II, B. Yao, N. Yan, and A.I. Canady. Axonal damage

associated with enlargement of ventricles during hydrocepahlus: A silver

impregnation study. Neurological Research, 23(6):581–587, 2001.

[15] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes.
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