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Abstract

The potential of integrating multi-agent systems and virtual environ-

ments has not been exploited to its whole extent. This paper proposes

a model based on grammars, called Minerva, to construct complex vir-

tual environments that integrate the features of agents. A virtual world is

described as a set of dynamic and static elements. The static part is repre-

sented by a sequence of primitives and transformations and the dynamic

elements by a series of agents. Agent activation and communication is

achieved using events, created by the so called event generators.

The grammar defines a descriptive language with a simple syntax and
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a semantics, defined by functions. The semantics functions allow the scene

to be displayed in a graphics device, and the description of the activities

of the agents, including Artificial Intelligence algorithms and reactions to

physical phenomena.

To illustrate the use of Minerva, a practical example is presented: a

simple robot simulator which considers the basic features of a typical

robot. The result is a functional simple simulator.

Minerva is a reusable, integral and generic system, which can be easily

scaled, adapted, and improved. The description of the virtual scene is

independent from its representation and the elements which it interacts

with.

1 Introduction

The growing influence of Multi-Agent Systems (MAS) in several fields of research

(sociology, economics, artificial intelligence, ecology, and so on) has led to a

significant evolution in its development. On the other hand, the spectacular

progress of the Virtual Reality (VR) systems has contributed to present the

information in a more immersive way using new forms of analysis [18]. Video

games and the entertainment industry in general, have had a decisive influence

on this striking progress [17, 14].

All these developments have opened up new challenges, among them the

possibility of integrating MAS and Virtual Worlds (VW). Several advantages

has been detected from the possibility of combining them [20]:
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• Thanks to the regulation imposed by the MAS, the 3D environment be-

comes a normative virtual world where norms are enforced at runtime

instead of by the terms of service contract.

• A 3D real-time representation of the multi-agent system facilitates a better

understanding of what is happening at both agent and the entire system

levels.

• Virtual world participants can be both humans and software agents facil-

itating human direct participation in MAS and intelligent agents partici-

pation in VW.

We also consider that the combination of MAS and VW would lead to a

much more natural way of developing complex VR systems. VR systems can be

considered to be composed of three main modules (rendering system, physics

engine and artificial intelligence system), and the three modules are usually

build using different tools that are frequently not designed to work together. At

most, the integration of MAS and VR are usually confined to endow the system

with Artificial Intelligence (AI), but the physics engine is frequently missed. As

a conclusion, the potential of combining MAS a VR has not been exploited to

its whole extent.

This paper describes an integral model based on grammars to construct

complex environments that take advantage of the MAS and the VR systems

features. This framework uses a descriptive language and discrete events to

specify all the features necessary to define the agents and their environment. It
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allows an easy interaction with the user so that the initial conditions could be

changed, the experiments can be reproduced and the components of the scene

are displayed in real time. It is also independent from the display and interaction

devices and it allows the incorporation of physical phenomena. Finally, the

agents can be easily reused.

The following section presents some related work. Section 3 provides a de-

scription of the proposed model. In section 4, a case of study is proposed with

the aim of showing the use of the whole system. Finally, some conclusions and

possible lines of future work are presented.

2 Related work

There are many generic and specific work environments to develop MAS, but

they seldom allow the definition of complete VR systems, such as advanced

visual features or physics phenomena. For instance, in Sociology [2, 6], very

specific solutions are used, generally oriented to sociological studies, such as the

movement of crowds [22, 16]. In some cases, they use graphics to display statis-

tics, the density of agents within the environment or even simple animations

of the movements of agents [16]. Netlog [24] is a useful tool to study highly

complex systems. It has developed some graphical features, but the agents

are just represented by Logo style triangles just to allow the user to observe the

movement of agents and the population density. There are also some interesting

works related to very specific aspects of graphical representation of characters in
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a virtual environment. Such are the cases of the use of agents to get an expres-

sive gaze animation [19] or to control the movement of an skeleton-based human

character [3]. All these examples deal with only few aspects of the graphical

representation.

The applications of the MAS to endow a VR system with AI are much easier

to be found. One of these systems proposes an implementation of a virtual world

where objects react to several gestures of the user [12]. The work of [23] uses the

concepts of perception of the MAS applied to virtual reality, where the agents

react interactively with the user.

In the entertainment industry, some MAS applied to games can also be

found. In this case, the agents are usually called bots [9] and they are pro-

grammed as characters of the game, with objectives, strategies and actions.

