Accepted Manuscript

First Aromatic Ring Acetamidation by Anodic Oxidation

Fructuoso Barba, Isidoro Barba, Belen Batanero

PII: S1388-2481(14)00283-5
DOI: doi: 10.1016/j.elecom.2014.08.028
Reference: ELECOM 5262

To appear in: *Electrochemistry Communications*

Received date: 24 July 2014
Revised date: 25 August 2014
Accepted date: 27 August 2014

Please cite this article as: Fructuoso Barba, Isidoro Barba, Belen Batanero, First Aromatic Ring Acetamidation by Anodic Oxidation, *Electrochemistry Communications* (2014), doi: 10.1016/j.elecom.2014.08.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
First Aromatic Ring Acetamidation by Anodic Oxidation

Fructuoso Barba*a, Isidoro Barba*b and Belen Batanero*a

*a Department of Organic Chemistry, University of Alcala. 28871 Alcala de Henares (Madrid) Spain.

Abstract

Anodic oxidation of 1-(trifluoromethyl)benzene in dry acetonitrile/Bu4NBF4 under constant potential conditions led to 2-(trifluoromethyl) acetanilide in 86% yield. Other experimental conditions, as the use of constant current or the change in the supporting electrolyte were considered.

© 2014 Elsevier Science. All rights reserved

Keywords: Acetanilides, Anode, 1-(Trifluoromethyl)benzene, Acetonitrile/Bu4NBF4, Potentiostatic conditions.
1. Introduction

Trifluoromethylated arenes are important motifs in many pharmaceuticals, agrochemicals and organic materials due to the strong electron-withdrawing nature and the large hydrophobic domain of a CF₃-group[1,2].

The interest of acetamidated 1-(trifluoromethyl)benzene deals notably with the utility of the acetylamido group providing other opportunities to transform it into different functional groups, opening new access to many synthetic therapeutic agents[1,3,4].

Conventional preparations of these acetamidated 1-(trifluoromethyl)benzenes have been recently described, as the Pd(II)-catalyzed trifluoromethylation of the aromatic C-H bond in acetanilides, which provides the highly biological potential key structure of ortho-CF₃-group, as the Pd(II)-catalyzed trifluoromethylation of (trifluoromethyl)benzenes have been recently described, transforming pivalamido arenes with Togni reagent as the CF₃ source[6].

Scheme 1. Accepted mechanistic proposal in the electrochemical arene acetamidation.

As far as we know aromatic ring anodic acetamidation has never been achieved; once the anodic discharge was displayed, the target of acetonitrile it has been always the side aliphatic chain. In 2008 and 2011, Kumar et al.[11] published two articles describing the electrochemical ring acetamidation of aromatic compounds using a 0.1M solution of starting material in acetonitrile (25 mL), water (25 mL)/KCl 0.1 M as a solvent and supporting electrolyte (SSE). We have tried to reproduce these results, under their experimental conditions, with acetophenone [11a] and p-xylene [11b] as substrates. We have not observed any acetamidation of acetophenone. Instead, the expected benzoic acid was obtained as the main product. In the case of p-xylene, these authors reported a 97% yield of 2,5-dimethyl acetanilide. In this case we have found some aliphatic acetamidation but none of the mentioned aromatic acetamidation.

In the present communication we describe for the first time an aromatic acetamidation reaction at the electrode.

2. Experimental Section

The electrolys were carried out using an Amel potentiostat Model 552 with electronic integrator Amel Model 721. Mass spectra (EI, ionizing voltage 70 eV) were determined using a THERMOFISHER ITQ-900 DIP/HC-MSn mass-selective detector. IR spectra of the compounds were recorded as dispersions in KBr or NaCl films on a Perkin-Elmer FT-IR spectrometer Spectrum 2000. 1H and 13C NMR spectra were recorded in CDC1₃ on Varian Unity 300 (300 MHz) spectrometer with tetramethylsilane (TMS) as the internal standard. The chemical shifts are given in ppm. Melting points were measured on a Reichert Thermovar microhot stage apparatus and are uncorrected.

2.1 General Electrochemical Procedure:

1-(Trifluoromethyl)benzene (I) (5.10⁻³ mol, 0.73g) were dissolved in 60mL SSE: anhydrous acetonitrile/Bu₄NBF₄ (0.05M) and electrolyzed in a concentric and divided cell (glass-frit D4-diaphragm) equipped with a magnetic stirrer under constant potential conditions (+2.8V, vs Ag/AgCl(sat)) at temperature of 18 ºC maintained constant with a cryostat. A platinum plate (10 cm²) was used as working and counter electrode and a Ag/AgCl(sat) electrode as the reference.

