Title: Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration

Author names and affiliations: Pedro Lax a,*, Gema Esquiva a,*, Cesare Altavilla a and Nicolás Cuenca a,b

aDepartment of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
bInstitute Ramón Margalef, University of Alicante, Alicante, Spain.

*These authors contributed equally to the work presented here and should therefore be regarded as equivalent authors.

Corresponding author: Nicolás Cuenca, Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente University Campus, E-03080 Alicante, Spain; Phone: +34965909916, Fax: +34965903943, E-mail: cuenca@ua.es
ABSTRACT

Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 µg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.

Key words: Neurodegeneration, retinitis pigmentosa, P23H, apoptosis, electroretinography, immunohistochemistry, confocal microscopy
Abbreviations: CB1 and CB2, Cannabinoid receptor type 1 and 2; ERG, electroretinogram; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; IS, inner segment; ONF, optic nerve fibers; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer segment; PB, phosphate buffer; PKC-α, α isoform of protein kinase C; RHO, rhodopsin-encoding gene; RP, retinitis pigmentosa; ROS, reactive oxygen species; SYP, synaptophysin; THC, Δ⁹-tetrahydrocannabinol
1. Introduction

Retinitis pigmentosa (RP) is a family of inherited neurodegenerative retinal disorders with an incidence in humans of approximately 1/4000 (Hartong et al., 2006). The disease is characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. More than 100 different mutations in the rhodopsin-encoding gene (RHO) are associated with RP, together accounting for 30-40% of autosomal dominant cases. The P23H mutation in this gene is the most prevalent cause of RP (Dryja et al., 1990), which alone accounts for approximately 12% of autosomal dominant RP cases in the United States (Dryja et al., 2000). The majority of RP-causing mutations in the RHO gene, including P23H, cause misfolding and retention of rhodopsin in the endoplasmic reticulum of transfected cultured cells (Kaushal and Khorana, 1994). These studies also suggest that the mechanism of RP involves a cellular stress response (Illing et al., 2002), the final common pathway being programmed photoreceptor cell death, or apoptosis (Reme et al., 1998). P23H transgenic albino rats suffer from a progressive retinal degeneration, which is consistent with the clinical findings in P23H patients (Berson et al., 1991; Cuenca et al., 2004; Machida et al., 2000; Pinilla et al., 2005). The loss of photoreceptors is accompanied by degenerative changes in the inner retina (Cuenca et al., 2004), and a substantial degeneration of retinal ganglion cells (Garcia-Ayuso et al., 2010; Kolomiets et al., 2010).

Several strategies are being investigated to slow or cure this group of diseases. Gene therapy, encapsulated cells releasing neurotrophic factors and stem cell transplantation are promising future approaches to RP treatment (Fernandez-Sanchez et al., 2012b; Musarella and Macdonald, 2011; Stieger,
Molecules that promote survival, such as brain-derived neurotrophic factor, ciliary neurotrophic factor, fibroblast growth factor, glial-derived neurotrophic factor, pigment epithelium-derived factor, and proinsulin (Fernandez-Sanchez et al., 2012b), are moderately successful in preventing the progression of the disease when used in animal models (Cayouette et al., 1998; Cayouette et al., 1999; Chong et al., 1999; Green et al., 2001; McGee Sanftner et al., 2001; Okoye et al., 2003). Antioxidants have also been shown to be effective in preventing retinal degeneration in animal models of RP, probably by reducing oxidative damage (Ahuja et al., 2005; Berson et al., 1993; Fernandez-Sanchez et al., 2012a; Komeima et al., 2006; Lax et al., 2011). Finally, attenuation of apoptosis represents a good therapeutic target in RP, especially considering the vast heterogeneity of the disease (Doonan and Cotter, 2004; Fernandez-Sanchez et al., 2011; Liang et al., 2001). In the meantime, it would be thus interesting to address other potential treatments making it possible, if not to cure, at least to delay RP progression in the short term.

Cannabinoids have been reported to attenuate brain damage caused by different types of insults (Fernandez-Ruiz et al., 2010; Pertwee, 2012; van der Stelt and Di Marzo, 2005; Zogopoulos et al., 2013). Previous studies have shown neuroprotective effects of cannabinoids in the retina (Yazulla, 2008). Thus, it is known that CB1 agonists protect ganglion cells from glutamate-mediated excitotoxicity (El-Remessy et al., 2003; Opere et al., 2006) and ischemia caused by increased intraocular pressure (Crandall et al., 2007; Nucci et al., 2007; Pinar-Sueiro et al., 2013). HU210 is a synthetic analogue of \(\Delta^9\)-tetrahydrocannabinol (THC), the primary psychoactive constituent in marihuana (Mechoulam et al., 1988). The aim of this study was to evaluate, by means of
functional (ERG) and morphological (histological labeling) techniques, the effectiveness of HU210 as a neuroprotective agent on homozygous P23H line 3 rats, characterized by a relatively slow retinal degeneration. Since one of the first signs of degeneration in these animals was found in the outer plexiform layer (OPL) (Cuenca et al., 2004; Pinilla et al., 2005), we also evaluated its capacity to prevent the loss of synaptic contacts at this retinal location. A positive assessment of the action of cannabinoids in this animal model could lead to its possible preventive use in patients affected with RP.
2. Materials and methods

2.1. Animals and HU210 administration

Homozygous P23H line 3 rats, obtained from M. LaVail (UCSF School of Medicine; http://www.ucsfeye.net/mlavailRDratmodels.shtml), were used as a model of RP. All animals were bred in a colony at the University of Alicante and maintained under controlled humidity (60%), temperature (23 ± 1°C) and photoperiod (LD 12:12) conditions. Light was provided by two fluorescent lamps, with an intensity of 350-400 lux at cage level. Dry food and water were made available ad libitum. All animals were handled in accordance with current regulations for the use of laboratory animals (NIH, ARVO and European Directive 2010/63/UE) in order to minimize animal suffering and limit the numbers used for the experiments.

