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Introducción

Este trabajo trata sobre temas relacionados con redes, teoría de juegos y economía exper-

imental. Está dividido en cuatro capÍtulos independientes. El Capítulo 1 trata sobre el

estudio de la difusión de un producto "contagioso" en una red social, utilizando conceptos

y herramientas analíticas de la Física. En los CapÍtulos 2 y 3 se explora el aprendizaje en

un contexto en el que la red evoluciona debido a las decisiones individuales sobre enlaces

y acciones en 'Juegos de antlcoordinación". Concretamente, el Capítulo 2 considera un

modelo "one-s'ided" de formación endógena de redes y en el Capítulo 3 se extienden los

resultados a situaciones más generales de formación de red, donde la regla de división del

coste de un enlace está parametrizada de forma continua entre los mecanismos "one-sided"

y "two-sáded". Por último, el Capítulo 4 presenta un estudio experimental de un problema

de diseño de mecanismos en un contexto de principal-agente.

El conocimiento de las propiedades inherentes a una estructura de red se ha convertido en

un problema de gran interés para especialistas de diversas disciplinas (economía, sociología,

biologÍa y física entre otras). Muchos fenómenos tienen lugar en una red, Ia estructura

de la cuál es esencial para determinar la naturaleza de los resultados. En principio, una

red es simplemente una estructura compuesta por "nodos" y "enlaces" conectando dichos

nodos, que puede utilizarse para modelar cualquier relación bilateral entre entidades indi

viduales (agentes, neuronasT organizaciones, etc.). En los primeros estudios, se analiza¡on

Ias propiedades de redes pequeñas con una fo¡ma conocida mediante la teoría de grafos. Sin

embargo, recientemente el ínterés se centra en el análisis de "redes complejas", es decir, re-

des que tienen un gran número de nodos y enlaces. Algunos paradigmas de redes complejas

son Internet y las "redes de colaboración". Ejemplos de este ultimo tipo de redes son las

que forman empresas que participan en actividades conjuntas o las formadas dentro de una

organización (empresa, departamento, etc.) que sirven de soporte al flujo de información

entre sus miembros. Además, también podemos considerar una "red social" en la que dos

individuos están conectados si existe una relación personal o profesional entre ellos.

Las redes complejas se tratan como '(aleatorias" ya que la estructura precisa del grafo es

generalmente desconocida. Es por ello que las redes se caracterizan por sus propiedades

estadísticas de gran escala tales como, su distribución de conectividad, cohesión, camino

medio entre nodos, etc. El trabajo clásico de Erdos y Reny (1959) considera una red aleato'

rzo como un conjunto de nodos tales que dos de ellos se enlazan con una probabilidad p.

Las redes generadas de esta forma tienen una distribución de conectividad Poisson, y por

tanto, todos sus agentes poseen un número de enlaces muy similar- Más recientemente,

Barabasi y Albert (i999), han presentado un modelo en el que el proceso de formación de

red está gobernado por dos principios: crecimiento (el número de nodos en la red crece con

el tiempo) y enlace preferencial (los nuevos nodos se enlazan de forma preferencial con los

nodos mejor conectados existentes en la red). Estas redes, llamadas "scale-free", tienen una

distribución de conectividad que decrece de forma potencial. Bsto implica que existe una

f¡acción significati-ra de individuos de la población (los "hztbs" de la población) que tienen

una conectividad mucho mayor que la media. El análisis de redes "scale-free" es importante
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porque la mayoría de las redes que existen en la realídad (Internet, 'ñIWIM, red de contactos

sexuales, etc.) tienen esta distribución de conectividad.

Basándonos en estos conceptos, en el Capítulo 1 a¡ralizamos la difusión de un producto

(idea o tecnología) en una red social determinada de forma exógena y caracterizada por su

distribución de conectividad. En este estudio, establecemos el paralelismo por el cuál un

producto puede convertirse en "contagioso" de la misma manera que un "agente infeccioso"

(por ejemplo, virus) lo es. Entre los numerosos ejemplos de contagio en una red social están

Ias preferencias personales por un determinado programa de televisión, libro, o película,

como consecuencia de un fenómeno de contagio por el "boca a boca". En muchos aspectos,

estos canales de difusión son más creíbles, y por tanto m¿fu efectivos, que la propaganda a

través de medios de comunicación de masas. En el presente trabajo, hemos adaptado a un

contexto económico el modelo infectado-suscepti,ble-infecúodo (SIS), comúnmente usado en

epidemiologfa. Los resultados muestran queT en este tipo de redes, el patrón de difusión de

un producto depende de forma crítica de la relación entre la distribución de conectividad y

el mecanismo de difusión.

En contraste con el Capítulo 1, dónde se discute el proceso de difusión en eI contexto de una

red determinada, en los Capítulos 2 y 3 se analiza eI proceso de formac'ión de redes, para asl

predecir cuáles son las arquitecturas más plausibles. Nuestro estudio se basa en la creciente

literatura de teoría de juegos que trata sobre la evolución y comportamiento de una red

social y económica (en estos casos la red se considera endógena y por tanto modificable).

Con respecto al problema de formación de redes, uno de los más conocidos modelos es el

llamado "modelo de conexiones". En estos modelos, los individuos han de sopesar el coste

asociado con la formación de un enlace y los beneficios potenciales (directos o indirectos)

que se derivan del mismo. Dependiendo de Ia distribución del coste del enlace, el modelo

de conexiones puede ser "one-si,ded'o "ttt)o-sided". En un modelo "one-sided" (Bala y

Goyal, 2000) los agentes pueden formar de manera unilateral los enlaces y: Por tanto, se

usan Ias herramientas estánda¡ de juegos no-cooperativos para obtener los resultados. En

un modelo "ttuo-sid,ed," (Jackson y Wolinsky, 1996) el coste se paga de forma igualitaria por

ambos agentes que forman el enlace yr por tanto, tiene que existir un mutuo acuerdo para

su formación. Otros autores (por ejemplo, Jackson y Watts, 2002; Goyal y Vega-Redondo,

2004) han explorado modelos en los cuales los individuos eligen tanto los enlaces (y así

establecen la red) como la acción en un juego de coordinación que refleja la interacción

bilateral entre dos individuos enlazados.

El Capítulo 2 se dedica específicamente aI estudio de la formación de redes en modelos "one-

s,ided" en los que los agentes se enlazan para participar en un juego de anti-coordinación

(i.e., un juego donde los agentes están incentivados a elegir acciones distintas).l Muchas

situaciones interesantes pueden describi¡se como juegos de anti-coordinación. Por ejemplo,

cuando Ia terminación de un proyecto de forma exitosa requiere que los individuos involu-

crados adopten acciones (o habilidades) complementarias, o cuando la interacción ent¡e

lEste capítulo está basacio en el artículo Bramoulle, López-Pintado, Goyal & Vega-Redondo (2002)

"Network Forrnation and Anti-Coordination Games".
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dos individuos sólo tiene sentido si ambos adoptan papeles diferentes (por ejemplo, el de

comprador y vendedor). Este enfoque nos permite analizar el efecto de la elección de los

compañeros de juego sobre las acciones adoptadas en el juego de anti-coordinación. Por un

lado, obtenemos que la densidad de la red depende inversamente del coste de un enlace: para

costes bajos, la red de equilibrio es completa, para costes intermedios, es bipartita y para

costes altos, Ia red es vacía. Por otro lado, la proporción de individuos que elige cada una

de las acciones en equilibrio depende crucialmente del coste de formación de un enlace. Esta

proporción es única para costes bajos pero si aumenta el coste existe una amplia variedad

de proporciones sostenibles en equilibrio. Obtenemos que, en general, las redes de equilibrio

son ineficientes. Motivados por la multiplicidad en el número de equilibrios, consideramos

una dinámica estándar de aprendizaje. Sin embargo, obtenemos que la multiplicidad sigue

existiendo ya que todos los equilibrios resultan ser estocá,sticamente estables.

En el CapÍtulo 3 se extiende el modelo presentado en el capítulo precedente y se presenta

un nuevo modelo de formación de redes que engloba como casos extremos los modelos 'br¿e-

sided" y "two-sided". Se asume que el coste de un enlace se distribuye entre los dos agentes

involucrados, pero la proporción incurrida por cada uno de ellos viene determinada por

un parámetro especificado exógenamente. Este parámetro dete¡mina el grado de asimetrÍa

entre los agentes pasivos y activos del enlace. La contribución principal de este trabajo

es la presentación de un modelo de fo¡mación de redes basado en conceptos de juegos no-

cooperativ'os, pero permitiendo la implementación de formas más "realistas" de distribuir

el coste de un enlace. EI resultado más importante obtenido establece que, a medida que

el coste se hace más equitativo (es decir, el modelo se acerca a un modelo "two-sided")

el conjunto de proporciones de individuos eligiendo cada acción sostenibles en equilibrio

es menor. También analizamos un modelo dinámico tal que, con cierta probabilidad, la

"dirección" de los enlaces cambia (i.e., Ios papeles de el que propone y el que recibe la

propuesta se intercambian). Esta dinámica selecciona de entre todos los equilibrios de Nash

aquellos que son robustos a cambios en las direcciones de los enlaces, i.e. "d'ístribution

insens'it'iue".

En la parte final de esta disertación (Capítulo 4) se presenta un trabajo experimental basado

en un problema de diseño de mecanismos.2 Se toma como referencia un artículo reciente

de Winter (2000). En este modelo se considera que un grupo de agentes -organizados

jerárquicamente- tienen la oportunidad de aumentar la probabilidad de realizar exitosa-

mente un proyecto conjunto invirtiendo (o esforzándose) en sus tareas individuales. Una
jerarquÍa se define como un juego secuencial de información perfecta donde los superiores

(individuos que toman sus decisiones más tarde en la jerarquía) observan las decisiones de sus

subordi,nados (individuos que toman sus decisiones antes en Ia jerarquía). En el trabajo de

Winter se propone un esquen'La de beneficios, es decir, una distribución de salarios a lo largo

de Ia jerarquía (pagados por el principal, sólo en el caso de que el proyecto sea exitoso). El

principal sólo puede hacer contingente los salarios a la realización exitosa o no del proyecto,

ya que no observa el esfuerzo individual. El esquema de beneficios propuesto por Winter

2Este capítulo est¿f bas¿¡do en el artícr¡lo López-Pintado, Ponti & Wi¡te¡ (2002): "Incentives and Hierar-

chy:  an Exper i rnental  Approach".
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induce inversión por parte de todos los individuos de la jerarquía al menor coste para el

principal. Nuestro objetivo es explorar este modelo de forma experimental. Concretamente,

utilizamos los datos obtenidos para discutir los supuestos en los que se apoya Winter para

determinar su solución óptima. Ademiís, realizamos sesiones experimentales de esquemas

de beneficios alternativos para compararlos con el propuesto por Winter. En este sentido,

los resultados obtenidos subrayan la importancia de las preferencias sociales y nonnas d,e

reciprocidad para describir el comportamiento de los sujetos. En el conterto del modelo de

Winter, esto implica una modificación en el esquema de beneficios óptimo que aumente los

incentivos a invertir de los individuos localizados al principio de la jerarquía para así generar

una "cascada de inversión" a lo la.rgo de la misma.
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Introduction

This dissertation deals with several topics related with networks, game theory and experi-
mental economics. It is separated in four independent chapters. Chapter 1 focuses on the
study of the diffusion of a "contagious" product in a social network using concepts and ana-
lytical tools from statistical physics. Chapters 2 and 3 explore learning in a setting where the
network evolves due to individual choices on links and actions in "anti-coordination games".

Speciñcall¿ Chapter 2 considers a standard one-s'ided network formation model whereas

Chapter 3 extends the results to more general network formation setups where the cost

sharing rule is continuously parametrized between the two extreme cases of one-sided and
two-sided mechanisms. Finally, Chapter 4 presents an experimental study on a mechanism
design problem in the context of a principal-agent situation.

Understanding the properties inherent to a netr¡¡ork structure has become of common interest
to workers in several disciplines (economics, sociology, physics and biology among others).
Many phenomena take place on a network, the architecture of which is essential to determine
the outcomes. In principle, a network is simply a structure formed by "nodes" and "links"
connecting them that can be used to model any bilateral relationship among individual

enüities (agents, neurons, organizations, etc-). In early studies, the properties of small
networks with a known particular structure were analyzed using graph theory. However,

interest has recently moved towards the analysis of "complex networks", i.e. netwo¡ks with

a large number of nodes and links- Some paradigmatic complex networks are the Internet and

the "netwotks of collaboration". Examples of this last type of networks are those formed

by firms involved in joint activities or the network formed within an organization (firm,

department, etc.) supporting the flow of information among its members. Additionally, we

can also consider the so-called "social network" in which two individuals are connected if

there is a personal or professional relationship between them.

Complex networks are treated as "random ensembles" because the precise structure of the

graph is unknown, Therefore, ühese networks are cha¡acte¡ized by their large-scale statistical

properties, such as connectivity distribution, cohesion, average path length, etc., which are

studied mainly using tools f¡om statistical physics. The seminal paper by Erdos and Reny
(1959) considers a random graph as a set of nodes such that each pair is connected with a

probability p. The random networks generated in this manner have a Poisson connectivity

distribution, thus most agents have similar number of links. More recently, Barabasi and

Albert (1999), ha'"'e considered a network formation process governed by two principles:

grorvth (the number of nodes in the network increases over time) and preferential attachment

(the new nodes added to the network link preferentially to the most highly connected existing
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INTRODUCT iON

nodes). In these networks, named scale-free, the connectivity distribution is a power-law

function. In other words, there is a significant f¡action of the population (the "hubs" of

the network) with a much larger connectivity than the average. The analysis of scale-free

netwo¡ks is important because most of the "real world" networks (Internet, WlryfM, human

sexual contact networks, etc.) have a scale-free connectivity distribution.

Based on these concepts, in Chapter 1 we analyze the diffusion of a product (idea or tech-

nology) in an exogenously given social network, characterized simply by its connectivity

distribution. We use the notion that a product can become "contagious", in the same way

that an "infectious agent" (i.e. virus) does. Among the numerous examples of contagion

in social networks are the preferences of people for the same TV show, book or movie as

a consequence of a mouth-to-mouth conversation (contagion). In many aspects, these in-

terpersonal diffusion channels are more trusted and thus mo¡e effective than "expensive"
mass-media advertisements. We have adapted to our framework the suscept'ible-infected-

suscept'ible (SIS) model of diffusion standard in epidemiology. Our analysis shows how

within these networks the spreading pattern of a product depends critically on the interplay

between the connectivity distribution and the diffusion mechanism.

In contrast with Chapter 1, where we discussed the nature of diffusion in the context of a

giuen network, in Chapters 2 and 3 we analyze lhe network forrnation process and try to

predict which network architectures are more plausible. We base our study on the expanding

game-theory literature dealing with the evolution and performance of social and economic

networks (the network structure is considered as endogenous and thus modifiable). Regard-

ing the network formation problem, one of the most widely studied models is the so-called

"connection model". Here, individuals face a trade-off between the costs of forming a link

and the potential benefits (direct and indirect) derived from it. Depending on the distri-

bution of the linking costs, connection models can be one-si,ded or two-sided. In one-sided

models (Bala and Goyal, 2000) agents can unilaterally propose to form links with other

agents and incur in the complete cost of it. In this case, the results are obtained using

standard non-cooperative tools. In two-sided models (Jackson and Wolinsky 1996) the cost

is equally paid by each agent involved in a link and thus mutual agreement must be reached

in order to form it. Othe¡ autho¡s ( Jackson and Watts, 2002; Goyal and Vega-Redondo,

2004) have explored models in which indiüduals choose both, links (and thereby shape the

network) and actions in strategic coordi.nation gan-¿es played with the connected agents.

Chapter 2 is specifically devoted to study a one-sided model of network formation where

agents link to play an ant'i-coordínation game (i.e. a game where agents have incentives

to choose dissimilar actions).l Many interesting situations can be suitably conceived in

this fashion, e.g. when the successful completion of a task requires that the individuals

involved adopt complementary actions (or skills), o¡ when a meaningful interaction can

only be conducted when the agents adopt different roles (say, buyers and sellers). This

framework allows us to study the effect of partner choice on the way players choose their

rThis chapter is based on a paper done in collaboration with Yann Bramoulle, Sanjeev Goyal and

Fernar¡do Vega-Redondo (2002) wi th the t i t le :  "Network Format ion and Ant i -Coordinat ion Games".

v l
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INTRODUCTION

actions in an anti-coordination game. On the one hand, we show that the density of the
netwo¡k va¡jes inversely with respect to the linking costs: for low costs the equilibrium
net'w'ork is complete, for moderate costs it is a bipartite, while for high costs it is the empty
network. On the other hand, the proportion of individuals choosing each action in the anti-
coordination game depends crucially on the cost of link formation. Moreover, this proportion
is unique when the cost is low, but a wide variety of proportions a¡ise in equilibrium as
the linking costs increases. The welfare properties of these proportions are very different
and typically equilibrium networks are inefficient. Motivated by the multiplicity in the
equilibrium outcomes, the population game is embedded in a standard evolutionary model
of learning. Howevet, the multiplicity siill holds, since all equilibria of the game turn out to
be stochastically stable-

In Chapter 3 we extend the framework conside¡ed in the preceding chapter and present a
new model of network formation that encompasses as extleme cases the one-sided and two-
sided models. We assume that ihe cost of a link is incurred by the two agents involved in it,
but the proportion paid by each, is exogenously specified by a parameter which dictates the
degree of asymmetry in the roles of the proposer and proposed agent, The main contribution
of this work is that it presents a model of netu¡ork formation that relies on the standard
non-cooperative tools (such as the Nash equilibrium concept) but nevertheless allows the
implantation of more "realistic" forms of sharing the linking costs. The principle finding
is that, as the share of the cost of a link is "more equitable" (i.e. the model is "closer"
to a two-sided model) the set of proportions of individuals choosing each action in the
anti-coordination game sustainable in equilibrium shrinks. We have also studied a learning
dynamics such that, with a certain probability, the "direction" of links (i.e. the roles of the
proposer and proposed agent) changes. This dynamics selects among the Nash equilibria
those which are distributi,on insensi,tiue, i.e. robust to changes in the direction of the links.

The final part of the dissertation (Chapter 4) presents an experimental study based on a
mechanism design problem.2 The benchmark model is taken from a recent paper by Winter
(2000). This model considers a group of agents -organized hiera¡chically- who have the
option of reducing the probability of failure of a joint project by investing towards their
decisions. A hierarchy is defined by way of a sequential game with perfect information in
which supeniors (i.e. players who move later in the sequence) can observe the investment
decisions of their subordi,nates (i.e. players who have moved previously). Winter (2000)
proposes a benefit scheme (i.e. a distribution of benefits in case of success across the levels
of the hierarchy) that induces investment by all agents in the hierarchy at the minimal

cost for the principal. The objective of this chapter is to explore experimentally Winter's
model from a mechanism design perspective. More precisely, we use our data to discuss
the empirical relevance of the theoretical assumptions upon which Winter's optimal solution
is derived. Moreover, we run experimental sessions to test alternative benefit schemes and
to compare their behavioral and efficiency properties. Our results highlight the relerance
of soc'ial pre.ferences (i.e. interdependent utilities) and norms of reci,procity in describing

2This chapter is l¡ased or) a paper done in collabo¡ation with Giovanni Ponti and Eyal Winter (2002)

ivith the t.itle: "lncentives arrd Hierarchy: an Experimental Approach".
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subjects' behavior. In the context of Winter's model this would imply a modification of his

proposed optimal scheme to give enough incentives to the first-movers in order to induce an

"investment cascade" along the hierarchy.
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CHAPTER 1

Diffusion in Social Complex Networks

Abstract

This paper studies the problem of spreading a product (an idea or a technology) among

agents in a social network. An agent obtains the product wiüh a probability that depends

on the spreading rate (or degree of contagion) of the product as well as on the behavior

of the agent's neighbors. This paper shows, using a mean field approach, that there ex-

ists a threshold for the spreading rate that shapes the pattern of the product's diffusion.

This threshold, that depends on the network structure and the mechanism of contagion,

determines whether the product spreads and becomes persistent or it does not spread and

vanishes.