Programming is done with a specific script language for each game, so that

characters cannot easily be transferred between games. These systems are so

successful that they are being used in research for some specific cases [17].

An increasing variety of generic development environments with a similar

philosophy are also emerging: they implement the most important features of

agents, i.e., perception of the world, communication, reaction, and so on [6].

Some examples are Repast [13] and MASON [10].

Agents are usually considered to have some generic characteristics that make

them difficult to model [6]. Some common strategies for implementing them

and some languages to define their behavior can be found. For instance, Ja-

son [8], Jack [1] or 2APL [4] provide programming languages based on the BDI
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(Beliefs/Desires/Intentions) architecture. Nevertheless they do not provide ca-

pabilities to deal with the graphical representation of the system. This lack of

unified system to define the graphical and the behavioral aspects of the sys-

tem makes some problems arise, such as the difficult reproduction of the results

provided by the MAS [2], the lack of a suitable visual representation or the lim-

ited capabilities of interaction with the user and with the environment. Some

new contributions try to describe multi-agent meta-models to standardize the

design, simplify the implementation and integrate the agent frameworks into a

single tool [7]. MAS could take advantage of the wide research carried out in

this fields to develop VR systems. In this context, some agent meta-models for

virtual reality applications [15] have also been described. They cover some as-

pects of virtual reality, but always considering the AI modules and disregarding

most aspects about the graphical representation and the physics.

There are also some few attempts to combine virtual worlds with multi-agent

systems using a grammatical approach. In [20, 21] a system that can automat-

ically generate a 3D virtual world from a MAS specification is proposed. They

present the concept of Virtual World Grammar (VWG) that supports the gener-

ation of 3D virtual worlds, through the extension of the shape grammar concept,

adding semantic information of the environment and the MAS. This way, the

geometrical data included in the shape grammar are extended with semantic

information about both MAS specification, and shape grammar elements. They

also include heuristics and validations that guide the VW generation and present

a framework named Virtual World Builder Toolkit (VWBT) for the definition
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and execution of VWGs.

Our proposal has some points in common with [20, 21]. We propose a gram-

matical framework to construct VWs and we also extend its features to add

semantic information. However, our approach has an important contribution:

we endow the system with the capacity of evolving, so that the dynamic pro-

cesses can be easily incorporated and the AI system and the physics engine can

be naturally and elegantly embedded in the definition of our VW.

3 Model description

A virtual world can be described as a set of dynamic and static elements. The

static part is made of a sequence of primitives and transformations defined in

a representation system G, usually a geometric system. However, a primitive is

not just a draw primitive (e.g. a sphere) but also any action on the representa-

tion system that may be a visual action or not (e.g. a sound). A transformation

is a modification on the primitive behavior. They will affect the set of primitives

inside their scope of application.

The agents are the dynamic elements and they are made of activities and

an optional set of attributes that make up their internal state. Each activity

is a process that is executed as a reaction to a given event. The agents can

have a geometrical representation, defined using primitives and transformations,

depending on their internal state.

An event causes the execution of an activity. Its generation is independent
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Table 1: Production rules for grammar M

1. WORLD → OBJECTS

2. OBJECTS → OBJECT | OBJECT · OBJECTS

3. OBJECT → FIGURE | TRANSFORMATION | AGENT

4. AGENT → adst(OBJECTS), adst ∈ ADST , d ⊆ D, st ⊆ ST

5. TRANSFORMATION → t(OBJECTS), t ∈ T

6. FIGURE → p+, p ∈ P

from the physical device. They provide the different ways of communication in

the MAS.

Those are the main elements of the proposed system, Minerva. Minerva

stands for Modelo Integral para Entornos de Realidad Virtual y Agentes (Integral

Model for Virtual Reality Environments and Agents, in spanish). Minerva is

a grammatical model, where the whole scenes are represented with a string

generated by a given grammar M .

A string w ∈ Σ∗ is generated by the grammar M , if it can be obtained

starting with the initial symbol WORLD and using the given production rules

(table 1), where P is the set primitives, T is the set of transformations, ADST

is the set of agents, that have some state from a set ST and respond to some

events of a set D. The symbols () indicate the scope and · the concatenation of

symbols. The language L(M) is the set of all the strings which can be generated

by this method, so: L(M) = {w ∈ Σ∗ | WORLD
∗→ w}. This grammar is a

context-independent grammar (or a type-2 grammar, according to the Chomsky
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hierarchy). Therefore, there is a procedure which verifies if a scene is correctly

described.