HU210, purchased from Tocris (Tocris Bioscience, Bristol, UK), was resuspended to stock concentration (5 mg/ml) in ethanol and refrigerated at −20°C until administration. After being diluted in physiological saline (0.9% NaCl), HU210 was administered at 100 µg/kg (i.p.) three times a week from P24 to P90, when P23H line 3 rats can be considered to have undergone extensive retinal degeneration (http://www.ucsfeye.net/mlavailRDratmodels.shtml) (Fernandez-Sanchez et al., 2012a; Fernandez-Sanchez et al., 2012b; Fernandez-Sanchez et al., 2011). Untreated animals received the same volume of saline at the same time points. In order to adjust the amount of HU210 and vehicle administered, the animal body weight was measured before each drug injection.

2.2. ERG recordings
Scotopic ERGs were performed at P30, P60 and P90, at least 24 h after the last administration of HU210. Following overnight dark adaptation, animals were prepared for bilateral ERG recording under dim red light. Animals were anesthetized by i.p. injection of a ketamine (100 mg/kg) plus xylazine (4 mg/kg) solution, and maintained on a heating pad at 38 °C. Pupils were dilated by topical application of 1% tropicamide (Alcon Cusí, Barcelona, Spain). A drop of Viscotears 0.2% polyacrylic acid carbomer (Novartis, Barcelona, Spain) was instilled on the cornea to prevent dehydration and allow electrical contact with the recording electrodes. These were DTL fiber electrodes with an X-Static silver-coated nylon conductive strand, from Sauquoit Industries (Scranton, PA). A 25-gauge platinum needle inserted under the scalp between the eyes served as the reference electrode. A gold electrode was placed in the mouth and served as ground. Anesthetized animals were placed in a Faraday cage and all experiments were performed in absolute darkness. Scotopic flash-induced ERG responses were recorded from both eyes in response to light stimuli produced by a Ganzfeld stimulator. Light stimuli were presented for 10 ms at 11 different increasing luminances (ranging from -5.2 to 0 log cd·s/m²). Three to ten consecutive recordings were averaged for each light presentation. The interval between light flashes was 10 s for dim flashes (-5.2 to -1.4 log cd·s/m²) and up to 20 s for the higher luminances (-0.8 to 0 log cd·s/m²). The ERG signals were amplified and band-pass filtered (1-1000 Hz, without notch filtering) using a DAM50 data acquisition board (World Precision Instruments, Aston, UK). Stimulus presentation and data acquisition (4 kHz) were performed using a PowerLab system (AD Instruments, Oxfordshire, UK). Recordings were saved on a computer and analyzed off-line. The amplitude of the a-wave was
measured from the baseline at 10 ms after the onset of the light stimulus, a point before the intrusion of the b-wave. The amplitude of the b-wave was measured from the trough of the a-wave to the peak of the b-wave. Thresholds were defined as the minimal luminance required to reach the criterion amplitude of 10 µV, calculated via curve-fitting (three-parameter sigmoid function) of the luminance-response curve obtained for each series of stimuli. Latency (time-to-peak) was measured from stimulus onset to the a-wave trough and b-wave peak.

2.3. Retinal sections

Animals were sacrificed in the morning by administration of a lethal dose of pentobarbital. After marking the dorsal margin of the limbus with a suture, eyes were enucleated and fixed in 4% (w/v) paraformaldehyde during 1 h at room temperature. After being washed in 0.1 M phosphate buffer pH 7.4 (PB), eyes were cryoprotected sequentially in 15, 20 and 30% sucrose. The cornea, lens and vitreous body were removed, and the retinas were processed for vertical sections. For this purpose, they were embedded in OCT and frozen in liquid N₂. Sixteen µm-thick sections were then obtained at -25 °C, mounted on Superfrost Plus slides (Menzel GmbH & Co KG, Braunschweig, Germany), and air-dried. Before further use, slides were washed 3 times in PB, and then treated with blocking solution (10% normal donkey serum in PB plus 0.5% Triton X-100) for 1 h.

2.4. Retinal immunohistochemistry
For objective comparison, retinas from vehicle- and HU210-treated rats were fully processed in parallel. All primary antibodies used in this work (summarized in Table 1) have been used in several previous studies and have been well characterized by us and other authors regarding specific cell type molecular markers. Sections were subjected to single or double immunostaining overnight at room temperature, with combinations of antibodies for different molecular markers at the dilutions indicated in Table 1, in PB containing 0.5% Triton X-100. Subsequently, Alexa Fluor 488 (green)-conjugated anti-rabbit IgG and/or Alexa Fluor 555 (red)-conjugated anti-mouse IgG donkey secondary antibodies from Molecular Probes (Eugene, OR) were applied at a 1:100 dilution for 1 h. The sections were finally washed in PB, mounted in Citifluor (Citifluor Ltd; London, UK) and coverslipped for viewing under laser-scanning confocal microscopy on a Leica TCS SP2 system (Wetzlar, Germany). Immunohistochemical controls were performed by omission of either the primary or secondary antibodies. Final images from control and experimental subjects were processed in parallel using the Adobe Photoshop 10 software (Adobe Systems Inc., San Jose, CA). Unless otherwise indicated, all the images analyzed were collected from the central area of the retina, close to the optic nerve.