1. Introduction

Introducing a new product, technology or idea, in the market is an issue of major social-

economic relevance. Innovations do not necessarily spread at once, but often spread gradu-

ally through social and geographic networks. In fact, many products promote rather easily in

a social system through a domino effect. In a first stage a fev¡ innovators adopt the product,

and this makes more likely that their neighbors do the same, then their neighbors' neighbors

and so forth. Indeed, these products or ideas can spread more efficiently from "consumer-to-

consumer dialogue", rather than from sellers to consumers. In consequence) the opinion on

these products among the agents in the social system heavily depends on their interpersonal

ties. These communication channels are more trusted and have greater effectiveness than

mass media adve¡tisements. Thus, traditional marketing is being replaced by new strate-

gies in which the product is turned into "epidemics" where consumers do the marketing

themselves.l A recent example is that of the mobile phones. They became popular in the

mid 90's and, at present, almost every individual possesses a phone, which is considered as

an essential commodity in developed countries. Apart from the intrinsic advantages that

the new product might provide to its users, the fast spreading of it in the population is

reinforced by more subtle aspects, such as fashion and benefits from coordinating in the

decision with your contacts. The spreading of these products share common features with

the contagion of an infectious disease in a population. The aim of this paper is to bring

these issues to a common setting to describe how a new technology or an idea propagates

in a population where agents only interact with their neighbors. In particular, we address

the following questions: Horv many initial adopters are needed to spread a product? How

r ln a recent  book,  Sei th (2002) descr ibes how an " idea" can spread in a popul t t ion the same way a

"v i rus" does.
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does the spreading pattern depend on the interaction structure among individuals and on

the contagion mechanism?

In this model, we consider that the population is large and the pattern of interaction among

agents is complex. Moreover, the social system is described through a network structure.

Traditionally, the study ofnetworks has been a topic ofgraph theory. Graph theory, however,

concentrated in small networks with a high degree of regularity. This paper focuses on the

large-scale statistical properties of the network instead of on the properties of single vertices.

We assume that the precise topology of the network is unknown and thus it is consider as

a "random ensemble". The number of edges a node has -the connectivity of the node- is

characterized by a distribution function P(k), which gives the probability that a randomly

selected node has exactly k edges. Throughout this paper, the network is exogenously given

and it is characterized bv its connectivitv distribution Plk).

Random graphs have been widely studied in the literature of complex networks. The seminal

paper by Erdos and Renyi (1959) defines a random graphby a group of ll nodes such that

every pair of nodes is connected with a certain probability p. The graphs generated in this

manner har'e a connectivity distribution which is a Po'isson distribution with its peak at the

average connectivity, denoted bV (k). In this case, the majority of nodes have similar con-

nectivity. Recent empirical studies show that most large complex networks are characterized

by a connectivity distribution different to a Poisson distribution (e.g., Barabasi et al., 2000;

Faloutsos et al., 1999; Lijeros et al., 2001; Yook et al., 2001, etc.). For instance, \ fWW,

Internet, human sexual contacts, among others, have a power-law connectivity distribution,

i.e. P(k) - k-1 where 7 ranges between 2 and 3. This implies that each node has a sta-

tistically significant probability of having a very large number of connections compared to

the average connectivity (k) which generates an extreme heterogeneity in the connectivity

of agents. Such random netv¡orks are called scale-free. This class of networks can be eas-

ily simulated by imposing that every period new nodes are introduced in the netwo¡k and

these are linked preferentially to the most highly connected existing nodes. Therefore, two

principles underlay scale-free networks: preferential attachment and growth (see Barabasi

and Albert, 1999),

This work attempts to be of general applicabilit¡ i,e. the ¡esults a¡e fo¡mulated for any

given connectivity distribution (P(k)). We pay special attention, horvever, to the differential

properties of Poisson and scale-free networks. We have considered a simple diffusion model.

Each agent classified as either an "active" or a "potential" consumer, is represented by a

node in the complex network of social contacts. The transition from a potential to an active

consumer depends on the intrinsic properties of the product as well as on the number and

behavior of neighbors. Conversely, an active consumer becomes potential at an exogenously

given rate. Thjs reflects the idea that, with a certain probability, independent of the behavior

ofneighbors, an agent may need to replace the product because it is lost or deteriorated. The

framework considered in this work is closely related to the so'called "susceptible-infected-

susceptible" (SIS) model, commonly used in epidemiology. Some paradigmatic examples that

are described using the SIS model are the diffusion of AIDS in a sexual contact network or
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the spreading of a computer virus via Internet (e.g. Pastor-Satorras and Vespignani, 2000;

Lloyd and May, 2001). Each agent is represented by a node and can be either "healthy" or

"infected", In each time step a healthy node is infected at a rate v if it is directly connected

to at least one infected agent. Conversely, an infected agent is cured at a rate ó > 0.

This paper extends the SIS model in several ways. For instance, the SIS model considers

the contagion of a disease as a linear function of the absolute number of infected neigh-

bors, whereas the present model allows for non-linear mechanisms. Furthermore, a richer

f¡amework is introduced jn which the intensity of each interaction can depend on the total

number of interactions. This possibility has been ignored in the epidemiology literature.

It is a natural assumption, however, in most economic contexts. Thus, in this model, the

contagion depends not only on the absolute number of neighboring active consumers but

also on the size of the neighborhood, i.e. the connectivity of the agent.

The analysis of the dynamics is carried out making use of the so-called mean ,fi.eld theory.

Heuristically, this theory simplifies the description of the exact model by substituting some

Iocal variables of the dynamics by their global mean values. This approach is commonly used

in other areas of science such as physics and biology because it gives a reasonable guide of

the qualitative behavior of complex systems. Making use of this theory, we show that there

exists a threshold for the degree of contagion (or spreading rate) of the product, such that,

above the threshold the technology spreads and becomes persistent. This threshold depends

crucially on two features: the mechani,sm of diffusi,on and the connecti.uity di,stribut'ion of.

agents in the population. Indeed, when the mechanism of diffusion is such that the intensity

of each interaction is independent of the total number of neighbors, i.e. the contagion of

the product only depends on the absolute number of active consumers among neighbors, the

diffusion of the product is easier and greater in scale-free networks than in Poisson netwo¡ks.

In contrast, if the intensity of each interaction decreases in parallel with the number of

neighbors, or specifically, the contagion of the product depends on the relatiue proportion

of active consumers among neighbors, all networks exhibit the same spreading behavior.

Finally, for concave diffusion functions there always exists a continuous transition frorn the

absence to the existence of diffusion. Nevertheless, for some particular non-concave diffusion

functions, this transition is non-continuous, i.e. a phase transition phenomenon occurs.

This paper builds on two literatures. The formal framework considered is close to the

literature on epidemiology and complex systems mentioned above where mean field theory

is often used. However, the inspiration for this work comes mainly from the fast expanding

pure game theory literature on social and economic netwo¡ks. Recent instances of this

literature show that the pattern of interaction between individuals is crucial in determining

the nature of outcomes. A wide number of papers have focused on the analysis of lattices;

that is, regular networks in which all players have the same number of direct connections

(e.g., Anderlini andlanni, 1996; Ell ison, 1993; Goyal, 1996;Young,2002; Blume, 1995). One

step beyond comes from Morris (2000) who has developed techniques to study coordination

games in general networks. Although, the present paper shares the flavour of these previous

works it introduces important novelties. First, we study very general contagion mechanisms
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characterized by the fact that the transition from one individual state to the other (active

to potential consumer and vice versa) is typically stochastic and asymmetric. Second, we

consider complex random networks rather than networks with a deterministic geometric

form.

The paper is organized as follows. The model is contained in Section 2, Section 3 provides

a game theoretical context where the model can be applied. Section 4 returns to the general

model and introduces the mean fi.eld theory. Section 5 presents the main results. In Section

6 we run some simulations of the original dynamics in order to test the validity of the

theoretical results. Finally, Section 7 concludes. Some proofs have been relegated to the

Appendix.

2. The model

Let lü : {1,2,..., i ,...n) be a finite but large set of agents. Assume agents a¡e communi-

cated one with another through certain channels which determine the social system. More

precisely, each agent interacts only with her fixed group ofneighbors, i.e. direct connections.

These interactions represent personal and professional contacts. To describe the social sys-

tem formally, consider an undirected network f = (% -L) where I/ is the set of nodes and .L is

the set of undirected links- Each node represents one agent in the population. A link {i,j}
belongs to the set tr if and only if agents z and j are directly connected. Let K¿ ! N be the

set of neighbors of player i and let k¿ be its cardinality which is referred as her connectiuity

from here onwards.

Assume that the population is large and the pattern of interactions between agents is com-

plex. Moreover, the network structure has a high degree of randomness and thus can only

be described by its large-scale statistical properties. Denote by P(k) to the connectivity

distribution of the network, i.e. the fraction of agents in the population that have exactly

k direct neighbors. Equivalentl¡ P(k) is the probability that an agent chosen uniformly

at random has connectivity k. Throughout this paper, the network is characterized by

being "random" and having a connectivity distribution P(k) which is exogenously given.

These networks have been referred in the literature as general'ized random networks since

they extend the Erdos-Renyi random graphs by incorporating the property of non-Poisson

connectivity distributions.2 One of the aims of this work is to explicitly account for the

influence of P(k) in the spreading behavior of the product.

Assume there is a new product in the market. We focus on its spreading among the pop

ulation N. To do so, consider that an agent i € li can only exist in two discrete states

s ¿ € { 0 , 1 } , w h e r e s ¿ : 0 i f i i s a " p o t e n t i a l " c o n s u m e r a n d s i : l i f i i s a n " a c t i v e " c o n -

sumer. A potential consumer is an agent that does not have the product but is susceptible

of obtaining it if exposed to someone who does. An active consumer is an agent that has

already adopted the product and so can influence her neighbors in favor of obtaining it.

2For further details on seneralized ran<ior¡ networks the reade¡ is referred to Nl.E.J. Newman (2003)
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Conside¡ a stochastic continuous time dynamics process as follows- At time f, the state of

the system is a vector

s¿ :  (5r¿,  E2t t . . .süt . . . .snt )  € Sn :  {0,11"

where s¿t :0 if i is a potential consumer at time ú whereas sit : 7 if i is an active consumer

at time ú. Assume ri is a potential consumer at time ú. She becomes an active consumer

at a rate that depends crucially on: her connectivity k¿, the number of neighbors that are

active consumers at time t (a¿ hereafter) and the spreading rate (or degree of contagion) of

the product, denoted by v ) 0. More precisely, the transition rate from potential to active

consumer is given by a function F(u,k¿,a¿) that determines the properties of the mechanism

of diffusion. \Me assume independence of the spreading rate effect and the effect that the

behavior of neighbors has over the agent's decision. Thus,

F(u, k¿, a¡) : v' f (k¿, o¿)

where f (k¿,a¿), named as the diffusion funct'ion from here onwards, is a non-negative func-

tion only defined for (k¿,a¿) e ¡rr x N such that 0 1 a¿ 1k¿.3 It is worth noting that, the

connectivity of an agent is fixed throughout the dynamics. Instead, the number of active

consumers among neighbors "oi" might change over time. We suppose that a necessary

condition for the adoption of the product is that at least one neighbor has already adopted

it. More precisely,

l A - 1 ) f  (k ,0 ) :  0  fo r  a l l  k  >  1

Roughly speaking, the transition from a potential to an active consumer can be interpreted

as follows. At a rate ru any given agent becomes aware of the existence of the product -e.g.

through mass media ad.vertisement- and considers the possibility of adopting it. The agent's

final decision, however, depends crucially on her neighbors' behavior. More precisely, the

agent responds to her neighbors cu¡rent configuration by choosing an action according to

some choice rule. The particular choice rule considered is characterizedby f (k¿,a¡).

Conversely, consider agent i € .l{ is an active consumer at time ü. Then, z becomes a potential

consumer at some stochastically constant rate ó > 0 which indicates the rate at which the

agent may need to replace the product because it is lost or deteriorated. Notice that, this

transition is independent of her neighbors' behavior. It is implicit in this formulation that

the cost of "maintaining" the product is approximately zero and thus agents never have

incentives for getting rid of it. Finally, let us define the effecti,ue spread'ing rate of. the

p r o d u c t b y ) : f , .

For concreteness, we will now define formally what we mean by the mechanism of diffusion.

DsplNlttoN I. A mechanism of diffusi.on is a pair * : (\, f (.)) where ), denotes the

effect'iue spreading o.f the product and f (-) denotes the diffusion funct'ion.

Notice that, since the transition rates only depend on the properties of the present state,

the dynamics induced by the connectivity distribution P(k) and the mechanism of diffusion

m determines a continuous Markou cha'in over the space of possible states Sz.

3The SIS r¡ rodel  c¿rr¡  be obtai ¡ red as a part icular  case of  th is model  by s i rnply assuming f  (k,a) :  q.
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The aim of this work is to analyze whether and how the product spreads in the population.

Several questions raise as natural:

o Is there prevalence of the product in the long-run of the dynamics?

. Are small perturbations of the initial state in which there are no active consumers

enough to converge to states with a positive fraction of active consumers?

¡ Is there a discontinuity (or phase transition) in the proportion of active consumers

as we increase )?

The next section describes briefly a particular context where this model could be applied.

3. An example

Consider a population of agents N : {0, 1,...,"r}. As before, agents interact only with their

fixed group of neighbors. The pattern of interaction among them is described through a

social network where each node represents one agent and the connections among them are

represented by links,

Let r be a new technology. Assume that the cost incurred by an individual i in case of

adopting r is randomly determinedby V¿. For the sake of concreteness, suppose ¿í - U[0,C1

rvhere C is the highest possible cost. Also assume that (Z¡)¡6¡¿ are i.i.d. Therefore (ex-

post) the cost can be different across agents. For simplicity, assume that, once adopting the

product, the cost of maintaining it is zero.

Suppose that, if two players are neighbors, there is a pairwise interaction that can generate

mutual payoffs. The common set of strategies is S : {0, 1} where s¿ : 1 means agents i

is an active consumer whereas s¿ : 0 otherwise. For each pair of strategies s, st € ,9, the

payoff earned by a player i choosing s when interacting with her partner j choosing s/ is

b > 0 if both players are active consumers and zero otherwise.

At a constant rate, u ) 0 a potential consumer considers the possibility of adopting the

new technology. If this were the case, the player uses a myopic best response to update

her strategy. Thus, the player compares the benefits obtained next period in the case of

adopting with those obtained in case of remaining as a potential consumer. We can think

of two different settings:

c Case 1 (absolute dependence)

In this formulation, players interact with all their neighbors every period. Heuristicall¡ this

implies agents are continuously observing at all neighbors and thus benefits are computed as

the sum of the benefits obtained from each bilateral inte¡action. Hence, a potential consumer

i with connectivity k¿ and with o¿ active consumers among her neighbors becomes an active

consumer iff,

a ¿ b - c ¿ ) Q

Consequently, i's rate of transition from potential to active consumer is the probability that

aqent i's cost is below her benefits, i.e.

P(2, 3 a¿b): f (o¿): { ?" i:i' : E
I  

t  t L u i 2 - l
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Note that, the reverse transition, i.e. from active to potential consumer, is never a best
response of the player. Nevertheless, we assum e that at a rate 6 > 0 the product deteriorares
and needs to be replaced. If this were the case, agents have to re-consider the possibility of
adopting it or not.

Observe that, here, the diffusion function only depends on the absolute number of active
consumers among neighbors. In consequence, two agents with the same number of neigh-
boring active consume¡s have the same probability of becoming active consumers and this is
independent of their respective connectivities. This feature depend.s crucially on the specific
context considered as illustrated through the alternative setting presented. below.

c Case 2 (frequency dependence)

Assume agents onJy interact with one of their neighbors in each time period. Moreover,
the individual with whom to interact is selected uniformly at random across neighbors every
period. If rve take any potential consumer ri with connectivity k¿ and with a¿ active consumers
among her neighbors. Then, this agent will become an active consumer iff,

?o-c ,>o
K¡

In other wotds, she computes her expected benefits in case of adopting the product and
compares this with her cost.

Consequently, i's rate of transition from potential to active consumer is the probability that
agent i's cost is below her benefits, i.e.

p7n <Zu): f ( a¿ ,u r ,  : { 8tr nffs*
1 i f t r i

As before, assume that at a rate ó ) 0 an agent needs to replace the product because it is
lost or dete¡iorated.

Note that, in contrast with the previous case, the diffusion function depends both on the
absolute number of active consumers among neighbors and on the total number of neighbors.
More precisely, it depends on the relative density of active consumers among neighbors. We
will see later in the test that the results on the diffusion pattern of the product depend
crucially on the setting considered.

In the next section, we return to the general model to study when and how the prod-
uct spreads in the population. The analytical results of the exact model are extremely
complicated and thus will not be tackled in this paper. Nevertheless, to proceed, two com-
plementary approaches can be considered. On the one hand) the analysis of the model can
be simplified using the so-called mean field theory. This approach is described and studied
in detail in the next section. On the other hand, we can simulate the dynamics in order to
obtain numerical approximations of the results for the exact model. This second alternative
will be tackled in Section 6 below.
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4. Mean field theory

The analytical study of this model can be undertaken in terms of a dynamical mean-field
theory. Other reports show that mean-field approximations can be expected to give a rea-
sonable guide to the qualitative behavior of complex dynamics.

Before describing the theoretical f¡amework, we will present some additional notation. Let
p*(ú) be the relative density of active consumers at time ú rvith connectivity k. Consequently,

p(t) : D* P(k) pr(t) is the relative density of active consumers at time ú. From here onwards,

the state of the system at any given time ú, will be characterized by the profile (pr(t))r>r.

Denote by á to the probability that any gir,'en link points to an active consumer. Therefore,
the probability that a potential agent with k links has exactly a neighboring active consumers

is (f )4"1t 
_ g)&-") since this event follows a binomial distribution with parameters k and d.

Obviously, there is an approximation inherent in this fo¡mulation because we have assumed

that I is the same for all vertices, when in general it too will be dependent on vertex

connectivity. This is precisely the nature of a mean-field approximation.

Consider a potential consumer with k neighbors and o active consumers among them. She

becomes an active consumer at a rate uf (k,a). Thus, the transition rate from potential to

active consume¡ for an agent with connectivity k is given by

h

l , * (0)  : luf  (k,a) ( ! )  e"e -  o)Q"-a)
o:0

The dynamical mean-field equation can thus be rvritten as,

Roughly speaking, equation (4.1) says the following: the variation of the relative density

of active consumers with k links at time f equals the proportion of potential consumers

with k neighbors at time ú that become active consumers (i,e, (1 - px(t))7,.r(á)) minus the

proportion of active consumers with k neighbors at time ü that become potential consumers

( i .e .  p6( t )ó) ,

Assume that the time scale of the dynamics is much smaller than the life-span of the agents

in the population; therefore terms reflecting birth or death of individuals a¡e not included.

Moreover, several assumptions are implicit in equation (4.1). First, we assume the size of

the population is large, i.e. n --+ + oa. Second, 'we consider the so-called h,omogeneous

m'iring hypothesi,s. This implies, on the one hand, no co¡relation between the connectivity

of connected agents and, on the other hand, an homogeneous distribution of initial adopters

in the population. In consequence, the only source of heterogeneity in the population is the

connectivity of agents.

After imposing the stationary condition W : 0 in equation (a.1) for all k 2 1, the

equation, valid for the behavio¡ of the system at large times is,

( t  1 \ Ú# : -pkft)6+ (1- pn(t))g,,n(o)

s^,h(0)
Pb: =---:--'-;--r * !s.¡"\a )

(A r \
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where

(4.4)

where

(4.5)

s^ ,k (q : |n , , r t t )

5 ,  RESULTS

k

: f .i¡1r, a¡ (!) e" g, - e)&-a)
a=O

The exact calculation of 0 for general networks is a difrcult task. However) we can calculate

its value for the case of a random network, in which there are no correlations among the

connectivities of different nodes.a Fo¡ thjs case, it is straightforward to see that,

(4-3)

ivhere (k) is the average connectivity of the network, i.e. (k) :DkkP(k).

The system formed by the equations (a.2) and (4.3) determine the stationary values for 0

and (p¿)¿. To solve this system, we should simply replace equation $.2) in equation (4.3)

and obtain,

e: 
#\neg,!pr

e : H^(0)

H>,(o):áP kP&)##(E

The solutions of equation ( .a) are the stationary values of L Note that, these values

correspond to the set of fixed points of the function /1¡(9). Although the exact stationary

values for á are generally difficult to obtain, the main questions raised at the introduction of

the paper can be answered by simply analyzing the shape of all the functions in the family

iI{¡(0)}120. Upon replacing d in equation (4.2) we also determine the stationary values

\p )n -

5. Results

In what follows we will present the main results of the paper. For concreteness, we will

define first the concepts of susta'ínable diffusi.on, pos'itiue diffusion and unique diffusi,on of

the product.

