Alleviation of Zn toxicity by low water availability

Journal: Physiologia Plantarum

Manuscript ID: PPL-2013-00011.R2

Manuscript Type: Regular manuscript - Ecophysiology, stress and adaptation

Date Submitted by the Author: n/a

Complete List of Authors: Disante, Karen; Departamento de Ecología. Universidad de Alicante, Ap 99, 03080 Alicante., ; Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” (IMEM). Universidad de Alicante, Ap 99, 03080 Alicante., Cortina, Jordi; Departamento de Ecología. Universidad de Alicante, Ap 99, 03080 Alicante., ; Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” (IMEM). Universidad de Alicante, Ap 99, 03080 Alicante., Vilagrosa, Alberto; Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante., Fuentes, David; Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante., Hernández, Encarni; Departamento de Ecología. Universidad de Alicante, PO Box 99, 03080 Alicante., Ljung, Karin; Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå.,

Key Words: heavy metal, drought, Zn application, auxin, Quercus suber, multiple stresses
Alleviation of Zn toxicity by low water availability

Karen B. Disantea,b*, Jordi Cortsa,b, Alberto Vilagrosac, David Fuentesc, Encarni I. Hernándezb, Karin Ljungc

a Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef” (IMEM). Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
b Departamento de Ecología. Universidad de Alicante, PO Box 99, 03080 Alicante, Spain
c Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Joint Research Unit University of Alicante-CEAM, PO Box 99, 03080 Alicante, Spain.
d Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden

* Corresponding author: kb.disante@ua.es; Tel.: +34 965909564; fax: +34 965 909 825.
Abstract

Heavy metal contamination and drought are expected to increase in large areas worldwide. However, their combined effect on plant performance has been scantily analyzed. This study examines the effect of Zn supply at different water availabilities on morpho-physiological traits of *Quercus suber* L in order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc from 3 to 150 µM and exposed to low (LW) or high (HW) frequency of watering in hydroponic culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic rate and root hydraulic conductivity, and morphological traits as root length and root biomass decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations, suggesting the involvement of this phytohormone in the seedling response to this element. LW seedlings exposed to 150 µM Zn showed higher root length and root biomass than HW seedlings exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity by limiting internal accumulation. Morphological traits involved in the response to both stresses probably contributed to this response.

Key words: heavy metal, drought, Zn application, auxin, *Quercus suber*, multiple stresses

Introduction

In nature, plants are commonly exposed to a combination of stress factors. Multiple stresses may affect plants in ways that are hardly predictable from studies of single stress factors, as synergistic and antagonistic interactions are widespread (Nilsen and Orcutt 1996, Larcher 2003). Water is the most limiting factor for plant productivity worldwide and several studies have evaluated the combined effect of drought and other sources of stress such as extreme temperature and radiation (Valladares and Pearcy 1997, Aranda et al. 2005, Gimeno et al. 2008). In contrast, the combined effect of drought and heavy metal contamination has received less attention, despite the potential interaction between both stress factors (Poschenrieder and Barceló 2004, Brady et al. 2005; Sardans and Peñuelas 2007). Several studies have shown that the effect of heavy metals on plant performance may be modulated by other sources of stress as sulphur and proton concentration in rainfall, heat and frost (Kukkola et al. 1997, Öncel et al. 2000).

Among heavy metals, Zn is an essential micronutrient for higher plants and it is required for several physiological processes (Marschner 1995, Cakmak 2000, Broadley et al. 2007). Zinc abundance is increasing in natural systems as a consequence of human activities (Kabata-Pendias and Pendias 1992, Fuentes et al. 2007a; Dominguez et al. 2008). When Zn concentration exceeds a critical level, it
becomes toxic (Balsberg Påhlsson 1989, Woolhouse 1983). Symptoms of Zn toxicity include alteration on biomass partitioning (Ruano et al. 1988), morphological changes in root system (Fuentes et al. 2007b, Disante et al. 2010), reductions in photosynthetic rate and chlorophyll measurements (Di Baccio et al. 2009, Disante et al. 2011), unbalance mineral nutrition (Kabata-Pendias and Pendias 1992, Monet et al. 2001) and modifications in xylem anatomy (Kasim 2007). These changes may affect plant capacity to uptake and transport water to above ground parts (Barceló and Poschenrieder 1990, Kasim 2007).

High levels of Zn and low water availability may induce similar responses in vascular plants, including stomatal closure and decreased CO₂ uptake, reduced chlorophyll fluorescence and foliar area, and activation of defence mechanisms against oxidative damage (Vaillant et al. 2005, Valladares et al. 2005). Conversely, plants may exhibit contrasted responses to Zn toxicity and drought. While reduced root length and root biomass have been described in seedlings exposed to Zn (Wolhouse 1983), adaptive mechanisms in response to water limitation include deeper root systems and increased proportion of biomass allocated belowground (Nicotra et al. 2002).

The interaction between Zn and drought may result in synergistic or antagonistic responses. Thus, small increases in Zn availability (20 mg l⁻¹ of Zn) promoted growth in water-stressed soybeans (Gadallah 2000). Similarly, heavy metal-enriched sewage sludge induced a positive effect on morphophysiological traits of seedlings subjected to drought (Pascual et al. 2004, Fuentes et al. 2007a; Santala and Ryser 2009). Finally, in a previous study we observed that exposition of Quercus suber seedlings to Zn delayed the effects of a short drought (Disante et al. 2011). High Zn concentrations could hamper seedling capacity to absorb and transport water and compromise seedling ability to withstand drought due to reduction of root length and biomass (Disante et al. 2010). Limited water availability may also predispose leaves to cellular damage and photoinhibition, altering the carbon balance (Werner et al. 2001, Vilagrosa et al. 2010). Finally, drought may impair uptake and acropetal translocation of nutrients, including Zn (Hu and Schmidhalter 2005).