2.5. Morphometric analysis

Five animals per group were examined. For measurements of the outer nuclear layer (ONL) thickness, a nuclear stain (Hoechst; Sigma, Milwaukee, WI) was added at 1 µg/ml to at least 4 sections from each animal containing the optic nerve and both temporal and nasal ora serratas. Counting of
photoreceptor rows was performed each 0.5 mm from the optic nerve toward each ora serrata. The number of photoreceptor rows was the average of three measurements counting rows of nuclei of photoreceptor cells. For quantification of the relative number of synaptic ribbons in the OPL, we counted the number of Bassoon-immunoreactive puncta in 2 retinal sections from each animal containing the optic nerve and both temporal and nasal ora serratas. Measurements were performed close to the optic nerve, and at 2 and 4 mm from the optic nerve toward each ora serrata. Total length of cones was measured using γ-transducin stained retinal sections. Measurements were performed in the central retina, temporal and nasal, close to the optic nerve, in at least 5 cones from each animal. For evaluation of the ON-rod bipolar cells integrity, we measured the intensity of PKC-α immunoreactivity using the ImageJ software. Fluorescence intensity values were obtained in each animal from 2 pictures of central retinal sections, temporal and nasal, close to the optic nerve. Preservation of photoreceptor presynaptic terminals was evaluated by measuring the relative area of synaptophysin immunostaining in the OPL (µm2 of positive staining per mm of retinal section). Measurements were performed in each animal from 2 pictures of central retinal sections, temporal and nasal, close to the optic nerve. All quantifications were done in a blinded fashion by multiple experienced observers.

2.6. Statistical analysis

Statistical analyses were performed using SPSS 18.0 software (IBM Armonk, NY). A repeated measures factorial analysis of variance (MANOVA) was performed to evaluate the effects of the treatment (vehicle vs. HU210) on
ERG responses throughout the experimental stages (P30, P60 and P90), as well as the interactions among them. When a 0.05 level of significance was found, post hoc pairwise comparisons using Bonferroni’s test were made. Normal distributions and homogeneity of variance were found for all analyzed categories. A paired Student’s t-test was used to evaluate morphological parameters. A regression analysis was performed to establish the relationship between retinal function (by means of the maximum amplitudes of scotopic a- and b-waves) and ONL thickness (taken as an indicator of the number of photoreceptors in the retina). p values less than 0.05 were considered statistically significant. Data were plotted as the mean ± standard error of the mean (SEM).
3. Results

3.1. HU210 preserves retinal responsiveness

In order to evaluate the effect of HU210 on the functional activity of the retina in P23H rats, scotopic flash-induced ERG responses were recorded in vehicle- and HU210-treated animals (n = 6 and n = 5, respectively). As shown in Fig. 1, ERG responsiveness was less deteriorated in P23H rats treated with HU210 (P24 to P90), as compared to vehicle-administered P23H rats. The maximum amplitudes recorded for a-waves at P60 and P90 under scotopic conditions were higher in HU210-treated animals than those recorded in untreated animals (ANOVA, Bonferroni’s test, p < 0.05 in both cases; Fig. 1A, 1C, 1D). Mean b-wave responses were higher in HU210-treated P23H rats, as compared to vehicle-administered animals, at P30, P60 and P90 (ANOVA, Bonferroni’s test, p < 0.001 in all cases; Fig. 1A-D). The highest differences in a- and b-wave amplitudes between HU210 and vehicle-administered P23H rats were observed at P90, when the maximum scotopic a-wave (a-max) and b-wave (b-max) amplitude recorded in treated animals resulted, respectively, 71% and 70% higher than that recorded in untreated animals. Thresholds in HU210-treated animals, compared with untreated rats, were lower for scotopic b-waves at P90 (ANOVA, Bonferroni’s test, p < 0.05; \(-5.4 \pm 0.2 \text{ log cd}\cdot\text{s/m}^2\) vs. \(-4.9 \pm 0.2 \text{ log cd}\cdot\text{s/m}^2\); Fig. 1D). The mean latency of the scotopic a- and b-waves was lower in HU210-treated P23H rats, as compared to vehicle-administered animals, at P60 (ANOVA, Bonferroni’s test, p < 0.01 in both cases; 26.0 \(\pm\) 0.6 ms vs. 29.9 \(\pm\) 1.3 ms for a-max, 61.3 \(\pm\) 1.5 ms vs. 66.4 \(\pm\) 1.2 ms for b-max) and P90 (ANOVA, Bonferroni’s test, p < 0.01 in both cases; 23.0 \(\pm\) 1.0 ms vs. 29.7 \(\pm\) 2.1 ms for a-max, 64.2 \(\pm\) 3.0 ms vs. 71.9 \(\pm\) 3.2 ms for b-max).
3.2. HU210 slows photoreceptor degeneration

To assess the protective action of HU210 on photoreceptors, we analyzed the thickness of the ONL in each retina at P90. Figure 2 shows vertical sections and magnifications of retinas from a P23H rat treated with HU210 (Fig. 2B) or vehicle (Fig. 2A). Few rows of photoreceptor cell bodies could be observed in the ONL of the vehicle-administered rats, as compared with the rows present in the retina of the HU210-treated P23H animals. Because retinal degeneration in untreated P23H rats was not homogeneous throughout the retina, we measured the effects of HU210 in different retinal areas, from temporal to nasal. We found that ONL thickness was greater in HU210-treated rats (n = 5) than in untreated animals (n = 5) in all examined areas (Student’s t-test, p < 0.01; Fig. 3A). On average, the mean number of photoreceptor rows in HU210-treated P23H rats was 40% higher than observed in vehicle-administered P23H rats (2.6 ± 0.2 µm vs. 1.8 ± 0.2 µm; Fig. 3A). The mean number of rows of photoreceptor cell bodies found in HU210- and vehicle-administered rat retinas positively correlated with the maximum scotopic ERG b-wave amplitude recorded for each animal at P90 (p < 0.01).