DprlNrtloN 2. G'iuen P(k) and, rn, u)e say that there is sustainable diffusion of the

product if there erists a locally stable state of the dgnarnics with a positíue.fraction of actiae

consumers.

The concept of stability required in this definition is the standard one. Roughly speaking,

a state is stable if it is a stationary state of the dynamics resistent to small perturbations.

Notice that, sustainable diffusion implies that, under certain initial conditions, the dynamics

converges to a state with a positive fraction of active consumers. Next, we will define the

concept of positive diffusion.

alt is left for further research to ¿llow fo¡ co¡¡elations in the connectivif,y of neighbors in tl¡is Inodel.

Point,ing in this directiorl, there are son)e papers providing answers to this issue for the SIS model. See

Beguña et  a l .  (2002) and Egrr í luz et  a l . (2002).  Their  main resul t  is  that ,  a l lowing fo¡  f i rs t  order correlat ions

al¡o¡g connectivity of nodes does not change the co¡rclusions obtained in Past,or-Saro¡rás and Vespignani

(2000) and thus the epidemic threshold vanishes to ze¡o for scale-free networks.
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DBrlNluoN 3. Giuen P(k) and, n1, ute say that there is posi,tiue di,ffusion of the product

if, start'ing at any i,ni,ti,al state 0s I 0, the d,ynami,cs conuerges to a stable state wi,th a posi,tiue

.fraction o.f act'iue consumers.

Notice that, positive diffusion does not imply uniqueness of the non-null stable state. Thus,

the long-run behavior of the dynamics can depend on the initial conditions. However,

it implies that, if we slightly perturb the initial state with no active consumers) i.e. we

introduce a "small" number of initial adopters, the dynamics leads towards a non-null stable

state. Finall¡ the following definition addresses the global behavior of the dynamics.

DpplxlrloN 4. G'iuen P(k) andnl, 'u)e say that there is un'ique di,ffusi,on of the product i,f

there eri,sts a unique stable state o.f the dynami.cs tuith a posdtáue fraction of act'iue consun'¿ers.

In other rvords, in the case of unique diffusion, the long-run behavior of the dynamics does

not depend on the initial conditions.

It is straightforward to show that the following implications hold;

unique diffusion =+ positive diffusion =+ sustainable diffusion

Notice that, the existence of a non-null solution of equation (4.4) implies the existence of

a non-null stable state 0* of the dynamics, which also implies sustainable diffusion of the

product.

Let p¿()) be a function that provides for every given value of the effective spreading rate

) > 0, the relative density of active consumers with connectivity k predicted in the long-run

of the dynamics, when the initial state is taken to be infinitesimally close to the one with no

active consumers. Moreover, let p()) :l*P(k)p¡()) be the degree of diffusion function.

The aim of this section is to describe in some detail the relaiionship between the connectivity

distribution of the network P(k) and the mechanism of diffusion rn with the spreading

behavior of the product. It is straightforward to show that, given (A-1) the state with no

active consumers (0 : 0) is stationary. Thus, to spread the product in the population there

must be an initial shock of active consumers. This section analyzes a situation where the

initial state of the dynamics is such that there is a "small" proportion of initial adopters, i.e.

9o - 0. One interpretation for this is that the firm interested in the diffusion of the product

initially gives it "for free". It is reasonable to assume that the firm is going to choose a small

number of initial adopters and then rely on the contagion process for the diffusion of it to a

larger fraction of agents. Given the nature of the question, we will first focus on the concept

of. positiue diffusion defined above. Unique and sustainable diffusion, will be studied later

i n  f h p  n q n p r

THpoRsr¡ I. Giuen a network w'ith connectiuity di.stribution P(k), and a di,ffusion func-

tion f(k,a) satisfying (A-1), there eri,sts a threshold.for the effectiue spreadi,ng rate \r:

1 0

,;"+ftoG' such that, there is posit'iue riiffusion of the product i,f and only if tr > lo.
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A detailed proof of the Theorem is presented in the Appendix. The sketch of the proof,

however, is the following. For every value of ) ) 0, the stationary states of the dynamics

are given by the fix points of f/¡(d). Notice that, assumption (A-1) implies that f1¡(0) : 0

and therefore, as mentioned above, the state g : 0 is stationary. Since g¡,¡(d) > 0 then

0 < ¡/)(d) < 1. In particular, this implies that, positive diffusion occurs if and only if the

s t a t e 0 : 0 i s u n s t a b l e  ( i . e .  t h e r e e x i s t a n e  )  0 s u c h t h a t f l ¡ ( d )  >  d f o r  a l l 0  e  ( 0 , u )  )
or equiralentlv g#Jpo 

) 1. The threshold is obtained simply by solving for ) in the

previous equation with the equality condition.

Several interesting points follow from this result. The threshold that determines the diffusion

of the product, depends both on the connectivity distribution of the network (i.e. P(k)) and

on the particular diffusion function considered (i.e. f(k,i)). Specifically, in order to assess

the existence or not of some positive preralence, it is enough to consider what happens in a

neighborhood with only one active agent. As highlighted above, this is merely a consequence

of the fact that, for positive diffusion to occur, the state w'ith no active consumers has to

be unstable. Notice that, If ) > )o then, in the long-run, the product spreads and becomes

persistent in a fraction of the population. The degree of the diffusion, however, might depend

on the initial conditions. If, on the contrary, we assume ) < )o then, if the¡e is only a small

fraction of initial adopters, in the long-run, the product will disappear from the market. In

other words, rve either never reach a state with a positive fraction of active consumers or, if

we do, it must be because there is a sufficiently high "stock" of initial adopters.

The following corollary is obtained directly from the above result.

CoRol,L¡Ry 1. If the transition rate from potential to actiue co'tlsunler is 'independent

o f  t heconnec t i . u i . t yo f  t heagen t ( i , , e .  f ( k ,a ) : f ( k t , a )= f (a )Yk ,k r>0 ) then the th resho ld
I  ( l i )

x s  A o :  T ( 1 ) 6 .

One of the main conclusions obtained from Corollary 1 is that the threshold depends on

the connectivity distribution P(k). In particular, it depends on the ratio between its first

and second order moments. The examples below illustrate the main insights of this result-

Consider three type of networks -scale-free, homogeneous and Poisson- and assume they

have the same average connectivity.

1z Scale-.free networks

Scale'free networks are characterized by having a power-law connectivity distribution.

In particular,

P(k) x ft-t

where 7 ranges between 2 and 3. This property implies that there exists a significant

proportion of agents with large connectivity with respect to the average ((k)). Hence,

the variance of the connectivity of agents tends to infinity in parallel with the size of the

population (i.e. (f2) -+ oo when ¡¿ -- *oo). These agents behave as "hubs" and are capable

of spreading the product quickly. Consequently, the threshold for the spreading rate tends

1 1
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to 0. In other words, no matter how small the spreading rate is, positive diffusion of the

product in the population will always occur.s

2; Homogeneous networks

Homogeneous networks are such ihat all nodes have approximately the same connectiv-

ity. In particular,

"r*r -{f l f k+ ( k )
i f  k :  (k)

Since the variance in the connectivity of nodes is approximately zero, the threshold for the

spreading rate is roughly ñá In homogeneous networks there exists a positive threshold

that separates the values of the spreading rate for which the product spreads from those for
which it does not. This threshold is inversely proportional to the average connectivity of

the network. Moreovet, it depends on the transition rate from potential to active consumer

when only one neighbor is consuming the product. Consequently, there are different diffusion

functions that provide the same threshold. For example, consider f"t(o): at/2, ¡r(a): a

and /3(a) : a2. ,L!l of them have the same threshold. Hov¡ever, it is worthwhile mentioning

that, whenever the spreading rate ofthe product is higher than the corresponding threshold,

the degree of the diffusion, is higher for /2 than for /1 and higher for /3 than for f2.6

3: Poisson networks

Poisson networks a¡e characterized by having a Poisson connectivity distribution. In

particular,

P(k ) :1 . -<* l  ( r ) *

It is straightforward to show that the threshold for Poisson netv/orks is in between the

threshold for scale-free and homogeneous networks. Thus, the following holds:

rf'. ¡l . ¡f
In general, any other type ofnetwo¡k with the same average connectivity, has a threshold that

lies in betw'een these two. The reason for this is the following: the va¡iance of the connectivity

distribution P(h) is given by uar(k): (kt) - (k)', thus (k2) : uar(tc) + (k)'. Since )o is

inversely proportional to the second order moment, if we compare two netwo¡ks with the

same average connectivity, the one with the highest variance has the lowest threshold.

The next corollary is also a consequence of Theorem 1. Consider now the case where the

neighborhood considerations is affected by the neighborhood size. Despite its significance,

this issue has been ignored in the epidemiology literature. In the present framework the

network represents the system of social contacts. Therefore, it is plausible to assume that

agents have a limited amount of time to spend in social acquaintances. Consequently, the

time spent with each of her neighbors (or intensity of each of her interactions) decreases in

parallel with the total number of neighbo¡s. In this respect, for example, the effect of having

one active neighbor for a very well connected agent is not the same than for an agent with

5Thjs ¡esult. is a¡r extension of the one obtained by Pastor-Satorras and Vespignani (2000) for linear

diffusio¡ls functions with the abscence of neighborhood effects.
6This is because "fr(o) 

< fz(a) S /3(o) for all a ) 0.

t2
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few neighbors. A natural, although extreme, candidate to consider as a diffusion function

would be the relative number fr of active neighbors. This corollary shows that, in this case,

the critical spreading rate is equal to unity, independently of what might be the underlying

network (scale'free, Poisson, homogeneous, etc.).

CoRor,r,¿Rv 2. If f (k,a) : fr then ),o - I.

Hence, for scale-free networks, in this case, there exists a positive threshold determining
under which conditions there is prevalence of the product in the population. The intuition

behind this result is that, although scale-free network have a significant fraction of hubs that

facilitate the contagion of the product, this effect is cancelled out by the fact that a hub

agent is very diffi.cult to "convince" given that what matters here is the relative density of

active neighbors.

Up to now we have analyzed whether there is or not prevalence of the product in the

population when the initial state is "close" to the state with no active consumers, \Me now

want to go one step beyond and study more general properties of the dynamics.

5.1. Concave diffusion functions. In this section we find conditions over the diffu-

sion mechanisms that guarantee a unique long-run behavior of the dynamics. In other words,

we analyze the convergence of the dynamics independently of initial conditions, Consider a

diffusion function satisfying an additional assumption. For all k> L, f (k,a) as a function

of a is (weakly) concaue. In other words, the following must hold:

I  A_ r \ f ( k , " )  -  Í ( k , a -  1 )  >  f ( k , a * l ) -  f ( k , a )  f o r  a l l  0  < a < k

Hence, for any given agent, adding one more active consumer among her neighbors has an

impact over her probability of obtaining the product, which is (weakly) decreasing with

respect to the existing number of active consumers among her neighbors.

The following proposition determines the threshold for unique diffusion of the product.

PRopos¡tIoN 1. G'iuen anetwork uith connectiaity di.stribution P(k), and a d'iffusion

functi,on f (k,o) satisfying (A-1) and (A-2) there erists a threshold for the effectiue spreading
{lr)rate \u: t;tr+ftt6;i) such that, there is unique diffusion of the product i'f and only if

) > ),. Moreouer, if ^ < ^. tlrc dynarnics conuerge to the state utith no actiae consumer.

A detailed proof of Proposition 1 is presented in the Appendix. The sketch of the proof is

the following. Assumption (A-2) implies É1¡(d) is concave for all,\ > 0 (this is proved in the

Appendix). Thus, as illustrated by Figure 7,1f 4+*il)0:o ) 1 there is a non-null stationary

state which is globally stable.T However, 1f *Plt:s 
( 1 then á : 0 is the unique stable

st,ate.

Let )" denote the threshold for sustainable diffusion. Note that, we obtain:

A" : )p - t r ,

As a consequence of this result we have the following corollaries.

I J

7A state I is globally stable if for any initial state 0e € (0,1), the dynamics converges to this state

Redes, difusión y juegos: teoría y experimentos. Dunia López Pintado

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2004
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FtcuRs 1. Threshold for concave diffusion functions

FlcuRs 2. Degree of diffusion function for scale-free, homogeneous and

Poisson networks when /(k, a) : f (kt,a) = f (a) V k, kr > Q.

CoRoLleRy 3. Giuen a networlc with connectiaity distribution P(k), and a d'iffusion

function f(k,o) satisfEing (A-1) and (A-2), then the degree of di,ffusion funct'ion p()) is

cont'inuous.

The proof of this result is straightforwa¡d. Notice that, as aforementioned, for all ,\ ) 0,

11¡(0) is concave. Moreover, for all 0 e [0,1], Iü(d) as a function of ) is increasing and

continuous. This implies that, the solution of equation (4.4), i.e. d()), as a function of ) is

also continuous, and by the same token the degree of diffusion function p()) is continuous

as well.

As an example, consider a diffusion function satisfying (A-1) and (A-2) and such that it is

independent of the connectivity of agents (i.e. /(k, a) : f (kt,a) = /(a) Y k, kr ) 0). Then,

the degree of diffusion function for the three types of networks aforementioned -scale-free,

homogeneous and Poisson- is continuous (see the graphs represented in Figure 2). Notice

that, for iorv values of ) the degree of diflusion is higher for scale-free networks than fo¡

Poisson networks and higher for Poisson than fo¡ homogeneous networks.

Conori,nnv 4. If f(k,a) : ft then p(\) : * ' i f x > ^e and p(\) : 0 otherwise.

Á1)

\,
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SEP,H

1=t 1

FtcuRp 3. Degree of diffusion function for scale-free, homogeneous and

Poisson networks when /(k, o): er

The proof of this result is attained by simply substituting f (k,a): f in the expression for

gx,n(0). That is,

r - L  r
s), ,k@): ;  I  xa ( f )  o"( t  -  o)&-a) :  !^ok :  ^e

a=O

Notice that, 9¡,¿(0) does not depend on k. Then, replacing Sx,n(O) in equation (a.5) the

followins holds:

\ 4
H¡(o): T.ñ(5 .1 )

It can be easily shown that, equation (5.1) has a unique non-null solution when .\ ) 1 which

is 9" : f . Thus, after simple algebraic operations, the degree of diffusion is:

, i \  | . o  i f  r < 1p\^ ) :  
i  * i f )>1

It is worthwhile mentioning that, in this case, the degree of difiusion function does not

depend on the connectivity distribution of the network (see Figure 3).

5.2. Other diffusion functions: phase transition. Assume that for all k ) 1,

f (k,a) as a function of a is (weakly) conreí The following must hold:

f ( k , a * 1 )  -  f ( k , o )  >  / ( k .  
" )  

-  f ( k , a -  1 )  f o r  a l l  0  <  o  <  k

Hence, for any given agent, adding one more active consumer among her neighbors has

an impact over her probability of obtaining the product, which is (weakly) increasing with

respect to the existing number of active consumers among her neighbors.

Due to its operational complexity, general results for convex diffusion functions are not easy

to obtain. In rvhat follows, we analyze an illustrative example to highlight the difference

with the results obtained for concave diffusion functions. The diffusion function considered

is.
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f (k,o) -- 
G)'

This contagion mechanism takes into account the relative density of active consumers among

an agent's neighbors in a convex way. The threshold for positive diffusion in this case is equal

to the average connectivity, Ap: (,k) (see Theorem 1). f" study the th¡eshold for unique

and sustainable diffusion we will analyze the shape of the family of functions {,Élr(á)},u0.
Note that, in this case, function S^,k(0) is equal to the expression,

/c

g ,  '  (A \  -  r  \ - r 0 t2  ( k \  0 "0 -  91 ( t -o )  :  ! " l r ' l' ^ . r c \ v . /  -  , k r f ,  \ o . / "  \ .  -  
k2 "

where a is a random variable that follows a binomial distribution with parameters á, k.

That is, x - Bin(k,d). Therefore, the following holds,

Elx'l : varlyl + Elxl ' : ke(\- g) + @k)2 : &2 - k)02 + k0

gx,n(o) : 
i((u' 

- k)e' + ki): 
lUr 

- t)02 + g)

and thus,

The function H¡(0) in this case has the form,

|  -  4 t rn - lg2+o \
H >,(0) : T^ LAP(/c) 

---4---:---i-
\ " /  ¡ c  

' 1+ i ( k - t ) 0 "+0 )

The shape of f1r(9) depends crucially on P(k). Therefore, for the sake of simplicity, we will

focus on two specific types of networks: (i) a scale-free network with 7 - 3, i.e. P(k) x k-3

and (ii) an homogeneous network.

It is straightforrvard to show that, if (k) is sufficiently high (higher than 5) for both cases (i)

and (ii) the family of functions {1J¡(0)}r>o exhibits the following pattern. For low values

of ,\ the function is convex. As ) increases the function has an S-shape, i.e. convex for

low values of 0 and concave for high values of 9. Finally, if ) is sufficiently high 1{¡(d) is

concave. For simplicity, a family of functions {Hr(d)}¡>o satisfying this property is referred

as an S-sbape family.

Note that, if {11¡(d)}r¿6 is an S-shape fami,Iu of functions, the following holds:

positive diffusion <+ unique diffusion

and thus )p: ),-

Moreover, there exists a threshold i (concauity threshold,) for the spreading rate such that, if

) > I then 11¡(0) is concave. This value is implicitly obtained by the expression ¡1í(0) : 0.

After some simple algebraic operations we obtain the following expression,

Hrro) -  r  \ -  P(k \2k(k - r ) -2^k2- -  \ " /  ( k )? '  k

It is straightforward to show that, the two types of networks considered satisfy,

t r l l  / ^ \  -  ^
f l ¡o\u, l  2 u
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FlcuRe 4. Threshold for sustainable diffusion for homogeneous and scale-

free networks (with 7: 3) and /(k, 
") 

= (i) '

This implies, in particular, that the threshold for positive diffusion is below the threshold

for concavity, i.e. )o < I. Itt other words, the function associated with the threshold for

positive (or unique) diffusion, has an S-shape. Therefore,

) " ( ) p

The main consequences of this result are the following:

r If )" < ,\ < )o, there are two different (non-null) stationary states of the dynamics;

an unstable state, denoted by dl and a stable state denoted by 0i as illustrated

in Figure 4. The convergence to the stable state depends crucially on the initial

conditions since initial conditions above 0i would lead the dynamics towards 9j,

whereas initial conditions below 9i would lead the dynamics towards 0* :0. Notice

that, two effects take place when the spreading rate becomes higher. On the one

hand, the proportion of active consumers in the non-null stable state (di) increases.

On the other hand, its basin of attraction also becomes larger.

r There is a phase transiti,on or discontinuity in the degree of diffusion function. In

other words, when the spreading rate ) is "slightly" above the threshold Ap, the

degree of diffusion p()) is significantly positive.

o The effect of varying the value of the spreading rate ) can be analyzed using a different

approach. Assume that the contagion dynamics has already reached a certain stable

state. Where would the dynamics converge if there was an increase or decrease of the

effective spreading rate? In other words, taking as initial condition the previously

established stable state, what would be the new long-run prediction of the dynamics?

As illustrated by the graph represented in Figure 5 if the spreading rate increases

(upward arrows in the figure) then the long-run behavior of the dynamics would

coincide with the one exhibited by function p()), thus, having a discontinuity at

) : )p. However, if the spreading rate decreases (downward arrows in the figure),

the degree of diffusion will continue to be positive until ) reaches the threshold for

sustainable diffusion .\". The existence of two different thresholds depending on the

direction of the spreading rate is a well-known occurrence, present in many other

phenomena referred as hysteres'is.
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).e

Flcun¡ 5. Hysteresis phenomenon for homogeneous and scale-free net-

works (wi th t :3)  and / (k ,  
" )  

:  ( f t )2

6. Simulations

In this section we have developed some simulations to test the validity of the mean-field

approximations used throughout the paper. We have generated two different random net-

works in terms of their connectivity distributions: (i) a scale-free (specifically, P(k) o k-3)

network (ii) a Poisson network.8 Both networks have a total of 1000 nodes and an average

connectivity of approximately 9 neighbors per node. We have considered the discrete version

of the continuous dynamics used to derive the theoretical results. In this respect, we have

assumed that, in every period one (and only one) agent is chosen to revise her "strategy".