Despite the potential interaction between Zn and drought, studies dealing with the simultaneous effect of both stress factors are scarce, and they frequently show conflictive results (Balsberg Påhlsson 1989). The objective of this study is to evaluate the combined effect of Zn supply and water availability on plant performance, and contribute to unveil the interactions between both sources of stress. The underlying hypothesis is that morpho-physiological responses to drought may mitigate the effects of high Zn availability. For this study we used cork oak (Quercus suber L.) seedlings, a drought-resistant tree widely distributed in the western Mediterranean basin. Cork oak woodlands produce valuable goods and services, including cork, and they are protected by the European Union (Habitat directive 92/43/EEC; Pausas et al. 2009). In addition, we performed this experiment with young seedlings because this stage is one of the most sensitive for plant capacity to resist stress.
conditions (Vallejo et al. 2000, Vilagrosa et al. 2003a). To account for this objective, we analyzed plant physiological status, root capacity to supply water to leaves, and phytohormonal response in several Zn supply rates under two levels of water availability.

Materials and methods

Plant material and growing conditions

We cultivated Q. suber seedlings from acorns. Seeds from local origin were supplied by the Forest Service Seed Bank (Banco de Semillas El Serranillo, Ministerio de Medio Ambiente y Medio Rural y Marino). Quercus suber acorns were sown in silica sand and kept at 24 ± 2°C. Two weeks after germination, when the radicle was approximately 2 cm long, acorns were transplanted into 5 cm diameter and 30 cm length tubes filled with fine, medium and coarse silica sand (the size of sand ranged from 0.5 to 2.2 mm) in a proportion corresponding to 1:2:3 by volume, respectively. The substrate was tested in the lab before the onset of the experiment to ensure proper drainage. The bottom of the tubes was closed with a 1 x 1 mm mesh, which prevented substrate loss. Tubes were placed in a growth chamber under controlled conditions of temperature (22±1°C/18±1°C, day/night), 12 h photoperiod (600 µmol m$^{-2}$ s$^{-1}$ of photosynthetic photon flux density during the day) and 50% relative humidity. During this period, seedlings were irrigated with a nutrient solution containing 500 μM KCl, 435 μM NaNO$_3$, 300 μM MgSO$_4$·7H$_2$O, 45 μM NaH$_2$PO$_4$, 300 μM CaCl$_2$, 0.37 μM FeSO$_4$·7H$_2$O, 0.012 μM CuSO$_4$·5H$_2$O, 1.6 μM H$_3$BO$_3$, 0.006 μM KI, 0.6 μM MnSO$_4$·7H$_2$O and 0.0004 μM (NH$_4$)$_6$Mo$_7$O$_24$. This solution was a modification of the one used by Arduini et al. (1994) to simulate forest soil conditions.

Experimental design

Eight weeks after germination, we added ZnSO$_4$ to the nutrient solution to achieve a Zn concentration of 3 (Control), 10, 50 and 150 μM, corresponding to those commonly found in uncontaminated and contaminated soils (Knight et al. 1997, Kabata-Pendias and Pendias 1992, González et al. 2011). We applied two irrigation regimes using this solution: high watering (HW) and low watering (LW). HW seedlings were irrigated three times a week (Monday, Wednesday and Friday), whereas LW seedlings were irrigated every 5 days. During the experiment, seedlings were irrigated with 60 ml of nutrient solution. Substrate moisture content (SMC) was estimated by measurements of water content by gravimetric method. SMC for HW and LW treatments ranged from 2.0 ± 0.1% to 7.4 ± 0.1% and from 0.3 ± 0.1% to 6.40 ± 0.2% respectively. The moisture content (SMC) for the substrate during 18 consecutive days is shown in Fig. 1 as example of SMC dynamics.
Each Zn level (hereafter treatments) was replicated 10 times, i.e., 10 seedlings per Zn treatments and irrigation level. Ion speciation calculations for solutions containing different amounts of Zn were conducted using MINTEQA2 software (Allison Geoscience Consultants, Inc. Flowery Branch, Georgia, USA and HydroGeoLogic, Inc. Herndon, Virginia, USA). The concentration in mol/L of all anions and cations present in the nutrient solution (described above) were entered in MINTEQA2 software to estimate the equilibrium composition of the experimental solution. pH was fixed at 5.5 (the pH of the nutrient solution was adjusted to this value) and quartz was added as the mineral present in the equilibrium.

Calculations showed that 98% of Fe was present as Fe (II) and 81% of Zn was present as free ion and 18% as ZnNO$_3^{1+}$. Both elements were highly available for plants, as only small precipitations of PO$_4^{3-}$ (0.2%) and Mn$^{2+}$ (16.2%) were found by chemical equilibrium estimations using MINTEQA2 (see Appendix S1 in Supporting information). Leachates obtained immediately after watering showed that Zn concentration in the solution was always close to the intended concentration, independently of water availability and plant uptake. For 3 (Control), 10, 50 and 150 µM Zn were: 4.2 ± 0.4, 10.3 ± 3.7, 47.6 ± 8.7; 150.2 ± 12.9 µM Zn and 2.8 ± 0.4, 7.8 ± 1.3, 46.8 ± 6.8, 162.9 ± 16.3 µM Zn for HW and LW seedlings, respectively. Twelve weeks after the onset of the treatments, when seedlings were 5-months-old, we assessed their physiological status, and measured hydraulic conductivity and IAA concentration. Finally, we quantified their morphological traits.