We next explored whether the conservation of photoreceptor number was accompanied by a preservation of synaptic connectivity in the OPL. To this end, we used antibodies against bassoon, a protein constituent of synaptic ribbons present in both rod spherules and cone pedicles in the OPL (Cuenca et al., 2004). Few bassoon-immunopositive spots were found at the OPL level in P23H untreated rats, as compared with the number of immunoreactive puncta present in the retina of HU210-treated animals (Fig. 7E, 7F; arrows). Since
retinal degeneration was not homogeneous throughout the retina in P23H rats, we measured the relative number of positively stained ribbons in different retinal areas, from temporal to nasal (Figure 3B). We found that the mean number of Bassoon-immunoreactive puncta in HU210-treated P23H rats was 25% higher (Student’s t-test, $p < 0.01$) than observed in untreated animals (32.5 ± 2.6 vs. 26.0 ± 2.3 stained synaptic ribbons/100µm, $n = 5$ in both cases; Fig. 3B), indicating that the presynaptic contact elements between photoreceptors and bipolar or horizontal cells were at least partially preserved.

3.3. HU210 preserves photoreceptor morphology

In order to evaluate whether HU210-treatment was able to preserve the morphology of photoreceptors, we examined the staining pattern of antibodies against recoverin, a marker for rods, cones and two bipolar cell subtypes (Cuenca et al., 2004), rhodopsin, which stains rod outer segments (Pinilla et al., 2007), and γ-transducin, a marker for cones (Cuenca et al., 2004). Longer rod inner and outer segments were observed for HU210-treated P23H rats (Fig. 4C) than for vehicle-administered animals (Fig. 4B), where rod degeneration was evident to a greater degree. Drastic changes with age were also observed in the cone photoreceptors of vehicle-administered P23H rats. At P90, their outer segments were both short and swollen and very small in size (Fig. 4E, 4H). The axons were also absent and pedicles emerged directly from the cone cell bodies. In contrast, the typical cone shape can be observed in HU210-treated P23H rats (Fig. 4F, 4I), where outer and inner segments were clearly identified (Fig. 4I; arrows), and axon and pedicle morphology were preserved (Fig. 4I; arrowheads). Mean length of cones in both treated and untreated P23H rats
was smaller than that observed in SD rats (Student’s \(t \)-test, \(p < 0.01 \) in both cases; Fig. 3C). However, HU210-treated P23H rat retinas showed cone photoreceptors 50% longer than in untreated P23H rat retinas (Student’s \(t \)-test, \(p < 0.05 \); Fig. 3C).

3.4. HU210 preserves bipolar cells and their synaptic contacts in both plexiform layers

Two bipolar cell subtypes are labeled with antibodies against recoverin (Cuenca et al., 2004): type 8 ON-cone bipolar cells, with weakly immunoreactive cell bodies located near the OPL and a diffuse plexus of axons terminating in strata S4-S5 of the inner plexiform layer (IPL) (Fig. 4A-4C; arrows), and type 2 OFF-cone bipolar cells, with strongly immunoreactive cell bodies located in the middle of the inner nuclear layer (INL) and a dense continuous plexus in strata S1 and S2 of the IPL (Fig. 4A-4C; arrowheads) (Cuenca et al., 2004). On the other hand, \(\gamma \)-transducin antibodies immunostain some types of cone bipolar cells in the rat retina, whose axon terminals are located in all strata of the IPL (Fig. 4D-4I) (Martinez-Navarrete et al., 2011). In HU210-treated rats, bipolar cells immunostained with antibodies against both recoverin and \(\gamma \)-transducin showed (Fig. 4C, 4F) more immunoreactivity and a more complex plexus in the IPL, than that observed in untreated animals (Fig. 4B, 4E).

ON-rod bipolar cells are labeled with antibodies against the \(\alpha \) isoform of protein kinase C (PKC-\(\alpha \)) (Cuenca et al., 2004). In the rat retina, dendritic terminals of ON-rod bipolar cells establish connections with rod spherules through a large dendritic arbor in the OPL, and their axons ran into the IPL,
each one ending in a bulbous axon terminal in the S5 stratum (Fig. 5). In the retinas of vehicle-administered P23H rats, rod bipolar cells at P90 showed few cell bodies and a retraction of their dendrites (Fig. 5B, 5E). Dendritic branches were scarce, and some cells had virtually no dendrites whatsoever. The number of immunopositive cells appeared to decrease, and their cell bodies were not aligned in the orderly fashion found in wild-type rats (Fig. 5A, 5D). Moreover, a loss of complexity and immunoreactivity can be observed in the axon terminals of these cells (Cuenca et al., 2004). By contrast, in P23H HU210-treated animals, bipolar cell dendrites were preserved (Fig. 5C, 5F; arrowheads), and the loss of cell bodies was not so extensive. Increased PKC-α immunoreactivity and larger bulbous axon terminals, with lateral terminal varicosities, were found in central and peripheral retina of HU210-treated rats (Fig. 5C, 5F), as compared with untreated animals (Fig. 5B, 5E). Integrity of ON-rod bipolar cells was evaluated by measuring in the central retina of each experimental group the relative intensity of PKC-α immunoreactivity. As shown in Fig. 3D, ON-rod bipolar cells immunoreactivity in SD rats was significantly greater (Student’s t-test, p < 0.05) than that obtained in untreated P23H rats (58.3% with respect to SD), but not with respect to measured in HU210-treated animals (72.6% of the value in SD).