Once the reaction was finished, the solvent in the anodic solution was removed under reduced pressure. The residue was extracted with ether/water and the organic phase dried over Na₂SO₄ and concentrated by evaporation. The resulting solid was chromatographed on silica gel 60 (35-70 mesh) in a (22x3cm) column, using CH₂Cl₂/EtOH (20:1) as eluent. Spectroscopic data of the obtained compounds are given below.

2-(Trifluoromethyl)acetanilide (2): (870 mg, 86% yield). Mp 96 ºC. [Lit.[12] 96-96.5 ºC]. IR(KBr) ν(3037, 2962, 1674, 1531, 1320, 1125, 1036, 764 cm⁻¹). 1H NMR (300MHz, CDCl₃) δ: 2.15(s, 3H), 7.16 (t, 1H, J=7.8Hz), 7.36 (bs, 1H), 7.49 (t, 1H, J=7.8Hz), 7.54 (d, 1H, J=7.5Hz), 8.08 (d, 1H, J=7.8Hz), 13C NMR (75.4MHz, CDCl₃) δ: 24.6, 122.2, 124.5, 124.7, 125.8, 126.0, 132.8, 133.1, 168.4. MS m/e (relative intensity) EI: 203(M⁺,18), 184(M⁻-19, 3), 161(98), 141(100), 114(46), 75(5), 63(9).
3-(Trifluoromethyl)acetanilide: Mp 102 ºC. [Lit.[13] 100-102 ºC]. MS m/e (relative intensity) EI: 203(M⁺,17), 184(M⁺-19, 9), 161(100), 142(10), 114(12), 63(9).

3. Results and discussion

When 1-(trifluoromethyl)benzene (1) was exposed to the experimental oxidative conditions described above, using acetonitrile as the solvent (it means with a weak nucleophile), it was transformed into the corresponding 2-(trifluoromethyl)acetanilide (2) in very good yield.

The reason why the alkyl aromatic derivatives afford the side chain acetamidation reaction, instead of the ring acetamidation (see scheme 1), is that the initially electrogenerated cation radical at the ring, due to the weak nucleophilic character of acetonitrile, loses an aliphatic proton to produce the more stable benzyl radical that is further oxidized to the cation and subsequently attacked by the acetonitrile through a Ritter-type reaction.

However, when anodic acetoxylation is performed, substitution at the aromatic ring or at the aliphatic side chain can occur depending on the SSE employed. The use of weak nucleophile solvent-supporting electrolyte systems such as HOAc/NaClO₄ drives the reaction to the aliphatic acetate[14], however when the SSE contains a stronger nucleophile: HOAc/NaOAc the obtained product is the aroylacetate[15] because once the aromatic cation radical is formed the acetate as nucleophile attacks the ring before any side chain proton is evolved.

The preparative-scaled electrolysis of 1, when carried out under our best experimental conditions; allowed to get the aromatic ring acetamidation product 2, after a charge consumption corresponding to a theoretical 2e-/substrate molecule process. Once finished and further elaborated 2 was obtained in 86% yield together with a 10% mixture of 3-(trifluoromethyl)acetanilide and 4-(trifluoromethyl) acetanilide in a 3:1 respectively relationship determined by GC and 1H-NMR.

Concerning the mechanism proposal that explains the formation of 2, it is summarized in scheme 2.

After the first electron transfer to the anode, the cation radical cannot be further stabilized by lose of a fluorine cation, as in the case of alkyl aromatic substrates that evolve, as already Eberson described, leaving a proton. Now the Ritter-type reaction with the solvent, acetonitrile, takes place at the ring.

The 2-(trifluoromethyl)acetanilide (2) is the major isomer because the strong withdrawing inductive effect of the trifluoromethyl substituent makes charge deficient the adjacent positions, more easily to be attacked by nucleophiles.

4. Conclusions

The anodic discharge of (trifluoromethyl)benzene under constant potential conditions of +2.8V (vs Ag/AgCl (sat)) and acetonitrile/Bu₄NBF₄ as SSE, provides the first example of high yielded aromatic ring acetamidation.

The methodology described herein to get trifluoromethylated acetanilides could be easily scaled up under constant current conditions and opens a new access to biological and therapeutic agents.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the Spanish Ministry of Science and Education through B. Batanero I3 program financial support.

References
Highlights:

- First time that anodic acetamidation takes place at the aromatic ring.
- Oxidative transformation is performed under potentiostatic conditions.
- 2-(Trifluoromethyl)acetanilide is obtained in 86% yield as the main product.
- Trifluoromethylated derivatives are important motifs in many pharmaceuticals and organic materials.
First Aromatic Ring Acetamidation by Anodic Oxidation

F. Barba*, I. Barba, B. Batanero

Graphical Abstract