For the sake of concreteness, we have focused on testing the contents of Corollaries 1 and 2.

All figures presented below have in common the following characteristics. We represent how

the number of active consumers (n(t), ordinate) changes as a function of time (ú periods,

abscissa) at different values of the spreading rate ,\. The data are the average of 40 simu-

lations. Fo¡ each simulation, the initial condition is randomly chosen such that individuals

are active in round ú : 1 with probability 0.01.

For Corollary 1, we considered a diffusion function that depends linearly on the absolute

number of active consumers in the neighborhood of an agent. Specifically, f (o) : a. We

wanted to test if the threshold for the scale-free network tends to zero and if it is lower than

the threshold for the Poisson network.

The graph in Figure 6 represents how the number of active consumers changes over a total

of 105 periods for the scale-free network at three different ralues of the spreading rate

() : 0.05,0.5 and 5; green, blue and red line, respectively). Observe that, as expected, the

degree of diffusion is higher the higher the spreading rate is. Moreover, as the period increase,

the number of active consumers increases as well. We run additional símulations increasing

the number of periods to 1.5 x 105 and observe that the number of active consumers tends

to stabilize around a fix value in the long run. These simulations are represented in Figure

SBoth of these netrvo¡ks were generated usíng the program Paje&, software package for Large Network

Analysis.

Redes, difusión y juegos: teoría y experimentos. Dunia López Pintado

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2004



6. SIMULATIONS

x l d

FlcuRp 6. Number of active consumers n(ú) for the scalefree network when

f (k,a) = o, l * 0.05, 0.5 and 5, and ú € [1, ld]

Flcuan 7. Number of active consumer€ n(ú) for the scalefree network when

f (k,n): a) ̂  = 0.05, 0.5 and 5, and ú € [1 , 1.5 x 1-05]

7. Also note that, for .\ : 0.05 there is prevalence of the product in the long-run, thus this
could indicate that, in this case, the threshold for positive diffusion tends to zero.

The graph in Figure 8 represents how the number of active consumers changes over a total
of 5 x 104 periods for the Poisson network at three different values of the spreading rate
() = 0.05,0.5 and 5; green, blue and red line, respectively). In contrast with the previous
case, for ,\ : 0.05 there is no prevalence of the product in the long-run. This indicates that
the threshold for positive diffusion in the Poisson network is above 0.05 and thus higher
than for the scale'free network.

These simulations also provide relevant information concerning the rate of convergence to

the stationary state, an aspect ofthe dynamics that has not been addressed in the theoretical
analysis. Observe that, there is a significant evidence reflecting a higher rate of convergence
in the Poisson network than in the scale-free network.

For Corollary 2, we considered the diffusion function f (k,o): f;. We wanted to test if the

diffusion threshold for the scalefree and Poisson networks is equal to 1.
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FlcuRp 8. Number of active consumers n(ú) for the Poisson network when

f (k,a):  o,  A:0.05, 0.5 and 5, and t  € [1- ,  104]

FrcuRp 9. Number of active consumers n(t) for the scalefree network v¡hen

f (k,o) = f , ,\ 
- 0.8, 1, 1.2 and 1.4, and ¿ € [1,ld]

The graph in Figure 9 represents how the number ofactive consumers changes over a total of

1d periods for the scalefree network at four different values of the spreading rate (,\ : 0.8,

1, L.2 and 1.4; yellow, gr€n, blue and red line, respectively). Notice that, the threshold for
positive difh¡sion is close to 1 (between ) : 1 and .\ : I.2) and thus significantly higher

than the threshold obtained for the diffusion function considered previously as predicted by

the theoretical results.

The last set of simulations, presented in Figure 10 represent how the number of active

consumers changes over a total of 105 periods for the Poisson network at four different

r¿alues of the spreading rate () - 0.8, I, I.2 and 1.4; yellow, grtrD, blue and red line,

respectively). The threshold for positive dift¡sion is approximately at .\ : 1, thus, in this

case. "clo6e" to the threshold obtained for the sc,ale-free network.
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8. APPENDIX

FlcuRp 10. Number of active consumers n(ú) for the Poisson network when

f (k,a) -  
f t ,  \ :  0.8, L,  1.2 and 1.4, and, € [1, ld]

7. Conclusion

The objective of this paper is to anahze hov¡ the diffusion of a new product or technolory
takes place on a social compler network. The network is characterized by one of its large.
scale statistical properties -the connectivity distribution- rather than by a specific geometric
form (such as lines, circles, lattices and so forth). A wide class of diffirsion dynamics (or
mechanisms) has been considered. In all of them, the probability of agents adopting the
product depends on the product's spreading rate and the behavior of the agentso closest
neighbors.

The main contribution of this paper is to chamcteri,ze the contagion (diffusion) threshold
in terms of the properties of the network and the diffusion mechanism. One of the prin-
cipal findings is that, the threshold depends crucially on the network considered when the
intensity of each interaction is assumed to be independent of the neighborhoods size. More
specifically, the higher the r¡ariance in the connectivity distribution of the network, the lower
the threshold. This implies, in particular, that scale-free networks are optimal for spreading
the product. In contrast with this result, if the diffusion mechanism considered is such that
the intensity of each interaction is inversely proportional to the neighborhoods size, the vari-
ance of the connectivity distribution of the network has no effect over the threshold. In other
words, all networks (with the same average connectivity) have the same positive threshold.
Finall¡ we also show that, for some particular diffi;sion mechanisms, there is a phase traw
siti,on in the degree of the diffusion function. In other words, there is a discontinuity in the
fraction of active consumers in the contagion threhold.

The simulations presented in the last section ofthe paper show that, the theoretical results,
obtained using mean field approximations provide a ¡easonable guide of the qualitative
properties and long-run predictions of the diffusion dynamics.

Proof of Theorem 1:

8. Appendlx
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Recall that,

(8.2) H>,(g):*r np@)J!9;
( k )?  "1+s) , ,n (0 )

rvhere

k

sx,n(o): I )/(k, a) (!) e"Q - e¡(n-") .
o:0

Then, using equation (8.2) we express Hi(á) as follows,

(8.3) Hi(o):* f  t  e{r¡, .  7 'x 'n(o)^,.^
(k) ? 

'"- ' ' " /  (1 + s),,k(0))2

where

k

(8.4) s\ ,n(e):  
E^t , t ,  

a)  ( ! )  @e"-1(1- e¡(*-"1 -  0"(k -  @)(1 -  e¡(*-a-t) ; .

If 0 :0 is substituted in equation (8.3) we obtain that,

,É/i(0) : 
^Dkk2 P-(k)f (k,1) 

> 1 <+ ¡ t ---(k)--.
( k )  Dkk2P(k ) f ( k ,1 ) '

ú

Proof of Proposition 1:

It is straightforward to show that, for every given 0 < á I 1, H^(e) as a function of .\, is

increasing. That is,

(8.5) 11¡(d) I Hx,(O) <+ ) ( l ' .

Let us show that, given ) ) 0, assumption (A-2) implies I{¡(9) is concave for all d e [0,1].

Notice that,

H';(q: fr E rrr^td
\ ' - l  k

Thus, it is enough to prove ihat 9;,k(9) ( 0, since this would imply that H';@) ( 0 as well.

If we group the coefficients of the same polynomial on I in equation (8-4) we obtain,

k-1.

( 8 .6 )  g ' x , n (o ) : I ^ ( - f ( , t . r ) ( Í ) ( k - " )  +  f ( k , a+ r )  ( i * , )  ( a+1 ) )0 " (1  - d ¡ ( r - o - t ) .
a:o

Note that, the coefficients of /(k,a) and f (k,a-l1) are equal but with opposite sign since

t-l

(f ) t,r - o) : (f*,) (a + 1) : at&: _ ry.

Therefore, we can simplify equation (8.6) as follows:

Á'- I ¡-l

s '> . , t ( . 0 ) :  I ^ , , t - i - . , * ^U@,a*  1 )  -  f ( k ,a ) )O" ( r  -  d ¡ ( t - " - t )
u ^ a l l K - @ - l ) :
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whose second derivative is,

L-l r-r
g'i,¡@) : 

\Ae:-¡.\(f(k,a* 
1) - f(k,"))

(a0 " -1  ( t -  d ¡ ( r - c - t )  -  e " ( k -  a  -  1 ) (1  -  g )@-a -z l ¡

Again, grouping the coefficients of the same polynomials on I we obtain,

k-1

s ' j . t (0 )  :  f  r t ( Í * , )  (k  -  
" -  

1 ) (o+  1) ( / (k ,  a+2)  - / (k ,a+  1) )

ICr , ,  -o ) (k - .a - t ) ( f  (k ,o*1)  -  f (k ,a ) ) )e" ( l  - '0 )&-a-2) .

Since,
t^ l

(f*,) (r - o - 1)(o + 1) : 6 fn - q& -a - 1) : ;-------( k - a - 2 ) t

we thus can simplify S\,n(0) as follov¡s:

t:2 hl
s';,,k@) : >)A@=;ú.)((/(k' a+ 2) - f(k'a+ 7)

c:u

-( f  (k,o + 1) -  f  (k,  a))0" (7 -  e)&-"-2).

To conclude, observe that assumption (A-2) implies that 9(,*(0) < 0.

It is straightforward to show that, the concavity of H¡(0) fo¡ all ) > 0, assumption (A-1)

and condition (8.5) completes the proof. ¡
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CHAPTER 2

Network Formation and Anti-Coordination Games

Abstract

We study a setting in which individual players choose their partne¡s as u'ell as a mode

of behavior in 2 x 2 anti-coordination games - games where a player's best response is to

behave differently than the opponent. We characterize the equilibrium networks as u¡ell

as study the effects of network structure on individual behavior. Our analysis shows that

both netrvork architecture and induced behavio¡ crucially depend on the value of the cost

of forming links. In general, equilibrium configurations are found to be neither unique nor

efficient. This conclusion continues to hold if the population game is embedded in a standard

evolutionary model of learning, since all equilibria turn out to be stochastically stable.

L. Introduction

In the past few years, there has been an extensive lite¡ature on social networks rvhich shows

that the structure of interaction between individuals can be decisive in determining the

nature of the outcomes and, in particular, the players' action choices in an underlying game.

In much ofthis literature, the structure ofinteraction is exogenously specified and the nature

of the outcome under different specifications is examined (see e.g. Anderlini and Ianni, 1996;

Eli ison, 1993; Morris, 2000).

Recently, interest has grown in understanding the process through which the interaction

structure itself develops. The earlier part of this literature (e.g. Aumann and Myerson,

1989; Jackson and Wolinsky, 1996; Dutta, r.an den Nouweland and Tijs, 1995; Bala and

Goyal, 2000, among others) has focused on contexts where players choose links with others

and there is no additional strategic dimension (i.e. there is no explicit game being played

among connected players). Later contributions, such as Goyal and Vega-Redondo (2004)

and Jackson and Watts (2002) have studied settings in which each agent plays a game with

each of her 'partners' and therefore (in addition to connecting decisions) has to choose a

mode of behavior in the accompanying game. This research has focused on a class of games

where individuals have an incentive to choose the same action as their partners; these games

are referred to as coordination qames.

In the present paper, we wish to consider the role of network formation in the opposite case,

where individuals prefer to choose an action unlike that chosen by their partners. We shall

refer to these interactions as games of anti-coordination.i Many interesting situations can

lBr¿moul lé (2001) analyzes ant i -coo¡dinat , ion games played on a.¡?red structure.  He shorvs t ,hat  the

structu¡e has ¿ ¡nuch stronger impact  on the equi l ibr ia tha¡r  i ¡ r  the case of  coordinat ion gatnes.

2 5
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1 .  ] N T R O D U C T I O N

be conceived in this fashion, e.g. when the successful completion of a task requires that the

individuals involved adopt complementary actions (or skills), or when a meaningful interac-

tion can only be conducted when the agents adopt different roles (say, buyers and sellers),

or when in the contest for a certain resource, an optimal strategy is not to respond with the

same behavior (aggressive or peaceful, as in the Hawk-Dove game) as one's opponent.

We consider a model where each individual can form pair-wise links on her own initiative,

i.e. link formation is one-sided. In addition, each player also chooses which of two actions

to play in the interaction with her partners. Each bilateral interaction provides some gross

return to the players involved, depending on the actions chosen. On the other hand, links

are costly? with the player initiating each link paying for it. Thus, overall, the total net

payoff earned by a player consists of the sum of the gross return obtained from each of the

pair-wise interactions minus the costs of the links she initiates. For simplicity, we make the

assumption that the gross return accruing from each link are non-negative, so that no link

initiated by an agent is ever refused by her partner.

We first characterize of the strict Nash equilibria of the static game (Propositions 2-4). We

find that, as the costs of link formation increase, the equilibrium network becomes more

sparse. For low costs it is complete, for high costs empt¡ while for moderate costs it is

a bipartite graph (i.e. a network "split" in two disjoint sets of nodes with all links going

across these sets). The costs of link formation also have a profound impact on the numbe¡

of players who choose the two actions. In particular, for low costs of forming links, the

number of players choosing the two actions roughly corresponds to the proportions that

would arise in the mixed strategy equilibrium of the two-person anti-coordination game,

while for moderate costs of forming links a wide range of proportions can be sustained

in equilibrium. The intuition for this latter multiplicity is as follows: consider the class

of games with symmetric payoffs and suppose a player wishes only to fo¡m a link with a

player who is doing the other action. In this setting, a player has an incentive to be on

the 'short-side', i.e. in the group that chooses the less popular action, since in this way she

plays the largest number of games. However, a player has to balance these considerations

with the fact that costly links have to be formed in order to play the game. This argument

also suggests that as the costs of forming links increase, the distribution of links can have

a bigger influence on the incentives to switch actions. Thus for larger costs, a player may

be induced to choose an action that is relatively popular, because the players choosing the

other action are supporting all the links with her in equilibrium.

We then study the effi.ciency of different network structures (Propositions 5 and 6). In

general, the architecture of efficient networks becomes less dense as the costs of link formation

increase. For low costs of forming links, typicall¡ the efficient netwo¡k is complete, while

for moderate costs the efñcient network is bipartite. The costs of forming links also have

an impact on the proportions of players choosing diferent actions. For instance, when the

links are only worthwhile between players choosing different actions, efficient profiles have

roughly equal proportions of players choosing the two actions. A comparison of efficient and

equilibrium networks thus suggests that equilibrium and efficient networks are very different.
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2.  THE MODEL

This variety of equilibria and their inefiñciency motivates an examination of the dynamic

stability of different outcomes (Propositions 7 and B). Our analysis of the dynamics shows

that all (strict) Nash equilibria are stochastically stable, i.e. they are robust to small but

persistent perturbations. We thus find that stochastic stability has almost no refinement

poiver in this setting-

The above results are in contrast to the findings on coordination games reported in Droste,

Gilles and Johnson (2000), Goyal and Vega-Redondo (2004) and Jackson and Watts (2002).

Droste, Gilles and Johnson (2000) consider spatially located players whose linking costs

depend on relative distance. This induces an interplay between the (endogenous) social

network and the (exogenous) spatial structure that is absent from our model and the other

two papers mentioned. These latter papers find that, for all interesting ralues of the cost,

the complete net\¡/ork is the unique non-empty stochastically stable network. By contrast,

here we conclude that, in anti-coordination games, the selected network architectures are

generally incomplete and their qualitative structure depends in interesting ways on the

underlying payoffs and linking costs. They also find that there is a certain threshold for

the linking costs below which risk dominance is selected, while in the present paper the

relationship is much richer and, in some cases exactly the reverse: efñcient outcomes are

only guaranteed for lorv linking costs.

The rest of the paper is organized as follows: In Section 2 u¡e set up the model. In Section

3 w-e discuss the Nash equilibrium results and develop the welfare analysis. In Section 4 we

present and study the dynamic framework and characterize the stochastically stable states.

Finalty, Section 5 summarizes the results and concludes. The proofs that do not appear in

the body of the paper are contemplated in the Appendix.

2. The model

2 .1 .  L i nk fo rma t i on .  Le t . l / : { 1 ,2 , . . . , n )  bease to f  p l aye rswhere , fo rs imp l i c i t y ,

n(> 2) is assumed even. We are interested in modeling a situation where each of these

players can choose the subset of other players with whom to play a fi-xed bilateral game.

Formally, let g¿: (gn,...9¿,i.-t,g¿,¿+t,...g¿n) be the set of l inks formed by player ¿. We

choose 94 e {1,0}, and say that player i forms a link with player i if g¿¡ : 1. The set of

l inkopt ionsisdenotedbyg¿.  Any p layerprof i . leof  l inkdecis ions 9: (gt ,92. . .9n)  def ines

a directed graph, called a network.

Specifically the network g has the set of players N as its set of uertices and its set of arrows,

f  c . l /  x . l ú ,  de f i nedas fo l l ows ,  l :  { ( i , f )  €  l l x  N :g i j : 1 } .  G raph i ca l l y ,  t he l i nk  ( i , j )

may be represented as an edge between i and j, a filled circle lying on the edge near agent

f indicating that this agent has formed (or supports) that link. Every link profile g € I has

a unique representation in this manner. Figure 0 below depicts an example: player t has

formed links with players 2 and 3, player 3 has formed a link with player 1, while player 2

has formed no links.2

2Since agents choose strategies independently of each other, two agents may sinrultaneously initiate a

l ink.  as seen in Figure 0.

27
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ó
/

I
I ' - 2

Figure 0

Given a network 9, we say that a pair of players i and j are linked if at least one of them

has established a link with the other one, i.e. if max{g¿¡,g¡¿}: l. To describe the pattern

of players' links, it is useful to define a modified version of g, denoted by g, that is defined

as follows: At¡ :max{g¿j,9j¿} for each i. and j in N. Note t'hat g¿¡ :9j¿ so that the index

order is irrelevant.

A network g is said to be bipartiile if there exists a partition of the players into two mutually

exclusive and exhaustive sets, l/r and N2, such thatQ¿¡:1only if i e Nr and j e Nz- A

bipartite network is complete rlgió :1 for every pair of players i € ¡fl and j e ll2.

We denote bv lú(¿; s) = {j € N : g¿¡: 1} the set of players in network 9 with whom player

i has established links, while u(i.;g): lN(i;g)l stands for its cardinality. Similarly, we let

¡f(¿;g) = {j e N : g¿,¡: 1} be the set of players in network 9 with whom player iis linked.

2.2. Social Game. Individuals located in a social network play a 2 x 2 symmetric

game in strategic form with a common action set. The set of partners of player i depends

on her location in the network. We assume that two individuals can play a game if and only

if they have a link between them. Thus, player i plays a game with all other players in the

set  l / (á ;9) .

We now describe the two-person game that is played between any two partners. The set

of actions is A: {*,0}. For each pair of actions a,e' € A, the payoff r(a,a') earned by a

player z choosing ¿ when the partner 1 plays o' is given by the following table:

Table I

\Me assume that it is one of anti-coordination with two pure strategy equilibria, (o, p) and

(0,a). In other words, we consider the following restrictions on the payoffs:

J

i
u R

a d e

n f b

\ ¿ - L )
)  ,  t  ^ ^ )  L  /  ^
ú \ J  A r r u u \ c .
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Players choose links and actions in the anti-coordinaüion game simultaneously.3 Vy'e assume

that every player i is obliged to choose the same action in the (generally) several bilateral

games that she is engaged in. This assumption is natural in the present context; if players

were allowed to choose a different action for every two-person game this would make the

behavior of players in any particular game insensitive to the network structure.4 Therefore

the strategy space of a player can be identified with 5¿ : 9¿ x y', where 9¿ is the set of

possible link decisions by i and A is the common action space of the underlying bilateral

game.

Now we define the payoffs of the social game. These reflect the following two important

features of the link formation mechanism. First, links are assumed costly. Speclfically, every

agent who establishes a link with some other player incurs a fixed cost c ) 0. (Thus, the cost

of forming a link is independent of the number of links being established and is the same

across all players.) The second important feature of the model is that links are one-sided.