3.1 Semantics of the language L(M)

Apart from the language syntax, it is necessary to define the functionality of

the strings, that is, the semantics of the language. In our case, it is defined

using a denotational method, which describes the meaning of the string through

mathematical functions.

3.1.1 Semantic Functions for Primitives and Transformations (Rules

6 and 5)

Rule 6 defines the syntax of a figure as a sequence of primitives. Primitive’s

semantics is defined as a function α : P → G. Each symbol in the set P

represents a primitive on a given geometric system G. So, depending on the

definition of the function α and on the geometric system G, the result may be

different. G represents the actions which are run on a specific geometric system.

An example of geometric system are graphical libraries such as OpenGL or

Direct3D, but the function α has no restrictions on the geometric system that

can be applied to.

In Rule 5, the scope of a transformation is limited by the symbols “()”. Two

functions are used to describe the semantics of a transformation: β : T → G (it

is carried out when the symbol “(” is processed), and δ : T → G (it is carried

out when the symbol “)” is found). These two functions have the same features
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that the function α, but they are applied to the set of transformations T , using

the same geometric system G.

Given a string w ∈ L(M), a new function ϕ is defined to run a sequence of

primitives P and transformations T in a geometric system G:

ϕ(w) =


α(w) if w ∈ P

β(t);ϕ(v); δ(t) if w = t(v) ∧ v ∈ L(M) ∧ t ∈ T

ϕ(s);ϕ(v) if w = s· v ∧ s, v ∈ L(M)


(1)

One of the most important features of this system is the independence from a

specific graphics system. The definition of the functions α, β and δ provides the

differences in behavior, encapsulating the implementation details. Therefore,

the strings developed to define virtual worlds may be reused in other systems.

3.1.2 Semantic Function for Agents (Rule 4)

The semantics of agents is a function which defines its behavior or, in terms

of VR systems based on frames, its evolution in time. This is why it is called

evolution function λ and is defined as: λ : L(M) × ED → L(M), where ED

is the set of events for the device D (considering these devices as any software

or hardware process that sends events). By applying the function λ(w, ef ),

w ∈ L(M) is transformed into another string u, which allows the system to

evolve. It has a different expression depending on its evolution, but the general

expression is defined as:
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λ(adst(v), ef ) =


u ∈ L(M) if f = d

adst(v) if f 6= d

 (2)

The result u of the function may contain or not the own agent, it can generate

other events for the next frame or change the state st (i.e. the set of attributes)

of the agent. The function λ can define a recursive algorithm, called function

of the system evolution η. Given a set of events ei, ej , ek, . . . , en (denoted as

ev, where v ∈ D+) and a string w, it describes the evolution of the system

at a given point in time. This algorithm also uses the operator
∏
∀f∈v which

concatenates strings.

η(w, ev) =



w if w ∈ P+

t(η(v, ev)) if w = t(v) ∧ v ∈ L(M) ∧ t ∈ T∏
∀f∈v

(λ(adst(η(y, ev)), ef )) if w = adst(y) ∧ y ∈ L(M)

η(s, ev) · η(t, ev) if w = s · t ∧ s ∈ L(M) ∧ t ∈ T


(3)

For the visualization of an agent, it must be first converted into strings made

up only of primitives and transformations. This conversion is carried out by a

special type of function λ called visualization function θ : L(M)×EV → L(E),

where V ⊆ D are events used to create different views of the system, EV

are events created in the visualization process, and L(E) is a subset of the

language L(M), including only primitives and transformations, but no agents.