Gas exchange and chlorophyll fluorescence

Physiological status was assessed 5 months after the onset of the experiment on 5 seedlings per treatment level (i.e. 40 seedlings in total). Gas exchange was analysed with a Li-Cor 6400 portable infrared gas analyser system (Li-Cor Inc. Lincoln, Nebraska, USA). We determined photosynthetic rate (A), stomatal conductance (g_s) and transpiration rate (E) in one fully expanded leaf per seedling. From these data, we calculated the instantaneous water use efficiency (IWUE). We maintained gas flow rate at 350 mL min$^{-1}$, CO$_2$ concentration at 400 ppm and a photon flux density of 600 µmol m$^{-2}$ s$^{-1}$ during the course of the measurements. Previous determinations of light response curves showed that a value of 600 µmol m$^{-2}$ s$^{-1}$ was sufficient to saturate the PSII photosystem in seedlings of this species.

Measurements were conducted early in the morning (09:00–11:00 h solar time).

A portable fluorometer (pulse-amplitude modulated photosynthesis yield analyzer, PAM-2010 Walz, Effeltrich, Germany) was used to measure chlorophyll fluorescence from intact leaves. In dark adapted leaves, we measured the minimum fluorescence yield (F_0) under weak red light and the maximum fluorescence (F_m) after a saturating pulse of white light. Maximal PSII photochemical efficiency (F_{v}/F_{m}) was calculated as $F_{v}/F_{m} = (F_{m} - F_{0})/ F_{m}$ according to Genty et al. (1989)

Root hydraulic conductance
Four to five seedlings per Zn dose and irrigation regime were used to measure water transport capacity of complete and intact root systems by means of a High Pressure Flowmeter (HPFM, Dynamax Inc., Houston, USA). Measures were carried out at the same time that gas exchange variables were measured. The night before the measurements, seedlings were watered to pot capacity, which is the amount of water remaining in a pot after irrigation and visible drainage had ceased. Root hydraulic conductance (\(K_R\)) measurements were carried out early in the morning. Root systems were kept in their substrate and perfused with distilled and de-gassed ultra-pure water filtered through a 0.2 µm water filtration membrane using the high pressure flow meter method (HPFM, Dynamax, USA) connected to the stump. \(K_R\) was measured in a transient way within a range of 0–0.5 MPa pressure at a constant increment rate of 3–5 kPa s\(^{-1}\) and the flow rate (F) was recorded every 3 s as described in Tyree et al. (1995). \(K_R\) (Kg m s\(^{-1}\) MPa\(^{-1}\)) was calculated as the slope of \(\Delta F\) (Kg s\(^{-1}\)) versus \(\Delta P\) (MPa) as \(K_R = \frac{dF}{dP}\). \(K_R\) was corrected for variations in water temperature. Morphological variables were used to normalize root hydraulic conductance (\(K_R\)) on root surface area basis (\(K_{R,RA}\); Kg m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\)).

Seedling morphology

Five months after the onset of the experiment, seedlings were harvested, stems cut above the root collar and the rooting system carefully washed. Roots and leaves were digitized by scanning on an A3 flatbed scanner (Epson Expression 1680 Pro, Long Beach, California, USA) fitted with a transparency adaptor at 300 dpi, using an 8-bit greyscale. Images were analyzed with specific software (WinRhizo, Regent Instruments, Québec, Canada) to evaluate projected leaf area, total root length and total root surface area. All biomass fractions were dried at 65ºC for 48 h, and then weighed. Specific root length (SRL) was calculated as the ratio between total root length and root biomass.

Zn concentration in plant tissues

Dry roots and leaves were digested in a heating block at 250ºC with a mixture of sulphuric acid and hydrogen peroxide (Jones and Case 1990). Digests were analyzed for Zn by ICP-OES (Perkin Elmer Optima 4300 Inductively Coupled Plasma Optical Emission Spectrometry). *Olea europaea* L. leaf standard reference material (BCR: CRM 062, Commission of the European Communities Bureau of Reference, Brussels) was digested and analysed for quality control.

Quantification of indole-3-acetic-acid (IAA)

Frozen leaves (10 mg) were homogenised in 0.5 ml of 0.05 M sodium phosphate buffer (pH 7.0) containing 0.02% diethyldithiocarbamic acid as an antioxidant and 500 pg\(^{13}\)C\(_6\)-IAA as an internal
standard, using the Retsch vibration mill (Retsch MM 200 mixer mill, Retsch GmbH, Haan, Germany) and a 3-mm tungstencarbide bead at a frequency of 30 Hz for 3 min. The pH was adjusted to 2.7 with 1 M HCl, and the samples were purified by solid phase extraction (SPE) and derivatized as described by Andersen et al. (2008). Finally, samples were dissolved in 30 µl heptane and analyzed by GC-SRM-MS (gas chromatography - selected reaction monitoring - mass spectrometry) as described in Edlund et al. 1995.