That is, an individual can form a link with another player on her own initiative, and no

consent of the other player is required. This aspect of the model allor¡¡s us to use standa¡d

solution concepts from non-cooperative game theory in addressing the mechanism of link

formation. It raises, however, the issue of whether a proposal to form a link might not be

accepted b¡' the player who receives it (even though she would bear no linking costs), In

the present paper, we abstract f¡om these complications by simply positing that the payoffs

of ihe bilateral game are non-negative and, therefore, no player has any incentives to refuse

forming a proposed link.

In view of the former considerations, the payoff to a player i from playing some strategy

s¿ : (g¿,4¿) when the strategies of other players are s-¿ : (sr, . . . l i-rtsi+r, .- . sr) can be

written as follows:

(2.2) f I¿(s¿, s-¿) : t
jelrl;;9¡

t r ( a¿ ,a ¡ )  -  u ( i ;  g )  -  c

We note that the individual payoffs are aggregated across the games played by him. In our

framework, the number of games an individual plays is endogenous, and we want to explicitly

account for the influence of the size of the neighborhood. This motivates the aggregate

payoff formulation. As indicated, the above payoff expression allows us to particularize the

standard notion of Nash equilibrium as follows. A strategy profile s* - (si, . . . s;) is said to

be a Nosá equili,brium for the game if, for all i € N,

(2.3) l I¿(si ,  s l¿) )  I I¿(s¿, si¿),Vs¿ e ^9,.

3A¡r alternative wor¡ld be to thi¡rk of actions and link decisions as sequential. We ltave briefly analyzed

games with such a se<¡uential order of moves and we obtain that, generallv, the range of equilibrium outcomes

increases-
4Th1r", o,,r setup would be best suited to model those cases whe¡e action vers¿bility is too costly to be

worthwile (e.g. the choice of a profession). A more general fo¡mulation would allow individuals to choose

rlifferent actions wit,h diffcrent partners. For a siudy of the ¡ole of costs of flexibility in coo¡dination games

rvi th local  in l .eract ion,  scc Goval  and Janssen (1997).

2 9
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A Nash equilibrium is said lo be strict if every player gets a strictly higher payoff with his

current strategy than she would wiih any other strategy.

3. Analysis

This section contains our results on strict Nash equilibria and socially efficient strategy

profiles. We start by characterizing the set of strict Nash equilibria of the social game. First,

we describe the types of Nash networks and how they depend on the anti-coordination game

and on the cost of link formation. Second, we characterize the range of possible values for

the number of agents playing each action (a or B) in equilibrium.

Anti-coordination games have different possible payoffs configurations and we will see that

they also Iead to different types of Nash networks. Without loss of generality, assume that

f > e, i.e. when two players anti-coordinate, B-players (i.e. players who choose action B)
earn a higher payoff than o-players (i.e. those who choose action o). If all the parameters

are distinct (the non degenerate cases)) there are three possible orderings of the parameters:

30

Case 1

Case 2

Case 3

b < e < d < f

b < d < e < f

d < b < e < f

Each ordering corresponds to a different type of anti-coordination game. In Case 1, the

payoff of coordinating on a is higher than the payoff of an c-player in (anti-coordination)

equilibrium. Therefore, Case 1 represents exploitation games akin to the Hawk-Dove game.

In Cases 2 and 3, the equilibrium payoffs of the anti-coordination bilateral game are higher

than any other payoffs. Cases 2 and 3 represent situations of complementarity, in which both

players earn higher payoffs in equilibrium than out ofit. In Case 2 the payoffofcoordinating

on a is higher than the payoff of coordinating on É, while the situation is reversed in Case

3. The following three tables illustrate payoffs configurations corresponding to each of the

three cases.

j
't,

a R

a. t 2
R A i

Case 1

Payoff tables illust¡ating the three cases considered

Since link formation is one-sided, the cost of any link at equilibrium is supported by only

one agent and Nash networks involve no redundant links. The pattern and number of links,

on the other hand, depend on how the cost of link formation compares with the parameters

of the game. For example, when c > b, B-players do not have an incentive to form links

with other B-players and so, there is no link among B-players in equilibrium. Instead, when

c < ó, the p-players are wiiling to form links and to support the cosü of link formation with

J

T
a l._)

a 2 .)
p ^ 1

Case 2

J
¿

u / 1

a 1 t

R 4 2

Case 3
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3 .  ANALYS iS

any other agent playing 0. In equilibrium, therefore, all the B-players are linked with all the

other B-players and the network of links arnong B-players is complete.s

The following shorthand notation will allow us to refer to all the possible types of Nash

networks.
0 A ct: the empty network

0 - o: all p-players are linked to all a-players, but no o-player is

linked to a B-player

0 ¿ o: all B-players are linked with all o-players

0 - d: all B-players are linked to all o-players, all a-players are linked

with all a-players but no a-player is linked to a B-player

0 ¿ d: all o-players are linked with all o-players and with all B-players

É = d: the complete network
Hence, I - aandB = orepresentcompleteandbipartitenetworks,whileB -- dand 0 = d

are what we call (complete) semi-bipartite networks, i.e. networks that can be partitioned

into two exclusive and comprehensive parts with internal links (connecting nodes of the same

part) only existing within one of the two parts. Using the above notation, the following result

describes how the cost of link formation determines the type of Nash networks.

PRoposluov 2. The Nash equili.bri,a exhi,bi,t the followi,ng pattern of li,nk .fomnation'
Case I Case 2 Case 3

0 < c < b  É ¿ d  0 < c < b  p = d  0 < c < d  P + d
b < c < e  B = d  b < c < d ,  B = d  d < c < b  P = a
e < c < d ,  p - d  d < c < e  B = a  b < c < e  B = a
d < c < f  0 - a  e < c < f  0 - - . a  e < c < f  0 - a

f  < c 0 A c t  f  < c 0Aa  f<c  0Ao

The proof of this Proposition is straightforward and omitted. However, a number of inter-

esting points follow from the above statements. Firstly, they show that (except for very

low costs) the nature of links is quite complicated, with the link initiation (and hence the

network architecture) depending very much on the game that is being played. For instance,

if the game is one of exploitation (Case 1) and e ( c < d, its Nash networks are of the form

A - d. The reason is that o-players are then willing to support the costs of link formation

with themselves but not with p-players, while p-players are willing to support the costs of

link fo¡mation with a-players but not with themselves. On the other hand, if the game is one

of strict complementarity (Cases 2 and 3) and the linking costs is between the coordination

and anti-coordination payoffs, Nash outcomes induce bipartite networks of the form 0 ¿ a.

In this case, both a and B-players have an interest to be linked to players choosing the

other strategy, while they do not wish to be linked with players choosing the same action.

Secondlg, the above proposition also shows that, in accord with intuition, increasing linking

costs has a negative effect on network density. That is, as the cost of link formation rises,

the possible types of Nash networks become more sparse, going from the complete network

to the empty network through three intermediary cases.

5Of course, it is our assumption that payoffs depend linearly on the nurnber of social neighbors playing

a strategy th¿rt  c¿uses th is '¿ l l  or  nothing'  resul t .
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3 .  ANALYSIS

We now analyze how the number of players choosing each of the different actions in equi-

librium depends on the linking cost c. Given a strategy profile s, denote by nB the number

of p-players in s and fla -- fr - nB the numbe¡ of o-players in s. Our next result derives the

lower and upper bounds for nB (hence for no) in equilibrium. These bounds are obtained

by examining the best-responses for every possible case.6 Define pp : #4 Notice that

pB is the probability of playing p in the mixed strategy equilibrium of the anti-coordinatíon

game. It is useful to introduce two auxiliary functions g and ry' as follows:

(3. 1)

and

p B i l c < b

#= i fb<c<e
l i f . e < c

(3.2)

Note that g and,y' are continuous, g is increasing and $ is decreasing. These functions

bound the relative sizes of the different a- and p -parts of the network, as established by

the following result.

PRoposluov 3. There erists a strict Nash equili.brium with np players choosi,ng B iff

(n - 1)t[@) 1 np 1 (n - I)9@) + 7. If the inequalities hold weakly, the characterization

applies to all Nash (possibly non-strict) equi,li,bria.

The proof of this result is given in the appendix. This result and Figure I illustrate the

precise relationship between the linking costs and the range of equilibrium behavior in the

respective game. In particular, it states that for a low cost of forming links, the proportion

of players choosing actions o and B corresponds (roughly) to the mixed-strategy of the

two-person anti-coordination game. This simply follows from the fact that, for lov¡ linking

costs, players have incentives to form the complete network and hence the link formation

mechanism has no particular influence on individual behaüor. However, beyond this lov¡

range, the cost of link formation has a profound impact on individual choice of actions.

In particular, a broader range of proportions of players choosing actions o and p becomes

possible.

The intuition behind the latter conclusion is best explained in the context of strict com-

plementarity, where a player wishes to form a link only with a partner choosing a different

action. In this setting, if both actions are symmetric, the player has an incentive to be on

the 'short-side', i.e. in the group that chooses the less popular action. In adjusting her

6The best-response equations do not depend on the particular payoffs and cost configuration, but only

on the tvpe of Nash architecture to which this configuration leads, as establisehd by P¡oposition 2. Fo¡

exarnple, sitr¡ations where the payoffs correspond to Case 1 and b 1 c 1 e, and where the payoffs corres¡:ond

t,o Case 2 ar¡d b < c < d both support B = d as Nash networks. Hence, both cases can be analyzed as one.

This reduces the ¡rur¡lber of dol¡¡ains to ¿nalyze from 16 to 6.

(  nB t t " ta
,1 , ( r ) : l  #=s i f  d .<c< f

[  0 i f  / < c
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3 .  ANALYS]S

Case I

Case 2

Case 3

FIcunn 1. Number of B-players in equilibrium

behavior, however, she has to take into account that the creation of any new link on her

part involves a cost. This implies that, for a fixed configuration of actions, the incentives

for any given player to keep doing what she currently does are maximized when she is the

"passive recipient" of all Iinks to the players who are choosing the other action. This argu-

ment allows us to compute the bounds on the maximum and minimum number of players

who can be playing each action at equilibrium. It also suggests that, as the costs of forming

links increase, their distribution can have a bigger influence on the incentives to switching

actions. In particular, for large costs levels, a player may be induced to choose an action

that is relatively popular, because the players choosing the other action are supporting all

the links with her.
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3 .  ANALYSIS

Propositions 2 and 3 characterize the Nash equilibria of the social game. However, they do

not typically provide information on either the direction of the links or the payoff distribution

among the agents at equilibrium. Take for example the case where actions are symmetric and

the equilibrium network is of the kind B = o. Then, the direction of links formed between

o and B-players is not determined. Indeed, the above discussion precisely highlights the

sort of trade-off that we observe at equilibrium, i.e. when agents of a certain type are more

scarce than those of the other type, they must bear, on averageT a greater share of the costs

of Iink formation. In this way, the benefits of being on the short-side a¡e balanced by the

costs of supporting the links. This, of course, does not apply when the equilibrium network

is balanced and bipartit e (i.e. ff - $ ) , in which case a// possible distributions of active and

passive Iinks among a and B-players are possible. This, in fact, highlights the additional

important insight that payoff distribution among agents at equilibrium is noú determined

either. Balanced networks, for example, can sustain symmetric payoff distribution where

all agents support the same number of active links as well as a very asymmetric payoff

distribution where only agents of a certain type incur the cost of the links and thus have

significantly lower payoffs than agents of the other type. Thus, even though it is precisely

the interplay of network architecture and suitable distribution of linking costs that supports

much of our equilibrium multiplicity, this is far from determining in a precise fashion the

payoff distribution among the different agents - i.e. sharp payoff asymmetries, both across

and within types can prevail at equilibrium.

To investigate further on the issue of costs distribution- Consider a configuration of the

parameters of the game. Given the type of Nash network and the range of possible values

for nB consistent with this configuration, we say that nB is distribution 'insensit'iue if all

tbe poss'ible divisions of costs are sustainable in equilibrium. Distribution insensitiveness

is a strong notion which captures cases where the allocation of costs of link formation

does not affect equilibria. In general, the existence of distribution insensitive values is

not guaranteed- We then ask: under what conditions the equilibrium values f.or nB are

distribution insensitive? This question is solved in the following proposition.

PROpOSIuON 4. # the tgpe of the network i.s B -- a, g - d, or B = d, aII the possible

equilibrium n B a,re d'istribution insens'itiue.7

If the type of the network is 0 = d, nB is distribution insensit'iue iff

f - c  f  - c
f" - t)7ffi 1 nB 1 (n - t)7i 

" 
_ r¿ + r

If the type of the network is B = d., np is distri'bution insensi,tiue iff

(n - r)--J:!- 1nB 1 1n - t¡t-J-!- + t' J - d , + e - c  
l - a + e - c

If the tgpe of the network isi = a, np is di'stribution'ínsens'itiue i,ff

(n - \ - - J= -  1nB 11n- r ) r -J - l  ,+ t' J  - c + e - b  ' J  - c + e - D

7In the network d - o the direction of all the links is already deternlined and therefore dist¡ibution

insensitivity is ¡rot an issue.
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3, ANALYSIS

This resulü says that, in general, dist¡ibution insensitive values always exist. In addition,

either all the possible equilibrium r,alues are distribution insensitive, or a unique equilibrium

value is distribution insensitive. In the first case, when the Nash network is of type p '-+ a,

F - d, É = d, the best responses equations turn out to be independent on distribution

considerations, which explains the result.

We briefly discuss the arguments behind the second case, focusing for concreteness on the

casew i th  b ,d  <  c1e , f ,  whe reeve ryequ i l i b r i umne twork  i so f  t ypeB  =  o .  Le t  sbe

any given strategy, and denote q;'" to the number of active ünks that a player i has with

individuals choosing action k, where k e {a,B}. We will avoid superscript s when there is

no possible confusion. Consider any distribution insensitíve nB and let i e N be an agent

who chooses o in the underlying state and supports qf links to p-players. Then, in order

for this player to be choosing a best response, a necessary and sufficient condition is that

/ r  t \
f  - c  n  c - b

na) (n - 1)-:-----:- . ._ *oi-' t p '  \ ' -  ^ , f  _ " 1 _ e _ b  ' ,  
f  _ c l e _ b

Note that the right hand side of the above expression is increasing in qf and therefore reaches

a maximum at qf : TB. Therefore, substituting Tp for ql in (3.3), we obtain the following

condition:

which is necessary and sufficient for distribution insensitivity to apply to o-players. T\rrning

norv the attention to the counterpart condition for any agent j choosing B, note that, in

order for this player to be playing a best response, a necessary and sufficient condition is:

f - d  ^  c - d
To  <  (n  -  t )T  -  a+  

"  
-  

"+ l  

-  s í  
f - +  e  -  c ,

where gre denotes the number of Iinks to a-players supported by j. The right hand side of the

above condition is decreasing in qrq and therefore it attains its minimum r'alue at Ql : no.

Thus substituting no for qfl we obtain:

t  - ?

ns 1(n - 1)-----1---:- 1 1,
I - c + e - c

(3.4)

(3.5)

which is again a necessary and suficient condition for distribution insensitivity concerning

any player choosing B. Combining (3.4) and (3.5), the desired conclusion follows.

When o-players and B-players both want to link with the other type and the cost of link for-

mation is not too low, distribution insensitiveness selects a unique equilibrium value. When

the number of agents playing B is equal to this value, a strategy profile is an equilibrium

no matter how the costs of links formation are allocated among agents (conditional on the

fact that the network is Nash). In contrast, when the size of the population of B-players is

not distribution insensitive, certain allocations of costs will not be sustained in equilibrium'

The existence of distribution insensitive values will play an important role fo¡ the analysis

of the dynamics of the game, see Section 4.

We now study welfare properties. There are many ways to measure the social welfare of

a network structure. Here, we identify welfare with the sum of individuals' payoffs. More
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3 .  ANALYSIS  36

precisely, the welfare of a strategy profile 
": 

(sr, ...,sn), denoted as W(s), is set equal to

the sum of the individuals' payoffs,

r4z(s) : f n,{").
z : 1

Furthermore, r¡/e say that a state s is efficient if and only 1f W(s) > W(t'), for all s' € ^9.

First of all, notice that the welfare contribution of a link is 2b- c in the case of two B-players,

2d-cinthe case of two o-players, and el f -cin the case of an o-player linked to a B-player.8

This implies that the appropriate classification of payoffs configuration for welfare analysis

is different f¡om the classification used fo¡ equilibrium analysis. It is important to keep

this in mind concerning the ensuing results on welfare. It is also worth noting that, given

any particular pattern of connections, the division between passive and active links does

not affect its welfare. Therefore, in order to characterize an efficient profile, it is enough to

focus on the undirected counterpart of the network, ard consider only the number of players

choosing each action.

First, we consider the case where 2b < e * f < 2d'. Then, a link involving two players

choosing a provides the highest payoff, which easily leads to the following result:

PRoposluol  5.  ^9uppose2b1e+ f  <2d.  Theni . Íc<2d astrategg prof i le is  ef f ic ient

iff its induced network'ís complete, has no redundant links and all players choose a, If c > 2d

then euery effic'ient strategy profi,Ie g'íelds an empty networle.

The proof is given in the Appendix. The above class of games exhibit a severe form of

"exploitation" in which the welfare of the anticoordination game is highest off-equilibrium.

The other two possible parameter configurations a.re given by the inequalities 2b < 2d < e+ f

and 2d < 2b < e * f. They lead to a more complicated analysis, which is taken up next.

Since these two latter cases are symmetric across actions, we merely focus here on the first

case. To state the result, it is useful to introduce an auxiliary function g as follows:

I  r+##)irc<2b
g(c) : 1 r"*r,-30!u# | if.2b < c <2d

I  
e+J -a - c /  ¿

[  1 i f  2 d < c ,

where [oJ refers to the integer closest to ¿. It is straightforward to see that g(c) is piece'wise

Iinear and increasing.

PRoposlloN 6. Suppose 2b < 2d < e * f . Then the followi,ng statements hold: (i) If

c < 2b then a pro.fiIe is efficient iff its induced network is of type 0 = d, and, nfi : g(c)$. ftl)
If 2b < c <2d apro.fiIe is effici,ent iff i,ts induced network is of type 0 = d, andnfi: gk)t'

(ii i) If 2d, < c < e+ f apro.filei,s fficientiff its inducednetworlci,s of type p = a, and

nfi: g(c)$. (*) If e+ f < c a pro.fi'le i's efficient iff its i,nduced network'is empty-

8Si¡ce the cost of a link is incurred only by one of the agents forming the link, the fo¡mation of it can

be optimal in terms of welfare, yet not feasible at equilibrium. This occurs, for example, between two B

p l a v e r s i f b < c < 2 b .
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2d<e+f<2b

u*p-o
2b e+.f 2d c

2b<2d<e+f

e+f

2d<2b<e+f

Ftcune 2. Number of B-players in an efficient profile

The proof is given in the Appendix. Proposition 6 tells us that, as the linking costs increases,

efficient networks become less connected going from the complete network to the empty

network through two intermediary cases. Moreover, efficiency generally selects a unique

relative size of the two parts, which become of equal size (i.e., flp : r,Lo : f ) when the

eficient network is bipartite. The reason for the latter conclusion is that, when the efficient

network is bipartite, each link provides the same welfare cont¡ibution e* f - c. Therefore, in

order to maximize welfare, the number of links must be maximized, which occurs when the

two groups of players have the same size. Figure 2 illustrates the socially efficient number

of players choosing different actions as a function of the cost of forming links.

If we compare Propositions 5 and 6 with Propositions 2 and 3 we conclude that, in general,

Nash profiles are not efEcient and vice versa. There are two related reasons for this negative

conclusion.

nn

n 8

, *B

ruz
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1. First, let us consider the effect induced by the fact that the mechanism of link for-

mation is one-sided. This implies that a link can be welfare improving even if no

agent wants to form it - e.g. if ó < c < 2b, B-players do not form a link among

themselves, even though this would clearly increase collective welfare. This problem

could be somewhat alleviated under alternative assumptions on link formation or if

we allowed, sa¡ for some agent bargaining that might lead to the sharing of costs.

Apart from this consideration, the cost of link formation also has implications over

the distribution of passive and active links sustained in equilibrium. As the cost in-

creases the range of possible sizes in equilibrium extends. This is because when costs

are high the positive externalities induced b;' passive links are higher. Nevertheless,

passive and active links have no role in welfare analysis. This is why there is just a

single relative size of the two parts in efrcient profi.les.