This function is defined as:
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θ(adst(v), ef ) =


w ∈ L(E) if f = d ∧ d ∈ V

ε if f 6= d

 (4)

As with the function λ, an algorithm is defined for θ. It returns a string

z ∈ L(E), given a string w ∈ L(M) and a set of events ev, where v ∈ V + and

V ⊆ D. This function is called function of system visualization π and it is

defined as: π : L(M)× EV → L(E)

π(w, ev) =



w if w ∈ P+

t(π(y, ev)) if w = t(y) ∧ y ∈ L(M) ∧ t ∈ T∏
∀f∈v

(θ(avst(π(y, ev)), ef )) if w = avst(y) ∧ y ∈ L(M)

π(s, ev) · π(t, ev) if w = s · t ∧ s ∈ L(M) ∧ t ∈ T


(5)

3.1.3 Semantic Functions for OBJECT, OBJECTS and WORLD

(Rules 1, 2 and 3)

The semantic function of WORLD is a recursive function which breaks down

the string of the WORLD and converts it into substrings of OBJECTS. Then,

these substrings are in turn broken down into substrings of OBJECT. And for

each substring of OBJECT, depending on the type of the object, the semantic

function of agent, transformation or primitive is run.
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3.2 Activity and Events

In MAS some mechanisms must be established to model its activities. These

activities are run by agents and are activated by events. Not all activities are

run when an event is received, they can also be run when certain conditions

are satisfied. The following event definition is established: edc is defined as an

event of type d ∈ D with data e, which is carried out only when the condition c

is fulfilled. When there is no condition, the event is represented by ed. Events

may include information identifying who sent the message. So, it provides a

generic communication system that can implement FIPA or KMQL [5].

3.3 Input Devices and Event Generators

It is necessary to establish the independence between the system and the input

devices that generate events (hardware or software). So, the events needed to

make the system respond to a set of input devices must be defined. A new

function called event generator is defined as: Let Cd(t) be a function which

creates events of type d at the time instant t, where d ∈ D and D is the set of

event types which can be generated by the system.

It is important to note that event generators encapsulate the device-dependent

code. They also can model the communication processes that exist in a MAS

(agent-agent and agent-environment communication).

The process which obtains the events produced by input devices and their

associated generators is defined as follows: Let C∗ be the set of all the event

generators which are associated with input devices and E(C∗, t) the function
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that collects all the events from all the generators, then:

E(C∗, t) =


e(z, Ci(t)) if z = E(C∗ − Ci, t)

ε if C∗ = ∅

 (6)

where e(z, ei) =


z · ei if ei /∈ z

z if ei ∈ z


3.4 System Algorithm

Once all the elements involved in the model to manage a MAS have been defined,

the algorithm which carries out the entire system can be established, as shown

in table 2

In table 2, wo is the initial string of the system, e∗ are all the events generated

by the system in a frame t, G∗ = {All the event generators which generate events

of type D}, D = {All the possible events in the system}, V = {All the visual

events} where V ⊆ D, ev are all the events from visual devices, eu are all the

events from non-visual devices, and g is the output device.

Steps 2, 3 and 4 manage the system events. In step 5, the evolution al-

gorithm is called to obtain the string for the next frame. In steps 6 and 7,

the visualization of the system is performed. In step 8, the next iteration is

prepared. Step 9 checks if the current string satisfies the condition of comple-

tion: if the following string is empty the algorithm ends (Step 11), otherwise

the algorithm continues.

Step 5 and 6-7 can be parallelized because they do not share any data, so it

would lead to a faster system performance.
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Table 2: System algorithm

1. w = wo; t = 0

2. e∗ = E(G∗, t)

3. ev = events of e∗ where v ∈ V +

4. eu = e∗ − ev

5. wnext = η(w, eu)

6. v = π(w, ev)

7. g = ϕ(v)

8. w = wnext; t = t+ 1

9. If w = ε then go to 11

10. Go to 2

11. End
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4 Case Study

An example is proposed to illustrate the use of Minerva. Specifically, a simple

robot navigation simulator has been built. Only the basic features of robots have

been taken into consideration, so the result is not a wholly functional simulator,

but a starting point to develop a more complex one.

4.1 Problem Description

Let us consider a robot programmed to autonomously navigate in a known en-

vironment, and to transport objects from one place to another. It is equipped

with several sensors that provide information about the environment. The in-

formation from the sensors can be used for different tasks. For instance, in our

case, the inputs are the data from a range sensor, e.g. a laser, to detect obsta-

cles and distances, and the image from a camera, to identify the objects and the

places, using markers. As there are heterogeneous sensor inputs, some processes

of sensor integration are needed for the robot to use the data of different nature

to make decisions.

There is also a human supervisor controlling the robot tasks and giving some

high level instructions, such as interrupt the current task, begin a new task or

change the speed parameters.