Data analysis

Treatment effects on physiological and morphological variables were evaluated using two-way ANOVA. When the interaction term was significant, one-way ANOVA and Student-t were used to evaluate the effect of Zn at each watering level, and the effect of increased water availability at each Zn level, respectively. Root biomass and instantaneous water use efficiency were raised to a power of 0.5 and root Zn concentration was transformed using natural logarithm prior to analysis, to homogenize the variance. Factor levels were compared pairwise (Tukey’s HSD test) when ANOVA showed a significant treatment effect. We used regression analysis to evaluate the significance of the relationship between K_r and A and g_s. All analyses were performed using the SPSS v.15.0 statistical package (SPSS Inc., Chicago, Illinois, USA).

Results

Zn bioaccumulation

Foliar Zn concentration increased in HW and LW seedlings with increasing Zn concentration in the growing medium (Fig. 2A). The magnitude of the increase was dependent on water availability (Table 1, Table 2). Thus, at the highest Zn dose, its concentration was two-fold higher in leaves of HW seedlings than in leaves of LW seedlings. The Zn bioaccumulation in roots was affected by the increase in Zn load and by the interaction between both factors (Fig 2B, Table 1).

Morphological response

Foliar biomass was not affected by Zn application, water availability or the interaction between both (Table 1 and 3). On the contrary, root biomass showed a significant effect of the increase in Zn load, and the interaction between Zn application and water availability. While root biomass in HW seedlings decreased with increasing Zn dose, LW seedlings showed the opposite trend (Table 2). At the highest Zn dose, root biomass accumulation was 33% lower in HW seedlings than in LW
seedlings. This response was similar for root length, but changes in root length in LW seedlings with increasing Zn concentration were not statistically significant (Table 2). We found a marginally significant trend towards lower specific root length as Zn dose increased at any watering level (Table 1 and 3).

Physiological response

Maximum PSII photochemical efficiency ($F_v:F_m$) ranged between 0.65 and 0.72. $F_v:F_m$ was significantly decreased by Zn but not by water availability (Table 1). The interaction between Zn and watering regime was marginally significant as the effect of drought on this variable decreased as Zn dose increased above 3 µM Zn (Table 1, Appendix S2 in Supporting Information). In HW seedlings, $F_v:F_m$ decreased with the increase of Zn while F_o showed the opposite trend (Table 2). We found no significant effect of Zn application in $F_v:F_m$ and F_o in LW seedlings.

Zinc application, water availability and their interaction significantly affected gas exchange (Table 1, Fig. 3A and 3B). HW seedlings receiving 3µM Zn, had 2.8 and 3.9 times higher net photosynthetic rate (A) and stomatal conductance (g_s) than LW seedlings, respectively. Stomatal conductance and A decreased with increasing Zn dose in HW (Table 2). In contrast, A in LW seedlings was weakly affected by Zn application, and g_s showed a unimodal response to increase in Zn load (Table 2).

Instantaneous water-use-efficiency (IWUE) increased as Zn dose increased and, in contrast to other variables, this effect was independent of the irrigation regime (see Appendix S3 in Supporting Information).

Hydraulic conductance

Root hydraulic conductance in a root area basis ($K_{R,RA}$) was sensitive to Zn doses, watering regime and their interaction (Fig. 4, Table 1). $K_{R,RA}$ gradually decreased as Zn availability increased in HW seedlings, whereas $K_{R,RA}$ was not affected by Zn doses in LW seedlings (Fig. 4, Table 2). $K_{R,RA}$ was significantly higher in HW seedlings than in LW seedlings at low Zn availability, but this difference disappeared at Zn concentrations of 50 µM and higher (Appendix S4 in Supporting Information). Root hydraulic conductance per unit of leaf area and root hydraulic conductance per unit of root length showed similar trends (data not shown).

IAA concentration

Foliar IAA concentration was significantly affected by the increase in Zn load, and marginally affected by the interaction between Zn application and water availability (Fig. 5, Table 1). This was
the result of a substantial increase in IAA in HW seedlings receiving 150 µM of Zn compared to HW seedlings receiving lower Zn doses and LW seedlings receiving any Zn dose (Table 2).

Discussion

In Mediterranean type ecosystems, water stress is the main constraint to plant performance (Di Castri 1973, Rhizopoulou and Mitrakos 1990). In these areas, prolonged summer drought, low water storage capacity of forest soils and high summer temperatures could amplify the effects of other sources of stress such as heavy metals, high temperatures or high radiation levels. In addition, the deleterious impact of both sources of stress may be enlarged in the future as a consequence of climate change and increased inputs of heavy metals (Sardans and Peñuelas 2007, Micó et al. 2006, IPCC 2001). Results of the present study show that water availability and heavy metal contamination may indeed interact in complex ways, and they suggest that the combined effects of both sources of stress may not be additive simply.

Zn effects on seedling performance

Zinc concentration in leaves of seedlings exposed to 3 µM Zn was similar to concentrations found in 1-year-old Q. suber (Robert et al., 1996). Foliar Zn concentration reached critical levels (e.g., 200 µg g⁻¹ d.w.; Balsberg Pahlsson, 1989) only after exposition to 150 µM Zn. Maximum Zn concentration belowground in HW seedlings was 1.7 higher than in LW seedlings. Similar values of Zn bioaccumulation have been found in other woody species grown in hydroponic culture (e.g., 3444 µg g⁻¹ to 5700 µg g⁻¹; Reichman et al., 2001; Fuentes et al., 2007b).