2. Another reason for the discrepancy between efficiency and equilibrium is the fact that

actions in the anti-coordination game are typically asymmetric. To distinguish this

most clearly from previous considerations, it is useful to consider a situation where the

cost of link formatjon is low. Thus assumethat c is close to 0. Then, both equilibrium

and efficient networks are complete. Equilibrium requires that 3¿ = 4 in every

case while, in contrast, efficiency requires that ff : 0 when 2b < e + f < 2d and
n¡ t  -  e* f  -2d  ^+L^* - - , : - ^  T-  +L^  c -^+  ^
; x iff26 otherwise. In the first case, efficiency and equilibrium requirements can

never be reconciled, while in the other cases, efficiency and equilibrium are compatible

only rvhen f - e is close to 0.e

The above discussion leads us to the following question: ',vhat are the strategy profiles that,

among all Nash equilibria, yield the highest welfare? We find it useful to distinguish between

two cases here. The fi¡st case arises when individually rational links are the same as the

collectively rational links. This happens, for instance, when 2b,2d < c 1e,f - In this class

of games, an efficient network is a complete bipartite network with some specific nf 2 players

choosing B. Then, it is easy to see that we can rank equilibria in terms of the number of

players choosing p, and the equilibrium which has np closer to nl2 has the highest welfare.

The second case arises when efficient networks have a pattern of links that is qualitatively

different from equilibrium networks. This happens for example when b, d < c < e, f ,2b,2d,
in which case an efrcient network is complete while every equilibrium network is bipartite.

At equilibrium, therefore, the gross welfare attained is simply proportional to the numbe¡

of links betrveen o and B-players (in the present case, they are the only existing links at

equilibrium). Since the payoff per each of these links is constant, welfare at an equilibrium

is maximized when their number is maximized as well, i.e. when np is the closest possible

to nl2. Social u'elfare, however, need not be maximized in this way - recall that efficient

networks are complete in this case and therefore the efficient value of np genetally depends

on the relative magnitudes of b and d, the payoffs obtained by agents choosing the same

action.

9Onu *ay or¡t is to consider repeated relationships where the sharing of costs over time helps to smooth

the asyrnmetries. This appears to be a natural rvay to tackle such problerns in some contexts br¡t leads to a

very dÍfferent f¡a¡nen'ork t,han t,he one in this paper.
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4. Dynarnics

The analysis of the static model shows that there is a wide range of outcomes that can arise in
equilibrium. It is worth noting that these equilibria display very different numbers of players
choosing the two different actions and therefore also have very different welfare properties
- thus such a diversity is substantive. This leads us to examine the dynamic stability of
different outcomes. In this section, we shall present a dynamic model and show that all
(strict) equilibria of the static model are stochastically stable. In this sense, therefore, we
may conclude that the whole range of equilibria identified in the static analysis of the model
are, all of them, equally robust configurations.

Time is modeled as being discrete, t : 7,2,3, . . .. At each ú, the state of the system
is given by the strategy profile s(¿) : [(su(¿), a¿(t))]Lt specifying the action played, and
links established, by each player ¿ e ,¡/. Let us suppose that, at every period ü, with an
independent probability p, a player revises over a particular component of her strategy, i.e.
with probability p she revises a particular link 9¿¡ or her action a¿. For simplicity this
probability is independent across components and across individuals. Thus, for example,
there is probability p" tbat a player may revise her complete strategy (all her links and
her action). In other words this dynamics includes the possibility of revising together links
and actions, but also admits doing it separately. The intuition is that sometimes it is not
feasible for an agent to change her whole strategy but only part of it. This could. also be
understood as an additional expression of bounded rationality. An agent, once she gets a
revision opportunity just considers part of her strategy. This approach resembles the model
studied by Jackson and Watts (2002) but with a major difference: our dynamic allows for
a revision of the complete strategy. On the other hand, we are in a non-cooperative one
sided link model where decisions are taken unilaterally, i.e. revision opportunities over a
particular link are independent for the two individuals forming the link.

Hence, with probability pÉ(l - p)n-k a player z gets the chance to revise over k components
of her strategy which, using standard notation, we write ás s¿ : (ruo,"n_o) to distinguish

the components which can be revised from those that cannot. In that event, she is assumed
to choose a myopic best response:

(4.1) s¿*( t )  €  utg"o1*n¿3;*  f I¿(s¿o,  t¿_n( t  -  f  ) ,s-¿( t  -  1)) .

That is, she selects a best response to what other players chose in the preceding period

and what she chose in the n - k components that are not open for revision. If there are

several strategies that fulfill (4.1), then any of them is taken to be selected with, say, equal
probability. This strategy revision process defines a Markov chain on S = 5l x ... x Sr.

In our setting, which will be seen to display multiple strict equilibria, there are several

absorbing states of the Ma¡kov chain.l0 This motivates the examination of the ¡elative

robustness of each of them. To do so, we rely on the approach proposed by Kandori,

loNot ice that  the set  of  absorbing states of  the Markov ch¿in coincides wi th the set  of  st r ic t  Nash

eqr: i l ibr ia of  ihe populat ion game.
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Mailath and Rob (1993), and Young (1993). We suppose that, occasionally, players make
mistakes, experiments, or simply disregard payoff considerations in choosing their strategies.
Specifically, we assume that, conditional on receiving a revision opportunity, a player chooses
her strategy at random with some small "mutation" probability e > 0. For any e > 0, the
process defines a Markov chain that is aperiodic and irreducible and, therefore, has a unique
invariant probability distribution. Let us denote this distribution by p.. We analyze the
form of p. as the probability of mistakes becomes very small, i.e. formall¡ as € converges
to zero.  Def ine l im.*s l r r :  fu-  When a state s:  (sr ,  s2, . . . ,s . )  has p(")  > 0,  i .e .  i t  is
in the support of ir, we say that it is stocñostically stable. Intuitively, this reflects the idea
that, even for infinitesimal mutation probability (and independently of initial conditions),
this state materializes a signifi,cant fraction of time in the long run.

We start with a preliminary result which shows that the best-response dynamic converges
to one of the Nash equilibria whose main features are specified in Propositions 2 and 3.

PRoposIrloN 7. The unperturbed dynamic process conuerges to a (strict) Nash equiti,b-
rium, w'ith probab,il,ity one.

The proof of this result is given in the Appendix. We now proceed to the analysis of the
perturbed dynamic. The above result allows us to restrict our attention to the set of strict
Nash equilibria of the static game. Our analysis of stochastic stability is summarized in the
following result.

PRoposluoN B. A¿l stri,ct Nash equili,bria are stochastically stable.

Proof: From the previous proposition we know that the unperturbed dynamic converges to
a strict Nash equilibrium. We will now show that all strict Nash equilibria are in the same
recurrent set, i.e. for all s, s' € ^9** there exists a path of one step mutations that leads from
s to s' and vice versa. This will lead to the conclusion that all strict Nash eouilibria are
stochastically stable (see Samuelson, 1994).

To this effect, it is useful to define an equivalence relation - in the following way: s - s/
if and only if one of them is obtained from the other just by a permutation of the indices

of the nodes. It is easy to show that - satisfi.es all the properties required for it to be
an equivalence relation. This induces a partition of ,S** in equivalence classes that we will

denote by Q. First, let us show that, for our purpose, it will be enough to prove the following

two statements.

a) There exists an equivalence class c* € 0 satisfying that, any two of its states are

connected by a path of one step mutations, i.e. Vs, s' € c* there exists a one.step mutation
path going f¡om s to s/ and vice versa.

b) There exists a one-step mutation path connecting any two equivalence classes, i.e.,
Vc,c' ¿ Q andVs € c there exists a state s' €ctsuch that we can reach s'from s bv a path

of one step mutations and vice versa.

Assuming that a) and b) are true, we can now argue that there exists a path of one step

mutatjons connecting any two st¡ict Nash equilibria. The key property used in order to prove
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4 .  DYNAMICS

this is that, a composition of one-step mutation paths generates a one-step mutation path.

\4aking use of this fact, we observe that property a) is satisfied by any other equir,alence
class c' e f). This is because, if we take s,s' € c' thcn, using b), the¡e exist two states
3,1 € c* connected with s and s/ respectively by their corresponding bidirectional one-step
mutation paths. Moreover, using a) the states 3 and I are also connected in both directions
by a path of one step mutations and the¡efore, by composition of these paths, we are able
to connect s and s'. In order to complete the proof, we have to shov¡ that there exists
a path between any two states belonging to different equir,alence classes. As before, this
path can also be constructed by composition of two paths, one path connecting the two
equivalence classes that exists due to b) and, the other one, connecting two states inside the
corresponding equir,alence class that exists due to the preceding argument.

First, to establish a), we shall rely on the following Lemma.

Lemma I Giuen an equ'iualence class c* € Q fomned, by di,stributiae insensi,tiae states then,

for any two states belonging to c*, u)e can reach one from the other bg a one-step mutat'ion
path.

The proof of Lemma 1 will be presented in the Appendix. Interestingly, notice that, the
concept of distributive insensitiveness plays a crucial role for the proof of a).

To illustrate the arguments involved in the proof of b), we present in the text the proof

for the first two parts of the classification on cases provided in Section 3 and provide the
remaining four parts in the Appendix.

1: c ( b,d,e, f. We have to shon- that, Vc, c' e {l and Vs € c there exists a state s/ € /
such that we can reach s' from s by a path of one step mutations and vice versa. All strict

Nash equilibria are complete and essential networks with a number of B-players satisfying

the following: (n - I)pp 1 nB 1 (" - I)pB * 1. Given s € c, there er<ists a state s/ € c/ where

the only difference between them is the distribution of passive and active links. Thus, there

must exist two players i, j e N such that g;¡:l in s, whereas g¿j:0 in s/. We know that

s' is a complete graph, therefore g j¿ : L in s'. Assume player i mutates a¡d deletes her link

with j. Then, with a positive probabilit¡ player j gets a ¡evision opportunity and initiates

the link with player i. This is due to the fact that, j's best response, with respect to the

action (a or B), only depends on the number of players doing each action but not on her

dist¡ibution of active and passive ünks. Then, we would reach another Nash equilibrium

"closer" to s/. If we do the same for all the links that differ between s and s/ we would reach

st. Therefore, by a sequence of one step mutations, we ca¡r go from s to s/. Analogousl¡ we

can reach s from s/ with a path of one step mutations.

2 :  b<c<d ,e , / .  Cons ide r  c , c ' € { l  ands€c .  Wew i l l f i r s tmake theassumpt ion tha t the

proportion of players doing each action in c and c'coincides, that is, nB@):np(ct):ñu.

We rvant to show that we can go from s to a state s' e c'. Recall, from Proposition 2,

that p-players' best response, with respect to the action, is independent of the distribution

of active and passive links. On the other hand, o-players' best response depends on the
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4 .  DYNAMICS

number of active links they have with B-players but not on the number of active links they

have with other o-players. More precisely, given a number nB of B-players np, there is a

maximum number of active links that an a-player can sustain with B-players in equilibrium.

Let this number be denoted Ay q*t".

Consider s' e c' such that it differs with s only in the distribution of active and passive

links.ll There exist two players i, j € N such that g¿j :1, in s, but 9;.¡ :0 in s' (indeed

it has to be the case that gji : I in s'). If i and j are both a-players the process is

straightforward, If we want to go from s to s' we do the following. With positive probability

i mutates and deletes her ünk with player j. By best response, player j forms the link with

z. A similar argument can be made for the reverse transition, from s' to s. Specifically, with

positive probability j deletes her link with i and then by best response i forms the link back

with j. This is a Nash equilibrium because any possible division of passive and active links

between a-players is sustained in equilibrium.

What rvould happen if i € ¡ú, and j e NB? If we want to construct a path from s to s/,

we do the following. By mutation, player i deletes her link with j. Then, if j gets an

opportunity of revising her strategy, she will form the link with i. This is due to the fact

that, in equilibrium, a B-player can be sustaining all the links with o-players.

Assume now that, i e NB and j e No, then the argument is slightly more complicated. If

the number of active links of player j is less than q,rru*, i.e., the maximum number of active

links with p-players allowed in order for an o-player to be doing a best response, then we

can reason as before- That is, player i deletes her link with j by mutation and, by best

response, j forms the link back with i. If, on the other hand., qf : F.í* we cannot use the

same sequence of mutations and best responses as before because, if by mutation, player e

deletes her link with j, forming the link back with i is no longer player 3's best response.

By assumption, rve know that s' is also a Nash equilibrium and therefor. S;'u < #f*. fnis

te l ls  us that  theremust  ex is t  Ie  NB suchthat  g i l : !  ins and g j r :0  in  s ' .  I f  th iswerenot

the case, lhen q1"9 > S#tr because j would have in s' all the active links that she has in s

plus the one with i. This would contradict the assumption that s' is an equilibrium. Now,

let us describe a path of positive probability that leads from s to s'. First, j deletes her link

with l. By best response, I would form the link with j. This would leads us to a state that

we will denote by { which is also a strict Nash equilibrium and. such that ú'u a ffi*. We

can now conclude the argument. By mutation, player i deletes her link with j. Then, j's

best response is to form the link back with i because n;'o a e;".

We can do this rvith all the links that difer (with respect to the direction) between states s

and s'. Therefore, with a process based on one step mutations, we can go from s to s'. The

reverse path can be calculated in an analogous way.

We want to see that this is also true for classes whose states diffe¡ in the number of players

doing each action, that is, nBk) * nB(c'). First, we consider c,C e {l such that np(c) <

11I¡r ot,her rvords, tire indices of the players doing each of the actions coincide for s and s/.
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nBQ') and s € c. We want to show that, there edsts a state s' e c' such that, by a sequence

of one step mutations, we can go from s to s/. Without loss of generality) we can suppose

thal nBQ') : nBk) * 1. Let us assume that s/ has the same indices of players choosing each

action than s, except for a given player i who is doing a in s and p in st.

By mutation, i in state s switches to p, deletes her links with B-players and maintains all her

links with the o-players. Then, by best response, the remaining B-players delete the possible

links they had with plal'er i. They will not switch to a because their best response does not

depend on the distribution of active and passive links, it simply depends on the proportion

of players doing each action and our assumption indicates that n"U * 1 is sustainable as a

Nash equilibrium. Note that, o-players are also doing a best response because there is now

one more player choosing B, therefore their incentives to switch actions has diminished. This

state will be denoted by 3 and has the property that the players doing each of the actions

coincide with the ones in s'. Now, using what we have already proved, by a process of one

step mutations we can go from 3 to s'.

To conclude, we consider that the opposite holds, i.e,, nBk) > np(c'). More precisely, we

assume nB@): nB@')*1. Take s' e c'such that, the indices of players choosing each action

coincides with s except for a given player i who is doing B jn s and a in s'. Given state s,

by a sequence of one step mutations? we can reach a strict Nash equilibrium 3 in which all
p-players are actively linked with all o-players. This is due to the fact that, in equilibrium, B
players are choosing a best response independently of the distribution of active and passive

iinks. Now, we will show that we can reach s/. Player i, by mutation¡ chooses o and deletes

all her iinks. Then, by best response, all B-players get a revision opportunity and form

links with i. This new state has one more player choosing a and all links between a and

B- players are formed actively by the B-players. Hence, a-players are in the most favorable

situation with respect to the direction of the links. Moreover, given that n! is sustainable

in equilibrium, this new state is an equilibrium we will denote it by 3. Notice that, the

set of players choosing each action in coincides for 3 and s'. Finally, using the preceding

argument, via a process of one step mutations, we can appropriately change the direction

of some links and reach s'. Analogousl¡ we can show that there exists a path going in the

5. Summary

In this paper, we study a model of social interaction between partner choice and individual

behavior in anti-coordination games i.e. games where choosing dissimilar actions is individ-

ually optimal. In our context, two players interact only if at least one of them has invested

in establishing a costly pair-wise link, i.e. Iinks are one-sided. As the linking costs 'ianies,

we find that there is a wide range of possible (strict) Nash networks structures: complete

graphs, semi-bipartite graphs, bipartite graphs and empty graphs. The relative numbers of

individuals taking each action depends crucially on the cost of forming links. More specifi-

cally we observe that, for low costs, the only stable network is complete, with ühe proportion

of individuals taking each action coinciding with the mixed strategy equilibrium proportions

of the anti-coordination game. As the cost of link formation increases, a wider set of relative

D
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proportions become sustainable in equilibrium, some of them representing very asymmetric

bipartite graphs. This effect arises due to the trade-off faced by any player between the

advantages of cheap passive links and the gains from being on the shorter side of the popu-

lation. In addition, the payoffs in an anti-coordination game are such that players have an
incentive to be on the short side of the 'market' er.en if aggregate welfare is enhanced when

all players choose the same action. This strategic conflict is a second source of inefficiency.

These two considerations imply that efficiency and equilibrium requirements typically con-

flict in anti-coordination games. Finally, we show that these features of equilibrium outcomes

are robust with respect to the dynamics: all strict Nash equilibria of the static game are

stochastically stable.

It is also left for further research to analyze the concept of. distri,bution insensitiue config-

urations in more general settings. This notion reflects a stronger criterion of stability that
provides a selection with respect to the standard analysis. We feel that distribution insen-

sit'iueness could be seen as one way of introducing 'two-sided considerations' in a one-sided

link formation model.

6. Appendix

Proof of Proposition 3:

We proceed by successive examination of all the possible domains. For each domain, the

first step is to derive the two st¡ict best-response equations, one for the a-players, denoted

by BRcv, and one for the B-players, denoted by BRB. The second step is to understand how

the best response equations allow one to compute the lower and upper bounds on nB. Tn

general, BRB leads to the upper bound, whereas BRa leads to the lower bound. The ¡eason

is intuitive: for anticoordination games, the higher the number of people playing B, the

lower the utility of playing p compared to the utility of playing a. Hence, when p players

are too numerous, BRp will not hold.

1: c ( b,d,e, f . Nash networks are complete.

BRa e (n. - 7)d, + n|e - c(s? + sf) > @.- 1)/ + nBU - c(qi + qf)

The left term of the inequality is the utility obtained by an agent playing a. The right term

is the utility that an agent playing a would obtain if he changed to B. Through elementary

algebraic manipulations, we obtain

BRo. <+ nBk - b) > (rr. - 1X/ - d)

BRa  <+  nB@-b+  Í  -  d )  >  ( " - 1 ) ( / - d )

Similarly, we show that BRp is given as follows:

BRP <+  np (e -b+ f  - d )< ( " -1X / -d , )+ (e -b * f  - d , ) .

2: b < c { d, e, /. Equivalently, Nash networks are of the type d + d. The o-players are

Iinked (actively or passively) with every other agent. Thus, they obtain e with p players

and d with all a players, while they have to pay fo¡ all the ünks they support. Hence, the

utility of an a player is nBe * (n, - i)d - c(q| + Si).If she changed to B, she would sever
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her active links with p players, but keep her active links with o players. She would still be
linked (actively or passively) with all the a players, but would now only be passively linked
with É players. The number of passive links she has with p players is equal to nB minus the
number of active links she has with them. Therefore,

B Ra e npe * (ns - 1)d, - c(q| + sn > @. - t) f + (nB - qnb - cqi

which yields us:

BRa  <+  nBG-b+ Í -d )> ( " -1X /  - d , )+s f  G -b )

Similarly, we can show that

BRP <+  np (e -c+ f  - d )< ( " -1X / -d , )+ (e - c * f  - d . )

Hence, BRB directly gives the upper bound for nB. To find the lower bound for np, first
note that the lowest possible value of nB is equal to (n - 1)pB and that it is attained for

a state such that Vi e N*, Al :0. Second, Iet us show that this state indeed leads to the

lower bound. By definition, this state satisfies BRa. This state satisfies BR p itr

(n - t)--J- 
i- 

< @ - 11--J- 
i- 

¡ 1
J  - d + e - 0  J  - a + e - c

Since ó< c)  wehave e _ b> e-c and #=5a #- .  Thus,  thestate leadingtothe

lowest possible lower bound is a strict Nash equilibrium.

3: d, < c 1b,e,/ and Nash networks are of the type f = a.

By symmetry) we can apply the previous result to no by exchanging / with e a¡rd d with ó.

This leads to

(n - r)p* < na < (n - i)---i: 
j- 

+ 1
e - o + J - c

Since nB :11,-rlat we obtain that, in this case, there exists a strict Nash equilibrium iff

( n - t ) ,  f  
"  . - 1 n p 1 ( n - | ) p p + 7\ ' -  ' '  

f  - c * e - L

4: b,d 1c 1e,/. In this case, Nash networks are of the type p = a.