A system like this can be modeled using a classical hybrid scheme (figure

1), based on the combination of a reactive system and a proactive system. The

elements in the hybrid scheme and the elements of the Minerva model can be

easily related:
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Figure 1: Hybrid scheme for a robotic system.

• The world is the real environment.

• The world model is a map, stored as an attribute of the agent robot.

• The robot is the only agent in the system.

• The reactive system is made of several generators, for the sensors and for

the user’s orders.

• The proactive system is the AI system of the robot, introduced in its

evolution function.

• The current state is the robot state (set of attributes).

• The multi-sensorial fusion process is also introduced in the evolution func-

tion of the robot.
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• The final action is the result of the process of sensor integration and the

final action carried out by the robot.

4.2 Formalization

When describing a system with Minerva, the following aspects must be consid-

ered:

• The static displayable elements of the scene are described through the use

of primitives, and the way to change their aspect are the transformations.

• The dynamic elements are the agents.

• For an agent to be displayable, there must be an associated primitive.

• Every aspect about the activities of the agents must be implemented in

their evolution function, including AI algorithms, reactions to physical

phenomena, and so on.

• The events are the way to activate the actions of the agents and to com-

municate among them. The events can have themselves some attributes.

• The agent attributes are the way to store all the information belonging to

the agent.

4.2.1 Primitives and transformations

In our robotic system, only two primitives are needed, the map and the robot.

The robot can be modified by two possible transformations: move and rotate
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Table 3: Primitives and transformations of the robotic system

Symbol Meaning

PMap Draw the map

PRobot Draw the robot

TMove<dist> Move a distance dist

TRotate<angle> Rotate an angle angle

(table 3). The primitives and the transformations will represent the operations

carried out in the simulated robot, that is, the operations in the graphics system.

The operations are performed by the semantic functions α for the primitives and

β and γ for the transformations.

4.2.2 Events and generators

Each event is defined by its identifier and some attributes. They activate the

changes on the agents, through their evolution functions. These events are

produced by generators. There is a generator for each event type. In the robotic

system, six generators are needed:

• gLaser: It generates an eLaser event when the laser detects an obstacle, by

obtaining the laser data and processing them to find the possible obstacles.

• gCamera: It generates an eCamera event when a marker is detected in the

camera image. This generator is the responsible of obtaining the images,

processing them and detect the markers. Markers are used to identify the

rooms in the environment.
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• gDecide: It generates an eDecide event to report the system that a deci-

sion must be made. The system will use the accumulated information to

activate the evolution function of the agents to make the correct decision,

as it will be explained in the following sections.

• gRepresent: It generates an eRepresent event to indicate the system to

represent the robot actions in the current representation space. For our

simulator, the operations will take place in the graphics system. In this

case, it is similar to the usual ’redraw’ event of a typical graphics system.

• gObjective: It generates an eObjective event to set a new objective marker.

This generator is connected to the user orders. Users can specify a new

target room simply by selecting its associated marker.

• gSpeed: It generates an eSpeed event when the user changes the robot

speed.

The generators in our system and their associated events are shown in table

4.

An order relation must be defined to establish an execution priority among

generators. In the robotic system, the order relation is: gLaser, gCamera,

gSpeed, gObjective, gDecide, gRepresent. Therefore, events related with the

acquisition of data have the highest priority, compared with the events of deci-

sion and execution.
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Table 4: Generators and events of the robotic system

Generator and events Event descrip-

tion

Associated

data

gLaser = eLaser<dist,angle> if obstacle The laser de-

tects an obsta-

cle

dist, angle:

obstacle

position

gCamera = eCamera<marker> if marker The camera

detects a

marker

marker: de-

tected marker

gDecide = eDecide each frame The robot

makes a

decision

No data

gRepresent = eRepresent each frame The robot ac-

tion is repre-

sented

No data

gObjective =

eObjective<marker> if user order

The user sets

the objective

marker

marker: ob-

jective marker

gSpeed = eSpeed<speed> if user order The user sets

a new speed

value

speed: robot

speed
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4.2.3 Agents

The only agent in our robotic system is the robot which is defined as:

ARoboteLaser,eCamera,eDecide,eRepresent,eObjective,eSpeed<grid,row,column,angle,speed,objective,action>

where eLaser, eCamera, eDecide, eRepresent, eObjective, eSpeed are the

events which the agent is prepared to respond to, and <grid, row, column,

angle, speed, objective, action> are the attributes that make up its state, whose

meanings are:

• grid: is a matrix of mxn cells, representing the environment where the

robot moves in. Each cell stores the registered data obtained from the

sensors, that is, the detected obstacles and markers.