Aboveground biomass accumulation showed no evidence of Zn toxicity. Similar response had been observed previously (Disante et al. 2011). This could be a consequence of the time span of the experiment and low Zn concentration in shoots, as belowground biomass accumulation and ecophysiological status (as leaf photosynthetic rate) were affected by Zn application. In addition, stem elongation in oaks follows successive flushes (Johnson et al. 2001). Thus, we might observe changes in shoot biomass in response to the increase in Zn load after a new flush of growth. Reductions in aboveground biomass accumulation and chlorosis in seedlings exposed to high levels of Zn have been reported in other woody species in experiments of different time span (Reichman et al. 2001, Fuentes et al. 2007b, Disante et al. 2010).

On the contrary, belowground parts were more sensitive to increase in Zn load than aboveground parts as reflected by the reduction in root biomass and the marginally significant decrease in root length of well watered seedlings receiving increasing doses of heavy metal. The reduction in root biomass accumulation is a common and quick response to high Zn availability (Ruano et al. 1988). Indeed Zn
concentration in roots was up to ten times higher than in shoots. This may be a result of the strong
control of Zn translocation of Q. suber, possibly excluder species (Disante et al. 2010).

Functionality of Q. suber leaves was negatively affected by the increase in Zn load. Previous studies
suggested that Zn increases plant sensitivity to photoinhibition (Joshi and Mohanty 2004, Mateos-
Naranjo et al. 2008). The decline observed in F_v/F_m may be due to damage in the reaction centre and
down-regulation processes (Osmond et al. 1999). In our experiment, this reduction was caused by a
weak increase in F_o that can be induced by damages to the PSII reaction centre (Moustakas et al.
1997), including reductions in the energy transfer from the antennae to the reaction centre associated
with chronic photoinhibition (Ralph and Burchett 1998, Popovic et al. 2003). Similarly, we observed a
reduction in A and g_s in seedlings exposed to Zn application, as described in previous works (Myśliwa-
Kurdziel et al. 2004, Disante et al. 2011). Impaired carbon fixation may partly reflect photoinhibition
and photon damage, but also the reduction in g_s.

Another direct effect over g_s may be associated with the decrease in water transport capacity in roots
affected by increment of this heavy metal. Supporting this hypothesis, we found a reduction in
hydraulic conductance of roots and a positive relationship between K_R and gas exchange rates ($R^2=
0.64$, $F= 10.66$, $P= 0.0171$, and $R^2 = 0.73$, $F= 15.99$, $P= 0.0071$ for A and g_s, respectively). These results
are in agreement with observations on stomata sensitivity to decreasing K_R, and the prevention of
xylem cavitation (Brodribb and Holbrook 2003, Vilagrosa et al. 2003b, Otieno et al. 2007). The
negative effect of the increase in Zn load altering root morphology supports our observations in root
functionality (i.e. decreases of K_R). Heavy metals may modify root hydraulic conductance by different
mechanisms, but studies on this topic are relatively scarce (Poschenrieder and Barceló 2004). Thus,
previous studies found that Hg can block aquaporins in cell membranes (Lee et al. 2005), and Zn and
Cd may foster the deposition of phenolic compounds and the reduction in vessel size (Fuhrer 1982,
Poschenrieder et al. 1989). Independently of the mechanisms involved, the reduction of K_R and the
concomitant decrease in A and g_s, together with changes in root biomass accumulation and root
morphology, suggest that Zn may hamper the ability of Q. suber seedlings to access and transport soil
resources to aboveground parts. The development of extended rooting system is important to ensure
plant survival and early growth in Mediterranean conditions, and especially for seedling establishment
in areas subjected to intense droughts (Padilla and Pugnaire, 2007, León et al. 2011).

Hormonal response to heavy metals is another response poorly studied, especially in woody species.
We found a substantial increase in IAA in leaves of well watered seedlings as Zn concentration
increased. Auxins are mainly synthesized in shoots, and then translocated and accumulated in roots
(Marschner 1995, Ljung et al. 2005) This hormone is involved in several process related to the
coordination of root and shoot growth and development, participating in processes as cell elongation, formation and differentiation of vascular tissue, and in the shaping of root architecture (Mattsson et al. 2003; Aloni et al. 2006, Robert and Friml 2009). Our results show that the increase in Zn load may elicit alterations in endogenous auxin levels and suggest that this could promote the observed alterations in root morphology and functionality. Indeed, other studies have found changes in auxin accumulation after Cu exposition, which was related to morphological changes as the formation of lateral roots (Lequeux et al. 2010, Petö et al. 2011).

Combined effects of Zn and water availability

We found no significant effect of the increase in Zn load on aboveground biomass accumulation in HW seedlings, whereas aboveground biomass showed a marginally significant increase with Zn application in LW seedlings. Several studies have found increases in plant growth in response to small amounts of available Zn (Gadallah 2000, Fuentes et al. 2007b). In contrast, belowground biomass increased and decreased in LW and HW seedlings, respectively, as Zn availability increased. The marginal increase in root biomass in LW seedlings was probably due to the combination of small changes in root diameter (data not shown) and root length (Table 3): 5% and 12% increase, respectively, in seedlings exposed to 150 µM Zn compared to seedlings exposed to 3 µM Zn. We may note that root biomass and root length were 1.5 times higher in LW seedlings than in HW seedlings when both sets received 150 µM Zn. A study combining Zn and salinity found similar results, as Zn application reduced root length and root biomass accumulation in unstressed seedlings, but it increased root growth in seedlings subjected to saline stress (Gadallah and Ramadan 1997).