3.5. HU210 preserves photoreceptor axon terminals and their synaptic contacts with bipolar cells

Given that photoreceptor morphology was preserved in HU210-treated rats, we tested whether photoreceptor presynaptic terminals were protected by HU210 treatment. To this end, we performed staining for synaptophysin (SYP), a presynaptic-vesicle marker present throughout the axon terminals of cones
and rods (Fernandez-Sanchez et al., 2011). GNB3 antibody was used to stain ON-bipolar cells (Fernandez-Bueno et al., 2012). In 3-month-old untreated P23H rats, only an isolated immunoreactive punctate structure for SYP staining was found, indicating loss of photoreceptor axon terminals and giving the OPL the appearance of a discontinuous plexus (Fig. 6B, 6E; arrows). In the remaining cones of peripheral retina, mislocated SYP staining was found along the whole cell, from axon terminals to outer segments (Fig. 6E; arrowheads). By contrast, in HU210-treated P23H rats, a continuous strip of labeled photoreceptor terminals could be observed (Fig. 6C, 6F; arrows), indicating photoreceptor terminal preservation. Double staining for SYP and GNB3 revealed synaptic contacts between rod spherules (labeled for SYP) and the dendritic tips of ON-bipolar cells (labeled for GNB3) in HU210-treated animals (Fig. 6C, 6F). In comparison, fewer of such contacts were observed in vehicle-administered P23H rats (Fig. 6B, 6E). For quantification of these effects, we measured the relative area of SYP immunostaining in the OPL (surface of positive staining per mm of retinal section). As shown in Fig. 3E, photoreceptor axon terminals area in HU210-treated P23H rats was smaller (Student’s t-test, p < 0.01) than that measured in SD rats (35.1%), but significantly higher (Student’s t-test, p < 0.01) than that obtained in untreated P23H rats (18.1% with respect to SD).

3.6. HU210 prevents loss of horizontal cell dendrites and their synaptic contacts with photoreceptors

Horizontal cell bodies are located in the outermost INL of the retina and establish connections with both rod and cone photoreceptors. The only
horizontal cell subtype described in the rat retina can be identified using antibodies against calbindin. In wild-type rats, calbindin labeling reveals a punctate staining of dendritic arborization protruding from horizontal cell bodies and connecting with cone axon terminals, together with thin tangential axonal elongations in the OPL, ending in an extensive arborization connecting with rods (Fig. 7A, arrows). In 3-month-old P23H rats, a retraction and loss of horizontal cell dendritic tips was found (Fig. 7B; arrows), concomitantly with the decrease of stained photoreceptor rows. By contrast, in HU210-treated rat retinas, a higher number of horizontal cell bodies and terminals could be observed (Fig. 7C; arrows).

To explore whether preservation of the dendritic arborization in horizontal cells correlated with preservation of synaptic connectivity in the OPL, we used antibodies against bassoon. Typical bassoon-immunoreactive spots were observed, with a horseshoe morphology corresponding to rod spherules (Fig. 7D-7F; arrows). Double labeling with antibodies against bassoon and calbindin showed numerous pairings between photoreceptor axons and horizontal cell terminals in HU210-treated animals (Fig. 7I; arrows) as compared to fewer contacts observed in untreated P23H rats (Fig. 7H; arrows). These data indicate a preserving effect of HU210 on synaptic contacts between photoreceptors and horizontal cells.
4. Discussion

The present study demonstrates that systemic administration of the cannabinoid HU210 is capable of preserving retinal structure and function in homozygous P23H transgenic rats, a model of autosomal dominant RP. This is the first time that cannabinoid therapy has been assayed in RP. We have focused our study not only on photoreceptor morphology and function, but also on the secondary effects on photoreceptor connectivity and the structure of inner retinal cell layers. The slow retinal degeneration that takes place in P23H line 3 rats (Cuenca et al., 2004; Pinilla et al., 2005) makes this animal model closer to the human condition than other P23H lines and genetic mouse models, thus giving our results additional clinical relevance.

In this study, we found that HU210 therapy in P23H rats ameliorated the loss of both rods and cones characteristic of these animals and preserved their morphology, as evidenced by specific immunostaining of both photoreceptor cell types. Their preservation was in concordance with the higher amplitudes, as well as the lower thresholds and latencies, of scotopic a- and b-waves found in HU210-treated as compared to untreated animals. In fact, the increases in the ONL thickness were significantly correlated with the maximum amplitudes of scotopic b-waves at P90. These results agree with those of our previous studies evaluating the neuroprotective effects of antioxidant and antiapoptotic agents in P23H rats (Fernandez-Sanchez et al., 2012a; Fernandez-Sanchez et al., 2012b; Fernandez-Sanchez et al., 2011; Lax et al., 2011). In this study we have not included photopic ERGs, due to the low amplitude of the ERG responses at P90.
Previous studies have demonstrated that in the 23H rat model cones degenerate secondarily to rods (Garcia-Ayuso et al., 2013). Thus, morphological and functional state of cones depends on the survival of rods and, therefore, on the state of the degenerative process. In our results, regardless the neuroprotective effect of HU210 on retinal photoreceptors, P23H rats showed a significant loss of both rod and cones, as compared to wild-type animals. Accordingly, we can assume that the state of degeneration of these retinas was relatively advanced, as compared with shown in previous studies (Cuenca et al., 2004). Various mechanisms of cone-rod dependence for survival have been postulated: rods secrete an essential survival factor for cones (Leveillard et al., 2004); rod loss causes oxidative damage to cones (Stone et al., 1999); retinal and choroidal degenerative changes impede normal photoreceptor nutrition (Marc and Jones, 2003; Marc et al., 2003); and degenerating rods generate a toxin that reaches cones by gap junctions, causing their death (Ripps, 2002).