• row, column: position occupied by the robot in the grid.

• angle: robot orientation, defined by an angle.

• speed: robot speed, defined by a numerical value.

• objective: objective room, represented by its marker.

• action: string of primitives and transformations which indicates the next

command to be executed.

To simplify, in the following equations this agent will be referred asARobotE<g,r,c,ang,s,o,act>.

The evolution function is, probably, the most important element in the sys-

tem, as it defines the way the robot behaves in the environment. Let e be an

event that is received by the agent, the evolution function is defined as:
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λ(ARobotE<g,r,c,ang,s,o,act>, e) =



ARobotE<g′,r,c,ang,s,o,act> if e = eLaser<dist,angle>

ARobotE<g′,r,c,ang,s,o,act> if e = eCamera<marker>

ARobotE<g,r′,c′,ang′,s,o,act′> if e = eDecide

α(ARobotE<g,r,c,ang,s,o,act>) if e = eRepresent

ARobotE<g,r,c,ang,s,o′,act> if e = eObjective<marker>

ARobotE<g,r,c,ang,s′,o,act> if e = eSpeed<speed>

ARobotE<g,r,c,ang,s,o,act> otherwise


where the symbol apostrophe (’) on an attribute indicates that it is changed.

The changes in the attributes are:

• If e = eLaser<dist,angle>, the grid (g) must be updated to indicate that

an obstacle has been detected. The cell to mark is the one in position

(r + dist cos(ang + angle), c+ dist sin(ang + angle)).

• if e = eCamera<marker> the grid (g) must be updated to indicate that

a marker has been detected. The cell to mark is the one in position

(r + dist cos(ang), c+ dist sin(ang)).
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• if e = eDecide, the current position and orientation of the robot row (r),

column (c) and angle (ang), must be updated, as well as the actions to be

executed. This function is very important, as it provides the behavior of

the robot. In the section 4.2.5, the way to introduce intelligent behaviors

and the Physics engine will be shown.

• if e = eRepresent, the robot must be executed in the representation space,

through the use of the α function.

• if e = eObjective<marker>, a new objective has been set by the user, so

the objective (o) must be changed to the new one (marker).

• if e = eSpeed< speed >, a new value for the speed has been set by the

user, so the speed (s) must be updated.

In any other case, the agent must remain unchanged.

4.2.4 Initial string

The initial string in our system defines its initial state. It is the string

PMap·ARoboteLaser,eCamera,eDecide,eRepresent,eObjective,eSpeed<grid,row,column,angle,0,ε,ε>

where the attribute grid is initialized to a set of empty cells, the attributes

row, column and angle are initialized to the initial position and orientation of

the robot, the initial speed is 0, and the objective and the actions are defined

as empty.
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4.2.5 Evolution function

As it was stated in section 3.2.3, the evolution function is the way of introducing

behaviors in an agent. The key is implementing the AI algorithms and the

Physics engine into this function, given that all the needed elements are known.

In this example, only a basic intelligent behavior is introduced.

In the robot simulator, the intelligent actions are triggered when an eDecide

event is received. The current grid is known, since it has been built as the eLaser

and eCamera events have been received, the current position and orientation

of the agent is also known, the speed has been defined by the user, and the

objective has also been fixed by the eObjective event. The implemented algo-

rithm must decide the new position and orientation, and the next action to do.

The specific algorithm to make this decision is up to the user, since the aim of

this work is not to develop an AI algorithm to achieve the goal but to give a

well-structured framework. In our case, to prove that any intelligent behavior

can be introduced by just changing the evolution function, two simple decision

algorithms have been chosen to decide how the robot should move in the world.

The first algorithm is the simplest one: make decisions randomly to find the

target position. The second algorithm is the A* algorithm [11], considering the

Euclidean distance to the goal as the weights. If there is an obstacle the distance

is defined as infinite.

25



4.3 Features of the system

One of the main features of our model is that the system definition is indepen-

dent from the input devices. For instance, in our original system, a laser range

sensor was used to detect obstacles. However, any other sensor may be intro-

duced. To add a new device, just a new event generator must be defined, to

create events of the same type that the ones generated by the laser generator.