Quercus suber displays intermediate tolerance to drought (Ramírez-MValiente et al. 2009). In our experiment, we did not test intense and extended drought that could probably affect root anatomy. Our objective was to study how the reduction in the frequency of irrigation influences seedling response to different Zn doses. This may explain why contrasted watering frequency did not induce changes in root length or root biomass in seedlings receiving 3 µM Zn. Data on Table 1 show that the effects of Zn and watering frequency on several seedling traits depend on the levels of the other factors. The interaction between drought and Zn points out at a synergistic or antagonistic effect of the two factors. Table 2 and Table 3 show that Zn had opposite effects on seedlings depending on the watering level. Despite that the effect of Zn on root architecture, (i.e., root biomass) was marginally significant in LW seedlings ($P = 0.052$), we consider this effect to be important and worth discussing. Besides, low watering induced a marginal decrease in root average diameter compared to HW (Appendix S5 in Supporting information). Results of a two-way ANOVA showed the lack of a significant interaction between Zn and drought, and indicate that roots of seedlings receiving low irrigation were thinner than HW seedlings. In other words, LW induced changes in root morphology.
Physiological response to increasing Zn availability also differed in LW and HW seedlings. Low irrigation frequency decreased gas exchange rates, and probably limited Zn uptake and accumulation. This may explain the lower foliar and root Zn concentrations found in LW seedlings compared with HW seedlings, and may be partially responsible for the smaller effect of Zn doses observed in the former seedlings. Zinc is incorporated by specific transporters (Lasat et al. 2000, Takahashi et al. 2012) and to our knowledge there is no report about the effect of water availability on these transporters. But drought generally reduces nutrient transport because it impairs transpiratory flow and active transport (Hu and Schmidhalter 2005).

All physiological traits measured in Q. suber decreased as Zn concentration increased in HW seedlings, whereas most traits showed a unimodal response, albeit not statistically significant, to increasing Zn in LW seedlings. Stomatal conductance and carbon assimilation rates of LW seedlings receiving the lowest Zn corresponded to values obtained in Q. suber seedling exposed to mild drought (Disante et al. 2011), but they were not further reduced by the increase in Zn load. As a consequence, physiological status of LW and HW seedlings strongly differed in seedlings receiving the lowest doses of Zn, but differences gradually disappeared as Zn availability increased, or Zn concentration in roots increased above ca. 1000 µg g⁻¹ (Appendix S2). When water was limiting, the addition of 50 µM Zn increased A and gs in a 67% and 73% as compared with 3 µM Zn, respectively. Moreover, in the last case this increment was significant. These results are in agreement with observed trends in morphological variables.

In the same way, K_R,RA showed a similar behaviour as gas exchange rates. K_R,RA decreased with increasing Zn concentration in LW seedlings and increases a 30% after 50 µM Zn. This may be a consequence of the morphological changes occurring in LW plants subjected to increased Zn availability. As a result, K_R,RA values converged in HW and LW seedlings at root Zn concentration above ca. 1000 µg g⁻¹ (see Appendix S4 in Supporting Information). Similar results were observed when we analysed K_R on a leaf area and a root length basis. Limitations to water flow through xylem vessels can increase the risk of cavitation by increasing water tension from roots to leaves (Sperry et al. 2002). However, some limitation to water flow may increase IWUE of plants by regulating water losses. This response would be beneficial to maintain a positive water balance, especially for plants living in water limited ecosystems (Vilagrosa et al. 2003a, Hernández et al. 2010).

The effect of heavy metals on IWUE has been scarcely studied, but an increase in IWUE can alleviate the effects of drought. We found that the increase in Zn load enhanced carbon assimilation per unit of water loss independently of the irrigation regime. This is remarkable, as A and gs behaved in quite different ways in both groups of seedlings.

To what extent was the differential morpho-physiological response of LW seedlings to Zn a simple consequence of reduced Zn uptake? The relationships between root Zn concentration, on the one hand,
and g_s and K_r, on the other, did not overlap in LW and HW seedlings (see Appendix S4 in Supporting Information). These results suggest that the response of seedlings to low water availability influence the response of *Q. suber* seedlings to Zn application.
Conclusion

Our results demonstrate that the combination of the increase in Zn load and moderate water stress did not induce a synergistic response in *Q. suber* seedlings, supporting our initial hypothesis. The combination of both stress factors, may contribute to alleviate their negative impact. On the one hand, low water availability prevented Zn accumulation, and probably buffered its negative effects. On the other hand, when water was limiting, intermediate Zn concentrations may have contributed to the improvement of traits as water use efficiency and root growth, buffering the effects of water limitation. Low water availability expanded the range of Zn concentrations where this heavy metal may have a positive effect on plant performance, shifting the toxicity level up. Our results suggest that legal and practical regulations of Zn levels should take into account the water regime of each zone.

Acknowledgements

We thank Jose Huesca for their assistance in the lab, Banco de Semillas El Serranillo for the seeds used in this experiment and the University of Alicante for an FPU (Formacion del Profesorado Universitario) grant awarded to K. Disante. This research was funded by the Spanish Ministry of Science and Innovation (Project GRACCIE, Programa Consolider-Ingenio 2010 (CSD 2007-00067) and SURVIVE (CGL-2011-30531-C02-02)) and Generalitat Valenciana (FEEDBACKS-PROMETEO/2009/006). E.I. Hernández thanks the University of Alicante for her FPU research fellowship. CEAM is supported by Generalitat Valenciana.