In addition to the preventive effects of HU210 on photoreceptor number, morphology and function, P23H HU210-treated rats experienced improved connectivity between photoreceptors and their postsynaptic neurons, i.e., horizontal and bipolar cells. Both presynaptic and postsynaptic elements, as well as synaptic contacts between photoreceptors and bipolar and horizontal cells, were preserved in HU210-treated P23H rats. Furthermore, in these rats, the number of both rod bipolar and horizontal cell bodies, as well as the density of their dendritic terminals, was higher than in vehicle-administered rats. These results strongly indicate that the effect of HU210 on retinal morphology and function is not cell specific and, therefore, extends not only to photoreceptors but also to other retinal cell types. Another interesting possibility is that the
preservation of the photoreceptor population prevents the occurrence of secondary degenerative changes in their postsynaptic neurons, thereby preventing the remodeling of the entire retinal circuitry (Jones and Marc, 2005; Marc et al., 2003).

The neuroprotective effects of HU210 on retinal degeneration might be exerted through the endocannabinoid system. Endocannabinoids have been shown to provide neuroprotection against ischemia (Pellegrini-Giampietro et al., 2009), traumatic brain injury (Shohami et al., 1993), inflammation-induced neuronal damage (Eljaschewitsch et al., 2006) and neurotoxicity (van der Stelt and Di Marzo, 2005). The proposed mechanisms for these actions include blockade of microglial activation (Ramirez et al., 2005), increase in neurotrophic factors (Khaspekov et al., 2004), reduction of calcium influx (Nadler et al., 1993) and antioxidant activity (El-Remessy et al., 2003), among others. Some of these mechanisms are mediated by the CB1 receptor (e.g. inhibition of glutamate release, decrease in cytosolic free Ca\(^{2+}\) concentration), whereas others implicate CB2 receptors, mainly through a series of glia-dependent anti-inflammatory actions (Fernandez-Ruiz et al., 2007). HU210 has similar affinity for CB1 and CB2 receptors (Pertwee, 1999), whose immunoreactivity has been found in the retina of rodents and primates (Bouskila et al., 2012; Bouskila et al., 2013; Cecyre et al., 2013; Lopez et al., 2011; Straiker et al., 1999a; Yazulla, 2008; Yazulla et al., 1999). Furthermore, evidence of cannabinoid function has been provided in ganglion cells (Lalonde et al., 2006; Middleton and Protti, 2011), bipolar cells (Straiker et al., 1999b; Yazulla et al., 2000) and photoreceptors (Fan and Yazulla, 2003; Straiker and Sullivan, 2003). HU210 has been shown to be 100 to 800 times more potent than THC (Ottani and
Giuliani, 2001), having a slightly longer duration of action than the analog natural cannabinoid (Little et al., 1989; Ottani and Giuliani, 2001). Furthermore, neuroprotective effects of HU210 have been demonstrated in Alzheimer's disease (Ramirez et al., 2005), Parkinson's disease (Walsh et al., 2010), ischemic damage (Leker et al., 2003) and neurotoxicity (Pope et al., 2010; Rubio et al., 2011), among others.

Some of the neuroprotective mechanisms attributable to cannabinoids are independent of CB receptors. Previous reports have described the neuroprotective effects of cannabinoids via blocking ROS (Hampson et al., 1998; Hampson et al., 2000). In this sense, it has been demonstrated that antioxidant receptor-independent cannabinoids provide neuroprotection in Parkinson's disease (Garcia-Arencibia et al., 2007). HU210 has been found to be a potent lipophilic antioxidant, and it behaves as a protective agent against oxidative stress in neuronal cell lines (Marsicano et al., 2002). Moreover, antioxidant effects of HU210 have been evidenced in neural damage in diabetic mice (Dagon et al., 2007).

From our results, we are not able to deduce the mechanisms involved in the neuroprotective actions of HU210 in the retina of P23H rats. Future studies using specific agonists for CB1 and CB2 receptors and antagonists for these receptors are necessary to determine if these effects are mediated by CB1 and/or CB2 receptors and, in that case, what is/are the receptor(s) involved in these actions. These studies might also establish whether HU210-neuroprotection result from a direct effect on photoreceptors or, instead, by an indirect effect through glia-dependent actions. Future studies are also needed.
to establish the dose and schedule in which HU210 may exert its greatest neuroprotective effect.

In RP disease, despite the use of therapies aimed at preventing cell death, the loss of photoreceptors in number and function usually leads to a dramatic remodeling of retinal circuits that would probably further compromise the transmission of visual information (Cuenca et al., 2004). In this context, the use of therapies such as cannabinoids, effective not only in preserving photoreceptor loss but also in slowing the degeneration of inner retinal layers, may be especially interesting in combination with other therapies based on the transplantation of stem cells, anti-inflammatory or anti-apoptotic agents, and artificial chips, among others.