That is, it provides the same information: the angle and the distance to the

obstacle. The new device is then introduced with no other modification in the

system. The new device is then used to replace the laser device or to obtain

redundant information for the detection of obstacles.

Maybe, the most important achievement in the proposed model is the fact

that the description for the simulation can be used with a different represen-

tation system of even with the real robot with minor changes. In fact, the

system definition, i.e. the string representing the system, remains exactly the

same. To achieve this goal, only the generator for the execution of the robot

commands and the visualization functions must be changed. The commands

are transparently executed no matter whether the robot is real or simulated in

any representation system, just using the appropriate generator. As a result,

the navigation would be exactly the same for the simulated robot and for the

real one, if there were not odometry errors. An example of this feature is shown

in figures 2 and 3, with two different representations, in 2D with sprites and in

3D with OpenGL.

The proposed model is, by definition, easily extensible, too. The updating
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Figure 2: Sprite view in 2D.
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Figure 3: OpenGL view in 3D.

of the definition string supposes the extension of the model and the addition of

new features. Moreover, most elements can be reused in new definition strings

to obtain new behaviors with little effort. In our case, new instances of the

agent symbols (representing robots) have been added to the definition string to

extend the system in an almost immediate way.

A good way to improve the simulation is introducing some odometry errors

in the motors and in the sensor signals, accordingly with the features of the real

robot.
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5 Conclusions and Future Work

A new agent-based framework to model virtual scenes, Minerva, has been pre-

sented. The major goal of this system is to take advantage of the MASs features

to model a whole VR system, including the AI modules, the Physics engine and

the graphics system. The proposed model uses a context-free grammar.

The key of the proposed model is the evolution function: it allows the def-

inition of the behaviour of the agents, e.g. the evolution of the elements in

time. This way, the virtual world can be modeled as a set of static and dynamic

elements, that have a visual representation, evolve during the execution and

behave in accordance to AI algorithms or reacting to Physics phenomena.

The presented model separates the hardware-dependent implementation of

the interaction devices from the description of the scene. This separation is

made by event generators, that create a layer between the hardware and the

representation of the system. The generators are mathematical models used

to transform device actions, both visual and input devices, into more general

actions. The system must be able to identify these general actions regardless of

the origin of the action. It is achieved using abstraction. As a consequence of

these features, the different elements of the system can be easily reused.

The AI engine can be implemented in the evolution function of the agents.

Agents use these functions to make decisions according to their current sta-

tus. Moreover, events trigger activities which can change the status and the

behaviour of agents.

The framework has proven its usefulness, since a VR system has been built
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using it. The resulting model has shown to be expressive enough to model the

basic features of a robot simulator, such as the control of a mobile robot, the

navigation in a given environment, and the process of a set of several inputs from

different types of sensors. Moreover, the system can be directly implemented

on a real robot, just making minor changes. In fact, the only thing to do is

changing the representation space, using the real robot instead of the OpenGL

environment used in the example. It would be achieved by redefining functions

α, β and δ to make actions on the real robot.

The model presented in this work is currently under development. It is

pretended to continue developing several issues. We consider that the Physics

phenomena can be easily defined. It could be achieved by setting up different

types of event generators. Depending on the physical features of the device,

it would activate the activity of the needed agent to react to that physical

process. For example, if an agent has to react to collisions, the event generator

of this type would calculate the collisions between elements by extracting the

scene geometry from the graphics engine (it would use the implementation of

the functions α, β and δ to calculate the bounding box of the elements). Then,

it would generate the events needed to react to such collisions. This event

generator could be implemented with hardware if the system allowed it. The

integration between the Physics engine and the AI engine is also guaranteed

because both engines are connected by events.

Another point to investigate is the optimization of the algorithm and its

parallelization. The definition of the system through strings facilitates the pos-
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sibility of parallel algorithms. From another point of view, strings represent the

states of the system and its evolution. This evolution may change through mu-

tations, so different evolutive solutions may be conceived to design new systems.

We also consider the possibility of a new type of events which are activated with

a certain probability. For example, if an agent is defined as ad,h and it receives

the event ed, then the function associated with this event will be carried out

only with a certain probability.

In conclusion, the main aim has been to design a reusable, integral and

generic system, which can be easily scaled, adapted, and improved. It is also

important that the core of the system (the evolution in time) is independent

from its representation and the elements which it interacts with.
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