References

Table 1. Results of two-way ANOVA to evaluate the effects of Zn and water availability (w) on morpho-physiological traits of *Quercus suber* seedlings. Foliar Zn: foliar Zn concentration, Root Zn: root Zn concentration, SRL: specific root length, $F_v:F_m$: predawn maximum photochemical efficiency, F_o: minimum fluorescence, A: photosynthesis; g_s: stomatal conductance, *IWUE*: instantaneous water use efficiency, K_{R-RA}: root hydraulic conductance per root area, IAA: auxin concentration in leaves.

<table>
<thead>
<tr>
<th>Variables</th>
<th>F_{Zn}</th>
<th>P_{Zn}</th>
<th>F_w</th>
<th>P_w</th>
<th>F_{Znw}</th>
<th>P_{Znw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliar Zn</td>
<td>$F_{3,26} =105.34$</td>
<td><0.001</td>
<td>$F_{1,26} =12.78$</td>
<td>0.001</td>
<td>$F_{3,26} =3.34$</td>
<td>0.034</td>
</tr>
<tr>
<td>Root Zn</td>
<td>$F_{3,26} =46.67$</td>
<td><0.001</td>
<td>$F_{1,26} =0.01$</td>
<td>0.920</td>
<td>$F_{3,26} =2.86$</td>
<td>0.056</td>
</tr>
<tr>
<td>Foliar biomass</td>
<td>$F_{3,48} =1.95$</td>
<td>0.135</td>
<td>$F_{1,48} =0.01$</td>
<td>0.905</td>
<td>$F_{1,48} =2.00$</td>
<td>0.127</td>
</tr>
<tr>
<td>Root biomass</td>
<td>$F_{3,50} =2.95$</td>
<td>0.041</td>
<td>$F_{1,50} =0.94$</td>
<td>0.337</td>
<td>$F_{3,50} =5.11$</td>
<td>0.004</td>
</tr>
<tr>
<td>Root length</td>
<td>$F_{3,48} =0.25$</td>
<td>0.858</td>
<td>$F_{1,48} =0.02$</td>
<td>0.870</td>
<td>$F_{3,48} =3.29$</td>
<td>0.028</td>
</tr>
<tr>
<td>SRL</td>
<td>$F_{3,45} =2.44$</td>
<td>0.076</td>
<td>$F_{1,45} =0.93$</td>
<td>0.339</td>
<td>$F_{3,45} =0.13$</td>
<td>0.943</td>
</tr>
<tr>
<td>$F_v:F_m$</td>
<td>$F_{3,30} =5.09$</td>
<td>0.006</td>
<td>$F_{1,30} =2.14$</td>
<td>0.154</td>
<td>$F_{3,30} =2.36$</td>
<td>0.091</td>
</tr>
<tr>
<td>F_o</td>
<td>$F_{3,30} =2.66$</td>
<td>0.066</td>
<td>$F_{1,30} =1.18$</td>
<td>0.287</td>
<td>$F_{3,30} =2.85$</td>
<td>0.054</td>
</tr>
<tr>
<td>A</td>
<td>$F_{3,30} =3.74$</td>
<td>0.021</td>
<td>$F_{1,30} =32.52$</td>
<td><0.001</td>
<td>$F_{3,30} =3.97$</td>
<td>0.017</td>
</tr>
<tr>
<td>g_s</td>
<td>$F_{3,30} =4.04$</td>
<td>0.016</td>
<td>$F_{1,30} =31.35$</td>
<td><0.001</td>
<td>$F_{3,30} =4.00$</td>
<td>0.017</td>
</tr>
<tr>
<td>IWUE</td>
<td>$F_{3,30} =2.86$</td>
<td>0.054</td>
<td>$F_{1,30} =2.71$</td>
<td>0.111</td>
<td>$F_{3,30} =0.40$</td>
<td>0.756</td>
</tr>
<tr>
<td>K_{R-RA}</td>
<td>$F_{3,32} =2.96$</td>
<td>0.047</td>
<td>$F_{1,32} =22.76$</td>
<td><0.001</td>
<td>$F_{3,32} =6.96$</td>
<td>0.001</td>
</tr>
<tr>
<td>IAA</td>
<td>$F_{3,23} =3.58$</td>
<td>0.029</td>
<td>$F_{1,23} =0.08$</td>
<td>0.773</td>
<td>$F_{3,23} =2.84$</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Table 2. Results of one-way ANOVA to evaluate the effects of Zn on morpho-physiological traits of *Quercus suber* seedlings subjected to high and low watering frequency (HW and LW, respectively). Foliar Zn: foliar Zn concentration, Root Zn: root Zn concentration, $F_v:F_m$: predawn maximum photochemical efficiency, F_o: minimum fluorescence; A: photosynthesis; g_s: stomatal conductance, K_{R-RA}: root hydraulic conductance per root area, IAA: auxin concentration in leaves.