Acknowledgements

This research was supported by grants from the Spanish Ministry of Economy and Competitiveness (BFU2012-36845), Instituto de Salud Carlos III (RETICS RD12/0034/0010), Universidad de Alicante (UA2010-48536273), and the Organización Nacional de Ciegos Españoles (ONCE).
References

Garcia-Ayuso, D., Salinas-Navarro, M., Agudo, M., Cuenca, N., Pinilla, I.,
Vidal-Sanz, M., Villegas-Perez, M.P., 2010. Retinal ganglion cell
numbers and delayed retinal ganglion cell death in the P23H rat
Green, E.S., Rendahl, K.G., Zhou, S., Ladner, M., Coyne, M., Srivastava, R.,
Manning, W.C., Flannery, J.G., 2001. Two animal models of retinal
degeneration are rescued by recombinant adeno-associated virus-
Hampson, A.J., Grimaldi, M., Axelrod, J., Wink, D., 1998. Cannabidiol and
(-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants.
Proc Natl Acad Sci U S A 95, 8268-8273.
Hampson, A.J., Grimaldi, M., Lolic, M., Wink, D., Rosenthal, R., Axelrod, J.,
Sci 899, 274-282.
368, 1795-1809.
mutant linked to autosomal dominant retinitis pigmentosa is prone to
aggregate and interacts with the ubiquitin proteasome system. J Biol
Chem 277, 34150-34160.
Jones, B.W., Marc, R.E., 2005. Retinal remodeling during retinal
degeneration. Exp Eye Res 81, 123-137.
Point mutations associated with autosomal dominant retinitis
pigmentosa. Biochemistry 33, 6121-6128.
Khaspekov, L.G., Brenz Verca, M.S., Frumkina, L.E., Hermann, H.,
neurotrophic factor in cannabinoid receptor-dependent protection
Kolomiets, B., Dubus, E., Simonutti, M., Rosolen, S., Sahel, J.A., Picaud,
S., 2010. Late histological and functional changes in the P23H rat
reduce cone cell death in a model of retinitis pigmentosa. Proc Natl
Acad Sci U S A 103, 11300-11305.
Cannabinoid receptor-mediated inhibition of calcium signaling in rat
retinal ganglion cells. Mol Vis 12, 1160-1166.
2011. Circadian dysfunction in P23H rhodopsin transgenic rats:
hypothermia reduces ischemic damage: effects of the cannabinoid
Leveillard, T., Mohand-Said, S., Lorentz, O., Hicks, D., Fintz, A.C., Clerin,
E., Simonutti, M., Forster, V., Cavusoglu, N., Chamel, F., Dolle, P.,
characterization of rod-derived cone viability factor. Nat Genet 36,
755-759.

1 Figure legends

2 **Fig. 1.** ERG responsiveness in untreated and HU210-treated P23H rats. (A) Scotopic ERG traces in a untreated and HU210-treated P23H rat at P30, P60 and P90. Units on the left of the panel indicate input flash intensities in log cd·s/m². (B-D) Luminance-response curves in untreated (circle) and HU210-treated (square) P23H rats at P30 (B), P60 (C) and P90 (D). Average amplitudes of a-waves were higher in treated animals (n=6) than in untreated P23H rats (n=5) at P60 and P90 (ANOVA, Bonferroni’s test, p < 0.001). b-waves were also higher in treated rats, as compared to untreated rats, at P30, P60 and P90 (ANOVA, Bonferroni’s test, p < 0.001). *p < 0.05, **p < 0.001; ANOVA, Bonferroni’s test).

3 **Fig. 2.** Assessment of the photoreceptor layer in untreated and HU210-treated P23H rats. Vertical sections and high magnification views from an untreated (A) and HU210-treated (B) P23H rat retina at P90. GNB3 antibody stains ON-bipolar cells (red), whereas synaptophysin labels presynaptic vesicles in both OPL and IPL (green). Nuclei stained with TO-PRO (blue). Animals treated with HU210 display higher number of photoreceptor rows at the retinal ONL than untreated animals. ONL, outer nuclear layer. Scale bar: 1mm; inset: 50 µm.

4 **Fig. 3.** Quantification of structural changes in untreated and HU210-treated P23H rats. (A) Average number of photoreceptor rows throughout the naso-temporal axis in untreated (n = 5; circles) and HU210-treated (n = 5; squares) P23H rats at P90. The mean number of photoreceptor rows in HU210-treated P23H rats was 40% higher than observed in untreated rats (p < 0.001). (B) Average number of positively stained synaptic ribbons from nasal to temporal retina in untreated (n = 5; black bars) and HU210-treated (n = 5; white bars)
P23H rats. The mean number of Basson-immunoreactive spots was 25% higher in HU210-treated P23H rats, as compared to untreated animals (p < 0.01). (C) Average length of cones in the central retina of wild-type rats (Sprague Dawley, SD) (n = 5; grey bar) and P23H rats treated with vehicle (n = 5; black bar) or HU210 (n = 5; white bar). (D) Relative PKC-α immunoreactivity of ON-rod bipolar cells in the central retina of Sprague Dawley rats (SD) (n = 5; grey bar) and P23H rats treated with vehicle (n = 5; black bar) or HU210 (n = 5; white bar). (E) Relative area of SYP immunostaining of photoreceptor axon terminals in the OPL (surface of positive staining per mm of retinal section) of Sprague Dawley rats (SD) (n = 5; grey bar) and P23H rats treated with vehicle (n = 5; black bar) or HU210 (n = 5; white bar). *p < 0.05, **p < 0.001; Student’s t test.