As in part 2, the proof for the upper bound unfolds in three steps. First, as usual, we derive

the best-response equations for a and p. After simplification, both equations depend on the

number of active links of the agent. Second, we use BRB to show that the highest possible

upper bound fot ng is obtained for a state where no B has an active link (all the active links

are supported by a). Third, we show that this state satisfies BRo, hence is a ralid Nash

equilibrium, and thus leads to the actual upper bound Íor np.The lower bound of np canbe

computed in a similar fashion.

Finally, it remains to check that all the lalues between these two bounds can be sustained

as a Nash equilibrium. To show this, we prove that the ranges of ralues of. np tbat sustain

the two most asymmetric states overlap. This means that any nB between the two bounds

can sustain one of these two states, which completes the proof.
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First, let us derive the best-response equations. The o-players are linked (actively or pas-

sively) with all the B-players. Hence, they earn e times the number of B-players, while they

have to pay for the active links they support. If they changed to p, they would sever their

active links with B players and form active links with all the a-players. They would still be

passively linked with some B-players. These considerations yield:

BRa e nBG - b + f -c) > (' - lX/ - c) + qf k - b)

Similarly, it can shown that,

BRB e nBU -  d+ e -  c)  < (n-  1X/  -  d)  + f  - , t  +  e -  c-  q |k-  d)

Hence, BRB shows that the highest possible upper bound for nB is equal to ñB : (n -
r \  ( f - d \
t)f¡ffi * 1 and it is obtained for the state such that Vi e NO,q\:0. In this state,

the agents playing o support all the links, hence Vi € N,, qf : nB.Therefore, this state
satisfies BRa iff

( f - d )
( " - l )

{ f - ¿ * e - c )

which is satisfied.

Similarly, the lowest possible lower bound. is equal to itB - @-DV!P=q and it is obtained
for the state such that the agents playing p support all the links, hence Ví e Np,e? :no.

This state satisfies BRo by construction, and satisfies BRB iff

(?¿ - l)--ll--c)- < (n - 1¡---(/: 
=)-- - 1' \ J - c + e - b )  

J - c + e - c

wnlcn ls satlsneo.

5:  b,e<c< f ,dandthenetwork isof  type F-d.  Standardconsiderat ionssuggest that

B R a  < +  n p ( " - b + f  - d ) > ( " - 1 ) ( f  - d )

and

B R / e n * ( f - c ) > n , ( d - c )

hence BRB is always satisfied 1f n" 10.

6: b, d, e < c < /. In this case, Nash netwo¡ks are of type 0 - o. It follows that

B R a  < +  n p ( f  - c * e - b ) > ( " - t ) ( / - " )

and

BRB <+

BRp e

6 .  APPENDIX

n*(f  -  c) > 0

n > n R

tr
Proof of Proposition 4:
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1: c ( b,d,e,f . Directly from Proposition 3's proof we observe that a player's best

response does not depend on her distribution ofactive and passive links. This indicates that

all Nash equilibria are distribution insensitive.

2: b 1 c I d, e, /. Nash networks are of the type. As shown in Proposition 3's proof

an a-player with qf active links with B-players and gf, active links with a-players is doing

a best response if and only if,
( f -  n \  ^  ( n _  h \

ns>  (n  -  1 )  ;  t ' ,  ,  
* '  

+q f+' f - d l e - c  "e -b+ Í -d

Note that the RHS of the above expression does not depend on gf and it is increasing in qf .
Therefore, it reaches a maximum at qf = nB. Substituting nB for qf we obtain the followrng
c o n d i t i o n :  

( f  - d \
np>(n-r ) ¡ f f i

which is a necessary and sufficient for distribution insensitive to apply to the o-player.

Considering now the counterpart condition f.or a B-player, note that, in order for this player

to be playing a best response, a necessary and sufficient condition is:

( f - d \
nB < (n - I)TftT;-+ t

BRa does not depend on the number of active links with the a-player. Hence, this condition

is again a necessary and sufficient condition for distribution insensitivity, but now it concerns

and B-player. Combining these two conditions we obtain the desired result.

3: d < c <b,e,/. Nash networks are of the typuE = o. By symmetry, we can apply

the previous result to no by exchanging "f with e and d with b. This leads to the following

condition:
l e - h ] l  ( e - h \

(r¿- i)----l:----:l- <na < (n - l)------::----:z- 11
( e - o + I - c )  ' ( e - 0 + I - c )

Since no : r¿ - nB, we can substitute in the above expression and calculate the necessary

and sufficient conditions for distributive insensitivity in terms of. nB, which is the following:

(n - 1)---(¿l- 1ns 11r, - t¡, ,  
(/  

I  ") , ,  + t' \ J  - c + e - b )  ' \ I  - c + e - b )

4: bd 1c { e,/. This case has been described precisely in the paper.

5: b,e 1c 1f ,d and the network is of type 0 - d. In this part, all nB sustained as a

Nash equilibrium will also be st¡ucture insensitive. Notice that, the best response of a player

choosing a does not depend on the distribution of active and passive with other o-players.

6:  b,d,e<c< / .  In th ispar t ,Nashnetworksareof  type 0-a thereforethedi ¡ect ion

of all the links is already determined and therefore distribution insensitivity is not an issue.

n

Proof of Proposition 5:

The welfa¡e of a complete and essential graph with every agent choosing o is (;)(2d - c).

Any other possible profile would provide a lower welfare because (})QA - c) 2 noo(2d -

47
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n

c) + nBpQd - c)+ n"B(Zd - r) > noo(2d- c) + nBB(2b - c)* n.Bff * e - c) given that
noo*nBB *noB S (!). Thus, lf c < 2d the efficient profile is a complete and essential graph
of agents choosing o.

Proof of Proposition 6:

(i) If c ( 2b then all links are profitable and therefore the efficient network must be complete.

In order to obtain the size of nB that maximizes the welfare we must work out the following

maximization problem:

max, noo(2d - c) + nBB(2b- c) + n,B(f * e - c).
O 1 n 9 1 n

Taking into account that in a complete and essential network

( " ; "u) :

*  r e + f  - 2 d * t # , n  , , f tnB: l  e+ f  4 :n -J r :s \c ) r ,
" I J * - l

where g(c) is piece-wise linear and increasing.

(iii) If 2d < c < e* / then the only links that will be profitable are the ones between players

choosing different actions. Thus noo = npp = 0 and .the maximization problem we have to

solve is the followins:

t 'na\ @6)@9 - l )
ñ : : :  |  -  !  : : . i - : - l - -' - P p  

\ r  l  2\ -  /

r¿o7: ( "d fu -nñ .

the above expression reaches the maximum in,

*  , € +  f  - 2 d l - * , n  , , nnp: l  
e+T_@+r iJ r :o rc t r '

(ii) If 2b < c < 2d then the links between two players choosing B are not profitable, which im-

plies that nBB:0. Apart from these Iinks all other links will be formed. The maximization

problem we have to solve is the following:

^gT n.- (2d -  c)  *  n"B( f  I  e  -  c) ,
O1np1n

It is easily seen that:

( n - n p ) ( n - n p - t )
' a Q a  -

and

' n a F : ( n f i ( n - n B )

the solution of this maximization problem is:
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o$H"n"s ( f te -c ) '
It is easily seen that

n a 7 : ( " 8 ) ( " - n p ) .

The solution of this problem is simply

n h :  n l 2 '

¡

Proof of Proposition 7:

It is sufficient to shos¡ that from any initial state ss, there is a positive probability of reaching

a strict Nash equilibrium. We have to study 6 different cases depending on the relation

between the cost c and the parameters from the payoff table of the anti*coordination game

(that is, depending on the type of network that arises in equilibrium).

1: c ( f ,d,e,b Given a state ss we have to show that with a positive probability we

can reach a strict Nash equilibrium. Consider the following process. One after the other,

individuals have the opportunity of revising their links (that is, one individual per period.)

All links will be formed because the linking costs is lower than all possible payoffs of the

anti-coordination game. This will lead.s us to a complete and essential network (F = a)

that we denote by s1. If the proportion of players doing each action coincides with the one

required in equilibrium, i.e., (" - l)pB < n"i < (" - l)pB * 1, then s1 would be a strict

Ittrash equilibrium and therefo¡e the proof would be completed. Assume that this is not the

case, that is n| < (, - 7)pp.t' In this network there are more a- players than what the

equilibrium prescribes. Thus, we deduce that a-players are not choosing a best response.

With a positive probability a player choosing o gets a reüsion opportunity. She would

maintain her links and switch to action B. This would leads us to a complete and essential

state s2 with one more player choosing a . If we still bave n"f < (n-I)pB, then players

choosing a are still not doing a best response. As described before, there is a positive

probability that one of them switches to action 0. After a finite number of periods we would

reach a state s¿ satisfying, ("-I)pB <nff < ("-L)pB * 1 and thereforewe would reach a

Nash equilibrium.

2: b < c < f ,d,e. Consider an initial state s¡. One after the other, individuals have the

opportunity of revising their links. All links will be formed except those between two B-
players. This would leads us to a state that we will denote by s1 in which the network is

of the type 0 ¿ d. If s1 is an equilibrium this would complete the proof. If this is not the

part, then there is at least one individual who is not doing a best response. Recall from

Proposition 4 that there exists a number of B-players, n|, which is distribution insensitive.

121f,  on the contrary,  n" /  > (n-L)pp+ 1 the proof  would be analogous
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we are assuming that s1 is not an equilibrium, therefore nf¡ * n"l. Assume that n"/ < nfi.
13 There are less players choosing p than what distribution insensitive prescribes, thus, all
p-players would be choosing a best response. Since s1 is not an equilibrium, at least one

a-play'er is noü choosing a best response. Consider a player i choosing a who is not doing a
best response. If i gets a revision opportunity, she would switch to action A and, delete the
possible links she might have with B-players. Then, all players in NB would get a revision
opportunity and they would delete thei¡ links with i. This leads us to a netwo¡k with the
structure 0 = d that we will denote as s2. Notice that s2 has one more B-player than s1,
i.e., n"f : n"á + 1. If s2 is an equilibrium, then the proof would be completed. If it is not
an equilibrium, then 

""á 
< 

"b.Using 
the same argument described above, we can construct

a positive probability path that leads us to a Nash equilibrium. This is due to the fact that,
after a finite number of steps, we would reach a state s¡ such that n"É : nb and we know
that this state is an equilibrium, no matter how passive and active links are distributed

among players. n

3 :  d<c<  f , b ,e .  I t  i sana logous to thep roo f  o f  pa r t2 -  Wes imp lyhave toexchange the

roles of nB, d and f by no, ó and e, respectively.

4: d,b { c 1 e, /. Consider an initial state s6. All players get a revision opportunity, one at

a time, just over their links, This will leads us to a state s1 which is a complete and essential

bipartite graph (B = a). Recall, from Proposition 4, that there is a particular r.alue n|

that is distribution insensitive. In other words, any state with that particular proportion

of players doing each action, satisfi.es that all possible distributions of active and passive

links between o and B-players determine an equilibrium network. This indicates that, if

s1 is such that n"ut < nfi the incentives for a B-player üo switch to action a climinishes

Therefore, if s1 is not an equilibrium, then a player choosing a is not doing a best response.

This is because the B-players are doing a best response independently of the distribution

of active and passive links. If, by contrary, 
""i 

> 
"h 

and s1 is not an equilibrium, then

a player choosing p is not doing a best response. Let us suppose that we are in a state s

which satisfies the inequality 
""a' 

< 
"b 

(if ihe reversed inequality holds the proof would be

analogous). We want to prove that with positive probability (using the unperturbed best

response dynamics) we can reach a strict Nash equilibrium. If s1 is an equilibrium, the proof

would be compieted. If ii is not, at least one player choosing a, say i, is not doing a best

response. With positive probability, i gets an opportunity of revising her strategy. If this

is the part, she would switch to action p, delete all her links with the B-players and form

links with the o-player. If then, all B-players get a revision opportunity, they would delete

the possible Iinks they might have with i. This new state, that we will denote as s2 has one

more B-player i.e. n"U' : n"p' + 1. If sz is an equilibrium the proof would be completed. If it

is not an equilibrium then n"u' < n|. Using the same process described previously, 1ve can

construct a positive probability path that leads us to a Nash equilibrium. This is due to

the fact that after a finite number of steps we would reach a state s¡ satisfying ,"t : nh

and we know that this will be an equilibrium, no matter how passive and active links are

distributed among players.

t3 l f  
" r ; t  

)  n |  the proof  goes along the same l ines
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5: b, e 1 c 1 d,/. Consider an initial state s0. All players, one at each time, get a revision

opportunity over their links. This would leads us to a semi-bipartite graph (0 - d). Denote
this state by s1. Recall from Propositions 3 and 4, that s1 will be a strict Nash equilibrium
if and only if (n - I)pp < n"i < n. If s1 satisfies this inequality, then .s1 would be a Nash
equilibrium and therefore the proof would be completed. Il on the contrary s1 is not an
equilibrium then nfr < (n-l)pB. In this part, a-player are not choosing a best response.

With a positive probability, one of them, say i, gets a revision opportunity and therefore
switches to action B. Then, if all a-player get a revision opportunit¡ just over their links,
they would delete the possible links they had with i. Also, B-players would delete their links
with i. Then, if i gets a new revision opportunity she will form the links with the a-player.

This process leads us to a directed semi-bipartite graph that we will denote by s2. This
state has one more p-player i.e- n"f : n"U' *1. If. n"f < (n - l)pB then we would repeat the
process. After a finite number of steps, we would reach a state s¡ such that the inequality
is reversed, i.e. n"f > (n - l)pB. Therefore, we would have reached a Nash equilibrium.

6: b, d, e < c < /. Consider an initial state s¡. All players get a revision opportunity, one at

a time, just over links. This would leads us to a state s1 which is a complete and essential

bipartite graph (p --+ @). Notice that, from Proposition 2, s1 would be an equilibrium if and
'  . "  l n - 1 ) l f - c )only if ft**€fi < n"i < n.If n"i satisfies the inequalit¡ then s1 would be an equilibrium,

and therefore we would have finished wiih the proof. If not, i.e., n"u' < ffiffi .n o-
player are not choosing a best response. Thus, with positive probability one of them, say

i. gets the opportunity of revising. In such a case, she would switch to action 0 and would

form all the links with o-player. If then, all B-players get a revision opportunity, they would

delete their links with player i. This would leads us to a state s2 that has one more B-player.
If s2 is not an equilibrium, then o-player are stiü not doing a best response. We then repeat

the process as described above. We know that, after a finite number of steps, we would

reach a state s¡ such that ##*B < n"f < n, and therefore we would reach a Nash

equilibrium.

Proof of Lemma 1:

Consider c* € Q an equivalence class composed by distribution insensitive states. That is,

the number of B-players coincides with one of the distribution insensitive number of B-players
i .e .  n | .

First, we will show horv to go from one state to another of the equivalence class c* when the

difference between states just relies on permutation of indices between players choosing the

same action. For instance, consider two states s1,s2 € c" with the only difference between

them being that strategies for player 1 and 2 are permuted but both players are choosing

action o. Consider state s1, player 1, by mutation, imitates precisely the strategy done by
player 2.14 Then, by best response, and because we are considering a distribution insensitive

state, all other players will form or delete their links ,depending on the case, with player

1. After this, we would reach a strict Nash equilibrium where player 1 will have the exact

laThe imitation is only ¡eleva¡rt with respect to the link formation because the action by assumption

is alreadv the sa¡ne fo¡ both plavers.

5 1

D
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same strategy as player 2 had previously. Even though the structure of the network might

have changed, given that rve are in a distribution insensitive state, we still have a Nash

equilibrium. Analogously, player 2 can imitate the original strategy of player 1 and end up

having the exact same strategy as player t had in state s1. This will leads us to a state in

the same equivalence set but in which there has been a permutation between the strategies

of players 1 and 2. This is precisely the state we have denoted by s2.

To finish, we wouid like to consider a case in which the players for which we want to permute

strategies are doing different actions. Say, for instance, that player 1 is doing a and player

2 is doing B. Consider two states s1,s2 € c* with the only difference between them being

that the strategies for players 1 and 2 are permuted. In contrast with the previous part,

players 1 and 2 are choosing different actions. First of all, we have to distinguish between

the following cases:

i) n| is in the upper bound obtained for the strict Nash equilibrium,

ii) n| is in the lower bound obtained for the strict Nash equilibrium, and

iii) n! is in the interior.

Let us construct the proofjust for case i).15 Notice that, for this case, Nash networks are

of the type 0 = d.

Given state s1, by a path of one step mutations, we car] reach a state in which all p-players

are forming the links. This will be a strict Nash equilibrium because we are in a distribution

insensitive state. Then, by mutation, player 2 switches to action a. Then, by best response,

given that now there is one mo¡e a-player, all B-players form the link back with player 2.

Note that cv-players rvill be doing a best response because all the links are passive links for

them and given that n! is in the upper bound obtained for the strict Nash equilibrium, we

will still be in the range in which the number of B-players can be sustained in equilibrium.

Therefore, we would have reached another strict Nash equilibrium. Then, player 1, by

mutation, switches to action B and forms actively all the links with the o-players. By best

response, the a-players will delete the possible active links they have with player 1. This

will also be a distribution insensitive state that will be denoted by 3. Although I might not

be in c* it is easy to show that, by a path of one step mutation on the direction of the links,

we can reach a state 3 € c*. Notice that if C # tz it must be because of permutations in the

indices of nodes that are choosing the same action. To conclude, using rvhat we showed at

the beginning of the proof, we can con reach s2 from 3 by a path of one step mutations. D

Proof of Proposition 8:

Proof of pari b)

The first two parts have been proved in the paper. Here we present the proofs of the

remaining parts,

3 :  d<c<b ,e , / .  Thep roo f  i sana logous topa r t2 .  Wes imp lyhave toexchange the ro les

of nB, d and / by no, b and e, respecti',ely.

52

15The ¡e¡nainir¡g cases can be proved in an analogous way
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4: d,b < c < e, /. Recall from Proposition 4 that there is a particular value n! that is

distribution insensitive. This indicates that, if we consider a state s such that nfu ( n!, then

B-players can be incurring in the cost of all their links, whereas a-player have a maximum

number of active links they can support in equilibrium. On the other hand, if we consider

a state s such that nsu ) n!, then o-player are the ones that can be incurring in the cost

of all their links in equiübrium, whereas B-players have a maximum number of active links

they can support in equilibrium.

Taking this into account, let us consider two equivalence classes c, c' e l) and s € c, we want

to show that, there exists a state s' € c/ such that the¡e exist a one-step mutation path

connecting s rvith s'. Let us assume that nB(c) -- np(c) :ñ.8 1 nh.'u

Consider s' e c' such that the indices of nodes choosing each action coincides with s. Hence,

the differences between s and s' must be in the distribution of active and passive links.

Then, there exist players i, j  e N such that 9t¡:7 in s, but g;¡:0 in s' (indeed it has to

be the case that gji : 1 in s'). Suppose that i e No and j e ,x/B. If we want to go from

s to s', we do the following. By mutation, player i deletes her link with j. Then if j gets

an opportunity of re'r'ising her strategy she will form the link with i. This is due to the fact

that, in equilibrium, a B-player can be sustaining all the links rvith a-players.

Assume, by contrary that, i e NB and j e No, then the argument is more subtle. If the

number of active links of player j is less than fff , i.e., the maximum number of active

links allowed in order for an o-player to be doing a best response, then we can reason as

before. That is, player i deletes her link with j by muüation, and by best response, j forms

the link back with i. If, on the other hand, qf : S#:* we cannot use the same sequence of

mutations and best responses as before, because if, by mutation, player i deletes her link

with j, forming the link back with i is no longer player j's best response. By assumption,

we know that s/ is also a Nash equilibrium and therefor. S:"8 S Éf This tells us that

there must exist I € IIB such thaf, g¡t: 1 in s and g¡r : 0 in s'. If this were not the case,
,  

" /  
, 4  * ^ - .  .

then qj '' > q#f because j would have in s' all the active links that she has in s plus the

one with i. This would contradict the assumption that s' is an equilibrium. Now, let us

describe a path of positive probability that leads from s to s/. First, j deletes her link with

l. By best response, I would form the link with j. This would leads us to a state that we

will denote by 3, which is also a strict Nash equilibrium and such that n;'u . ea,fl. We can

now conclude the argument. By mutation, player i deletes her link with j. Then, j's best

response is to form the link back with i because ,j'u a n#:'

We can do this with all the links that differ (in the sense of the direction of the link) between

states s and s'. Therefore, with a process based on one step mutations, we can go from s to

Now, we assume that the number of players choosing each action in c and ct does not coincide.