<table>
<thead>
<tr>
<th>Variables</th>
<th>F_{HW}</th>
<th>P_{HW}</th>
<th>F_{LW}</th>
<th>P_{LW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliar Zn</td>
<td>$F_{3,13} = 92.33$</td>
<td><0.001</td>
<td>$F_{3,13} = 31.51$</td>
<td><0.001</td>
</tr>
<tr>
<td>Root Zn</td>
<td>$F_{3,14} = 99.27$</td>
<td><0.001</td>
<td>$F_{3,14} = 35.55$</td>
<td><0.001</td>
</tr>
<tr>
<td>Root biomass</td>
<td>$F_{3,23} = 4.23$</td>
<td>0.016</td>
<td>$F_{3,27} = 2.93$</td>
<td>0.052</td>
</tr>
<tr>
<td>Root length</td>
<td>$F_{3,22} = 2.57$</td>
<td>0.080</td>
<td>$F_{3,26} = 1.35$</td>
<td>0.281</td>
</tr>
<tr>
<td>$F_v:F_m$</td>
<td>$F_{3,15} = 6.66$</td>
<td>0.004</td>
<td>$F_{3,15} = 0.86$</td>
<td>0.485</td>
</tr>
<tr>
<td>F_o</td>
<td>$F_{3,15} = 4.88$</td>
<td>0.015</td>
<td>$F_{3,15} = 0.31$</td>
<td>0.819</td>
</tr>
<tr>
<td>A</td>
<td>$F_{3,16} = 5.02$</td>
<td>0.012</td>
<td>$F_{3,15} = 2.46$</td>
<td>0.106</td>
</tr>
<tr>
<td>g_s</td>
<td>$F_{3,16} = 4.61$</td>
<td>0.017</td>
<td>$F_{3,15} = 3.34$</td>
<td>0.050</td>
</tr>
<tr>
<td>K_{R-RA}</td>
<td>$F_{3,15} = 7.30$</td>
<td>0.003</td>
<td>$F_{3,18} = 0.63$</td>
<td>0.602</td>
</tr>
<tr>
<td>IAA</td>
<td>$F_{3,11} = 4.39$</td>
<td>0.029</td>
<td>$F_{3,12} = 0.90$</td>
<td>0.468</td>
</tr>
</tbody>
</table>
Table 3. Morphological attributes of 5-months-old *Quercus suber* seedlings grown under a range of Zn supply rates and contrasted irrigation regimes. HW and LW correspond to high and low watering frequency, respectively. Means and standard errors of N= 6-7 seedlings are showed.

Different capital letters and lowercase letters indicate significant differences at $P < 0.05$ for HW seedlings and LW seedling respectively (Tukey’s HSD test). Asterisks indicate significant differences at $P < 0.05$ between seedlings HW and LW exposed to the same Zn dose (t-Student).

<table>
<thead>
<tr>
<th>Zn application rate (µM)</th>
<th>3</th>
<th>10</th>
<th>50</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HW</td>
<td>LW</td>
<td>HW</td>
<td>LW</td>
</tr>
<tr>
<td>Foliar biomass (g)</td>
<td>0.47±0.10</td>
<td>0.45±0.05</td>
<td>0.50±0.05</td>
<td>0.56±0.05</td>
</tr>
<tr>
<td>Root biomass (g)</td>
<td>2.43±0.33A</td>
<td>2.02±0.15</td>
<td>2.93±0.33B</td>
<td>2.43±0.15</td>
</tr>
<tr>
<td>Root length (cm)</td>
<td>1479±119</td>
<td>1306±123</td>
<td>1283±180</td>
<td>1199±105</td>
</tr>
<tr>
<td>Specific root length (cm g$^{-1}$)</td>
<td>593±72</td>
<td>660±42</td>
<td>481±70</td>
<td>493±41</td>
</tr>
</tbody>
</table>
Figure 1. Changes in substrate moisture content (SMC) for HW and LW seedlings during 18 consecutive days. HW and LW correspond to high and low watering frequency, respectively. Means and standard errors of N= 6-7 tubes per treatment are shown.

Figure 2. Foliar (A) and root (B) Zn concentration of Quercus suber seedlings growing at four Zn doses and two contrasting water availability levels (HW and LW for high and low watering frequency, respectively). Bars are means and standard errors of N=5 seedlings. Note the different scale used for leaves and roots. Note that data distribution along the X-axis is not proportional. Different capital letters and lowercase letters indicate significant differences at $P < 0.05$ for HW seedlings and LW seedling respectively (Tukey’s HSD test). Asterisks indicate significant differences at $P < 0.05$ between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 3. Photosynthesis (A) and stomatal conductance (B) of Quercus suber seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are means and standard errors of N=5 seedlings. Note that data distribution along the X-axis is not proportional. Different capital letters and lowercase letters indicate significant differences at $P < 0.05$ for HW seedlings and LW seedling respectively (Tukey’s HSD test). Asterisks indicate significant differences at $P < 0.05$ between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 4. Specific hydraulic conductance per root surface area in Quercus suber seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are means and standard errors of N=4-5 seedlings. Note that data distribution along the X-axis is not proportional. Different capital letters and lowercase letters indicate significant differences at $P < 0.05$ for HW seedlings and LW seedling respectively (Tukey’s HSD test). Asterisks indicate significant differences at $P < 0.05$ between seedlings HW and LW exposed to the same Zn dose (t-Student).

Figure 5. Indole-3-acetic acid (IAA) concentration in leaves of Quercus suber seedlings exposed to different levels of Zn availability and contrasting watering frequency. Bars are
means and standard errors of N=3-4 seedlings. Note that data distribution along the X-axis is not proportional.

Different capital letters and lowercase letters indicate significant differences at $P < 0.05$ for HW seedlings and LW seedling respectively (Tukey’s HSD test). Asterisks indicate significant differences at $P < 0.05$ between seedlings HW and LW exposed to the same Zn dose (t-Student).
Figure 1
Figure 2.
Figure 3
Figure 4
Figure 5

![Graph showing IAA (pg mg$^{-1}$) against Zn dose (µM). The graph compares HW and LW treatments.](image)