Fig. 4. Photoreceptor cell morphology in untreated and HU210-treated P23H rats. Vertical sections at P90 of retinas from wild-type rats (Sprague Dawley, SD) (A, D, G) and P23H rats treated with vehicle (B, E, H) or HU210 (C, F, I). (A-C) Recoverin-stained (cones and rods; red) and rhodopsin-stained (rod outer segments; green) retinas showing a more profuse degeneration in the vehicle-treated P23H rat (B) than that observed in the HU210-treated P23H rat (C). Besides cones and rods, antibodies against recoverin specifically stained type 8 (arrows) and type 2 (arrowheads) bipolar cells. (D-F) Cone staining for γ-transducin shows smaller cell sizes, and shorter and swollen outer segments in vehicle-treated P23H rats (E) than in HU210-treated P23H rats (F). γ-transducin antibodies also stained some types of cone bipolar cells. Nuclei stained with a nuclear marker (blue). (G-I) High magnification of cone stainings, showing preservation in the HU210-treated P23H rat (I) of cone outer and inner
segments (arrows), and maintenance in this animal of axon and pedicle morphology (arrowheads). All images were collected from the central area of the retina, close to the optic nerve. OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; ONF, optic nerve fibers. Scale bar: 20 µm.

Fig. 5. ON-rod bipolar cells and their synaptic connectivity in untreated and HU210-treated P23H rats. PKC-α staining of ON-rod bipolar cells in vertical sections at P90 from wild-type rats (Sprague Dawley, SD) (A, D) and P23H rats treated with vehicle (B, E) or HU210 (C, F). Insets show higher magnification images of the bipolar cell dendritic arbors in the OPL. Nuclei stained with nuclear marker (blue). Note that cell bodies and dendrites (arrowheads) were more preserved in HU210-treated P23H rats than in untreated animals, in both central (B, C) and peripheral (E, F) retina. Scale bar: 20 µm and 10 µm (insets).

Fig. 6. Photoreceptor presynaptic terminals in untreated and HU210-treated P23H rats. Vertical sections at P90 of retinas from wild-type rats (Sprague Dawley, SD) (A, D) and P23H rats treated with vehicle (B, E) or HU210 (C, F). GNB3 antibody stains ON-bipolar cells (red), whereas SYP labels presynaptic vesicles of cones and rods (green; arrows). Nuclei stained with nuclear marker (blue). Note that synaptic contacts between photoreceptors and bipolar cells are less deteriorated in HU210-treated P23H rats than in untreated animals, in both central (B, C) and peripheral (E, F) retina. Mislocated SYP staining was found in the soma of remaining cones in peripheral retina of P23H untreated animals (E; arrowheads). Scale bar: 20 µm.
Fig. 7. Horizontal cells and their synaptic contacts in untreated and HU210-treated P23H rats. Vertical sections at P90 of retinas from wild-type rats (Sprague Dawley, SD) (A, D, G) and P23H rats treated with vehicle (B, E, H) or HU210 (C, F, I). Nuclei stained with nuclear marker (blue). (A-C) Horizontal cells labeled with antibodies against calbindin. Note that the number of horizontal cell terminals (arrows) in HU210-treated P23H rats was higher than in vehicle-treated animals. (D-F) Labeling of photoreceptor synaptic ribbons (arrows) with antibodies against bassoon. (G-I) Double immunolabeling for calbindin and bassoon showing a larger number of synaptic contacts (arrows) between photoreceptor and horizontal cells in HU210-treated rats (I) than observed in the untreated P23H rats (H). All images were collected from the central area of the retina, close to the optic nerve. Scale bar: 10 μm.
Table 1. Primary antibodies

<table>
<thead>
<tr>
<th>Molecular marker</th>
<th>Antibody</th>
<th>Source</th>
<th>Working dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassoon</td>
<td>Mouse monoclonal (Cuenca et al., 2004)</td>
<td>Stressgen</td>
<td>1:1000</td>
</tr>
<tr>
<td>Calbindin D-28K</td>
<td>Rabbit polyclonal (Cuenca et al., 2004)</td>
<td>Swant</td>
<td>1:500</td>
</tr>
<tr>
<td></td>
<td>Rabbit polyclonal (Fernandez-Bueno et al., 2012)</td>
<td>SIGMA</td>
<td>1:50</td>
</tr>
<tr>
<td>GNB3</td>
<td>Rabbit polyclonal (Cuenca et al., 2004)</td>
<td>Santa Cruz Biotechnology</td>
<td>1:100</td>
</tr>
<tr>
<td>PKC (α isoforms)</td>
<td>Rabbit polyclonal (Cuenca et al., 2004)</td>
<td>J.F. McGinnis, University of Oklahoma</td>
<td>1:2000</td>
</tr>
<tr>
<td>Recoverin</td>
<td>Mouse monoclonal (Cuenca et al., 2004)</td>
<td>University of Oklahoma</td>
<td>1:200</td>
</tr>
<tr>
<td>Rhodopsin</td>
<td>Mouse monoclonal (Pinilla et al., 2007)</td>
<td>Chemicon</td>
<td>1:200</td>
</tr>
<tr>
<td>Synaptophysin</td>
<td>Mouse, clone SY38 (Fernandez-Sanchez et al., 2011)</td>
<td>Chemicon</td>
<td>1:500</td>
</tr>
<tr>
<td>γ-Transducin</td>
<td>Rabbit polyclonal (Cuenca et al., 2004)</td>
<td>Cytosignal</td>
<td>1:200</td>
</tr>
</tbody>
</table>
Research highlights:

> HU210 preserves retinal function.
> HU210 preserves cone and rod structure.
> HU210 preserves photoreceptor contacts with postsynaptic neurons.
> Cannabinoids are potentially useful to delay retinal degeneration.