For instance, assume that nB@) < nsk'). We want to show that we can still find a path

l6The proof  whenñB ) ,  nf i  goes along the same l ines.
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of one step mutations going from s to a state s' e c' . Also suppose that, nB@') < nP.17

Without loss of generality, we can assume that nBQt) : np(c) * 1. Consider s' such that

the indices of nodes choosing different actions coincides with s.except for a player z that

is doing p in s' and o in s. Given s, by mutation, player i switches to action p, deletes

all her links with B-players and forms links with all o-players. Then, by best response, all

B-players delete links with ¿. This leads us to a Nash equilibrium, that we will denote by s,

satisfying that n! -- nBk').It is a Nash equilibrium because) now the number of B-players
is larger and therefore, o*players have less incentives to mutate than before. Also, B-players
are doing a best response because 

"ñ 
< 

"h.As 
we have previously proved, we can go from

3 to s'by a process of one step mutations.

Let us assume by contrary Lhatnp(ct) <np(c). Also suppose that nBk) < n;.18 First, by

a process of one step mutations, we can go from s to a state, denoted by 3, that has the

property that all p-players are incurring in the cost of the links with o-players. That is,

nj'" : no for all j e l{p. Now, by mutation, one player j doing p deletes her links and

switches to action a. By best response, all B-players form links rvith j. Now, the o-players

are choosing a best response because they are in the most favorable situation with respect

to links and the number of B-players coincides with the one in c' which, by hypothesis, is

sustainable as a Nash equilibrium. Thus, this path leads us to a Nash equilibrium denoted

by Ssatisfyingni': np(c'). To finish, using what we have already shown, by a process of

one step mutations, we can reach state s/ from 3.

5z b,e 1c 1d,/. Recall from Proposition 4 that, in this part, all possible nB in equilibrium

are distribution insensitive. Similarly to rvhat we have already done in previous proofs, let

us start by considering two equivalence classes c,C e I such that nB@) : nBk') and s € c.

We will show that, by a path of one step mutations, we can go from s to a state s' e c'.

Take s' such that the indices of the players choosing each action are the same than in s,

but, the distribution of active and passive links between a-players differs (this must be the

case because c*  c ' ) .Hence,  there ex is t  i , j  e  No such that  gt ¡ :1 in s  but  9¿j :0 in  s / .

If playeli, in state s, mutates and deletes her link with j. Then, by best response, player

j forms the link again with i because all possible dist¡ibution of active and passive links

between o-players are sustained in equilibrium. If this is done for all the links in which s

and s' differ, this would Ieads us to s/.

Next, let us consider candc'such that np(c) <nBk'). Without loss of generality, we can

suppose that nB(ct) : nB(c) * 1. Take s' < c' such that the indices of nodes doing each

action is the same than in s except for a given player ¿ that is doing B in s' and o in s. We

want to describe a process of one step mutations that leads us from s to s', By mutation,

player i doing o mutates, switches to action p and forms links with all o-player. Then, by

best response, o-player delete all the possible links they had with'i. Also, by best response,

all p-players delete their links with i. This would leads us to a Nash equilibrium denoted

rTlf n2 q n6Q') t,he proof would be analogous
18If n"u < nB(c) the proof would be ar:alogous.
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by 3, such that n! : nt. Using what we have proved in the previously, we can construct a

one-step mutation path from I to st-

To finish, consider that the inverse inequality holds, that is, nBQ) > nBG').Now, s' € c,
is such that the indices of nodes doing each action is the same than in s except for a given

player i that is doing c in s' and 0 in s. We also have to show that we can go from s to s/

by a process of one step mutations. Player i doing B in s, mutates a¡d switches to action

c. Then, by best response, all other B-players form links with i. This would leads us to a

Nash equilibrium denoted by 3, satisfying Lhat, n?, : nl . We know, by what we have already
proved, that we ca¡r go from 3to s/ by a process of one step mutations.

6l b,d,e < c < /. In this particular part, there is no flexibility in the distribution between

active and passive links because the cost of the links has to be incur¡ed by B-players. If two

equivalence classes c and c' are different, it must be because, the number of B-players in each

class is different, that is nBk) * np(c'). First, let us assume fhat nB@) < np(c')- Without

loss of generalit¡ we can suppose that nB(c') : nBk) * 1- Consider s € c and s' € c/ such

that the indices of nodes doing each action coincides except for a given player z that is doing

a in s and B in s'. By mutation, player e in s switches to action B and forms links with all

a-players. Then, all the other B-players, by best response, delete the links they have with i.

This leads us precisely to state s/. To finish) assume that the inverse inequality holds, that

is, np(c) > nBG'). As before, we can suppose that nBQ):nB(e') * 1. Now, s' e c'differs

from s in that there is a player i doing B in s that is doing c in s'. By mutation, player

i doing B in s deletes all her links with the a-players and switches to action o. By best

response, all B-players form links with ¿. This leads us precisely to state s/- !
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CHAPTBR 3

A Cost-Sharing Model of Network Formation:

Anti-Coordination Games

Abstract

We describe a new model of net¡vork formation that encompasses as extreme cases the

classical one-sided and two-sided models. We assume that an agent can unilaterally propose

to form links with other agents to play with them an anti-coordination game. The link will

form, however, only if the proposed agent accepts the offer. The cost of the link is incurred

by the two agents involved. Nevertheless, the proportion paid by each agent is specified

by an exogenous parameter which determines the degree of asymmetry in the roles of the

proposer (active) and proposed (passive) agent. We obtain the Nash equilibria of the social

game and show that as the division of the cost is more equitable, the set of Nash equilibria

shrinks. We also consider an evolutionary process in which the "direction" of some links

is reconsidered rvith a certain probability. This lea¡ning dynamics permits to select among

the Nash equilibria those which are d'istribut'ion'insensit'iue, i.e. robust to changes in the

direction of links.

1. Introduction

Network structure is crucial in determining the nature of social and economic outcomes (see

e.g., Anderlini and Ianni, 1996; Ellison, 1993; Goyal, 1996; Morris, 2000; Young, 1993).

Recentl¡ several authors have studied how networks emerge and how the decisions of indi

viduals contribute to the network formation (see e.g., Aumann and Myerson, 1989; Bala and

Goyal, 2000; Jackson and Wolinsky, 1996). Two major models of network formation have

been proposed: one-sided and two.sided. In the former case, agents unilaterally propose to

form links and pay the full cost of them. Consequentl¡ the netwo¡k fo¡mation process can

be formulated using a non-cooperative approach and thus the standard Nash equilibrium

concept applies. In the latter case, links are formed bilaterally since the cost of a link is

divided equally among the two agents involved in it- Here, the notion of stable networks

rests on pairwise incentive compatibility, thus making this approach closer to cooperative

game theorl'. However, many real-life examples of network fo¡mation processes lie some-

where in between one-sided and two-sided frameworks. Normally, the two agents involved

incur in some cost and therefore mutual agreement must be reached to form the link. Most

frequently the cost is not equal since the agent proposing or initiating the link contributes

more. An illustrative example of this "general cost-sharing" model is the link established

between trvo scientists when writing a paper; if the agent initiating the link w¡ites the first

version of the manuscript, she is assuming a higher effort than the other. Another stylized

o t
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example is found in mobile telephone communication netwo¡ks in USA, where incoming calls

are costly. More precisely, a person receiving a phone call is charged an amount representing

a small percentage of the cost, that will naturally be paid in the larger proportion by who

makes the call (the agent initiating the link).

In the present paper, we develop a "general cost-sharing" model of network formation that

encompasses as extreme cases the one-sided and two-sided link models. Specifically, we

a,ssume that (active) agents can unilaterally propose links to other (passive) agents. Links

are costly- In particular, the minimum cost required for the link to form is c > 0. The

proposer or act'iue agent of. the link incu¡s in a sunk cost of )c where \ el1l2,1], whereas

the cost incurred by the proposed or passiue agent in case of accepting the offer is (f - ))c.

The value of ,\ is exogenously given and dictates the degree of asymmetry in the roles of

the active and passive agents in the process of forming ihe link. In terms of how the cost of

the link is supported by the agents, our model becomes one-sided if ) : 1 and two-sided if

) , :712 .

In the "general cost-sharing" model proposed in this paper we analyze a particular setting

in which an agent plays a 2 x 2 anti-coo¡dination game (i.e. a game whe¡e a player's best

response is to behave differently than the opponent) with each of her "neighbors". Thus,

apart from the decision over the links to form, an agent must decide the action taken in

the accompanying game. Therefore, rervards from different actions depend crucially on the

actions chosen by other individuals. Early studies on the internal evolution of networks fo-

cused on situations rvhere the network simply describes the possibilities for transmission of

information from one individual to another. In these cases, the neüwork evolves taking into

account the incentives of individuals to form or sever links in order to obtain more informa-

tion (e.g. Jackson and Wollinsky, 1996; Bala and Goyal, 2000). Later publications, however,

such as Goyal and Vega-Redondo (200a) Jackson and Watts (2002) and Bramoullé et al.

(2002), have analyzed for both coordination and anti-coordination games more elaborated

frameworks where an agent plays a game with each of her partners. In the present paper,

we have followed this last approach and studied the influence of the network structure on

individual's behavio¡ when playing anti-coordination games.

We assume that an agent's strategy is a specification of the set of agents with whom she

proposes to form links and her action in the underlying anti-coordination game. As observed

later in the text, our model can be analyzed using standard non-cooperative tools. This

contrasts rvith previous papers in which the so cilled pai,rwi,se stab'il'ity concept is used

(see e.g., Jackson and Wolinsky, 1996; Jackson and Watts, 2002)- This last tool has some

disadvantages since agents cannot simultaneously change more than one component of their

strategy. In particular, this rules out the possibility that an agent might decide to change

her links precisely because she is also changing her action in the game.

We provide a characterization of the Nash equilibria of the social game induced and show

how this depends on the cost of ihe link c and the cost share ,\. In the analysis of the results,

we distinguish three different parts:

1) To specify the type of links that will form in equilibrium and hence provide the

qualitative features of the network"
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2) To find the proportion of agents choosing each action in the anti-coordination game

in equilibrium,

3) To parti.ally determine how the active and passive links are distributed in equilibrium

by obtaining the dist¡ibution insensitive states, i.e. equilibrium states robust to changes in

the direction of links.

Since we want to explicitly account for the influence of the cost in the equilibrium predictions,

the first results in the paper (Propositions 9 and 10) are presented considering the cost share

as a fixed parameter and changing the values of the cost of link formation. We generally find

that, as the cost of link formation increases the equilibrium network becomes more sparse. In

addition, the cost has a profound impact on the number of players choosing the two actions

in the antlcoordination game. When the cost is low, there is a unique proportion of players

choosing each action which roughly corresponds with the proportion that would a¡ise in

the mixed strategy Nash equilibrium of the two person anti-coordination game. For higher

values of the cost, we typically find a rvider range of proportions sustained in equilibrium.

We show how this range evolves as c increases, stating the dependence on the value of ).

The Nash equilibria of the game can also be characterized using an alternative approach. We

consider the linking costs c as a fixed parameter and explore the influence of the cost share

) in the equilibrium predictions (Propositions 11 and 12). Here, our results are clear in the

following sense: os ) decreases the range of proportions sustained in equtlibrium shrinks. In

other rvords, the higher the difference in the cost incurred by the active and passive agent

in the link, the higher the multiplicity in the proportions of agents choosing each action

sustained in equilibrium. The intuition behind this result is the following. The higher the

asymmetries in the roles of active and passive links, the more we can use the direction of

links to sustain a variety of proportions as equilibrium since an agent may be induced to

choose an action that is relatively popular, because in equilibrium agents choosing the other

action are actively forming all the links with her. In fact, in one-sided models this range is

the highest possible whereas in two-sided models there is a unique proportion sustained in

equilibrium.

Among the equilibria that exist in our model, we pay special attention to those sharing

a common feature. These are the di,stribut'ion insens'iilioe states. We say that a state is

distribution insensitive if it is a Nash equilibrium for any possible distribution of active

and passive "bidirectional" links, i.e. links that could be supported actir.'ely by either player

forming it. Proposition 13 shows that there exists a proportion of agents playing each action

such that all Nash equilibria with this proportion are distribution insensitive. Moreover, for

most values of the parameters this proportion is unique.

We conclude this paper by extending the model to a dynamic framework- We provide a

learning process where agents update their strategies using a myopic best response. More-

over, with a certain probability, the direction of a bidirectional link changes. This dynamics

always converges to an absorbing set formed by distribution insensitive states (Proposition

14). Thus, among the multiple strict Nash equilibria found in the static model this dynamics

selects those which are distribution insensitive.
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The rest of the paper is organized as follows. The model is introduced in Section 2. The

main results of the paper are presented in Section 3. The dynamic results are elaborated in

Section 4. Finallg Section 5 concludes. Some proofs have been relegated to the Appendix.

2. The rnodel

Let // : {7,2,... ,n} be a set of players where n } 2. We are interested in modeling a

situation where each of these players can choose the subset of other players with whom to

interact via a fixed bilateral game. More precisel¡ the inte¡action between any two linked

players is given by a2 x 2 symmetric anti-coordination game with the common set of actions

A:  {a,p} .  Ib .eachpairof  act ions a,a '€A, thepayof f r (a,a/ )  earnedbyaplayerchoosing

a when her partner plays a' is given by the following table:

Table I: Payoff Table

This payoff table describes an anti-coordination game (i.e. an agent prefers to behave

differently to her opponent) with two pure strategy equilibria, (a,B) and (0,"). In other

words, we consider the following restrictions on the payoffs:

(2-1) d < f a n d b < e

We shall also assume that every player i is obliged to choose the same action in the (generally)

seve¡al bilateral games that she is engaged in. This assumption is natural in the present

context; if players were allov¡ed to choose a different action for every two-person game

this would make the behavior of players in any particular game insensitive to the network

structure.

Given an agent i e lrl, she can make proposals to other agents in the population to form a

link. Formally, let d : Glr,dz,...,sf) be the set of proposals of agent i. We suppose that

f t ¡ e {0 ,1 }  and  9 l ¡ : l  i f  ¿hasp roposed to fo rma l i nkw i th  j  aods l ¡ : 0o the rw ise .  The

profile (s1,53,...,gff) generates the directed, network of proposals denoted by gP hereafter.

The strategy space of player i can be identified with S¿ : gf * A, where Q! is the set of her

proposals and y' is the common action space of the underlying bilateral game.l

There exists a link between two agents in the population if at least one of them proposes

it and the other one is willing to accept the offer. We refer to the proposer as Lhe actiue

agent and to the receiver of the proposal as tbe passiue agent. Links are assumed costly; and

specifically, the minimum cost required to form a link is c ) 0. The active agent of the link

incurs in a sunk cost of )c where ̂  € í112,1], whereas the cost incurred by the passive agent

in case of accepting this offer is (1 - ))c. The value of ) is exogenously given throughout the

paper. The reader is referred to Figure 1 for a description of the link formation process. The

1I:r our for¡nulation, pla;rers choose proposals a.trd actiolrs simrrltaneottsl¡r. A first glance to t,he the

sequential counterpart of the model shows that set of equilibrium or¡tcomes would enlarge.

2
1
I

a

a u (
R f o
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The total cost of the link is c

directed link

6 1

acttve
agent

The cost incuned by i
when proposing the link
is ,lc

j

passive
agent

The cost incurred by j if she
accepts to form the link is
(l-I)c, otherwise she incurs
in no cost

FlcuRs 1. Link formation process

acceptance of a link is not modeied explicitly as part of a second stage of the game. Instead,

we incorporate in the model the assumption that, a passive agent will response optimally to

the proposer's offer. Formally, consider agents i, j e N then, a link between them is formed

if and only if one of the follo'rving conditions hold:

o Both agents are active, i.e. min{gPu, ún} 
:t

o One of the agents (say i) is active and the other one gets a non-negative net payoff

from the link. Formallv.

ú ,  : " r r ,  9 ! t :  0  and '  t r ( a ¡ , a¿ )  -  ( 7 -  ) ) c  >  0

Given (gn,(o¿)¿e¡¡) a network of proposals and specific profile of actions, we define the

network of d'irected links (denoted by .9) as the corresponding graph in which all proposals

that were not accepted are deleted. Formally, g : (gt,...,gn), where g¿ : (g¿t,...,g¿n)

represents the set of links proposed by i that actually formed. That is, Qt¡ € {0,1} where

9q : 7 if and only if agent 'l has proposed the link with j and either j has also proposed

the link with i or i's proposal is accepted by j.

For the sake of completeness, we denote by p the undirected graph resulting from g. Formally,

g : (0u...,9-) where for each'i € N, ñ : (7n,...,7¡n) represents the set of agents with

whom i plays the anti-coordination game. That is,p¿¡ € {0,1} whereg;¡:max{g¡j,gj¿}-

In order to define the payoff function of the social game we need some additional notation.

Let ,n/(i; Sp) : {j € lü s.t. ú¡ : 7) be the set of agents to whom i has proposed a link

and denote by u(i;gp) iis cardinality. Similarl¡ let //(z; d : {j € lú s.t. 9;¡ : l} be the

set of agents that accepted links proposed by i and denote by o(i;9) its cardinality. Finally,

denote by N(i;d) : {f € N s.t. gq : l} to the set of agents with whom player i plays the

anti-coordination game, while u(i;9) is the cardinality of this set. It is straightfo¡ward to

see that the following inclusions hold:

¡ / ( i ;g)  c  l l (z ;ee)

and

¡ f  ( t ;s)  e N(, ;9)

Notice that, in general there is no inclusion between the sets N (i; S') and l/(i; 9).
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In tlre setup being considered, the payoff of a player i from playing some strategy s¿ : (gl , "u)when the strategies ofother players are given by s-¿ : (sr, s2¡..si_t,si+I...,s.) can be
written as follows:

(2.2) f I ¿ ( s ¿ , s - ¿ )  :  t  r ( a ¿ , a ¡ )  -  
" ( i ; s p ) . ) , c -  

( u ( i ; E )  -  r ( i ; g ) ) . ( 1 -  ^ ) c
i  eN ( i ;A)

where g and p are determined as a consequence of s : (gp, (o¿)¿e ¡,').

Individual payoffs are aggregated across all ihe games played. Moreover, a player's cost is

computed as the sum of the costs incurred from all the link she proposes plus the cost of those

links she accepts. In our framework, the number of games an individual plays is endogenous,

and we want to explicitly account for the influence of the size of the neighborhood. This

motivates the aggregate formulation.

The above payoff expression allows us to particularize the standard notion of Nash equilib.

rium as follows. A strategy profile s* : (si, . . . s;) is said to be a Nash equili,brium for the

game if, for all i € N,

(2.3) l I¿(si ,  s i¿) )  f I¿(s¿, s|¿),  Vs¿ e ^9¿.

A Nash equilibrium is said to be strict if every player gets a strictly higher payoff with her

current strategy than she would with any other strategy.

3. Nash equilibria analysis

In this section we have analyzed the set of strict Nash equilibria of the social game. We

describe fi¡st the st¡ucture of I'{ash netwo¡ks providing a complete characterization of the

type of links that form. Second, we calculate the range of possible r,alues for the number

of agents playing each action (a or B) in equilibrium. As mentioned previously, we will

present the ¡esults from two different perspectives: (i) Considering ) as a fixed parameter

and varying c (ii) Considering c as a fixed parameter and varying .\.

Anti-coordination games have different possible payoffs configurations and we will see that

they also lead to different types of Nash networks. By definition, we have d < f and e > b.

Without loss of generality, assume that

f >e

In other words, B-players (i.e., players who choose action É in the anti-coordination game)

earn a higher payoff than o-players (i.e. players who choose action a in the anti-coordination

game) in equilibrium. If all the parameters are distinct (i.e. the non degenerate cases), there

are three possible payoffs ordering.

C a s e l  :  ó < e < d < f

C a s e 2 :  ó < d < e < f

C a s e 3  :  d < b < e < f

62
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Each ordering corresponds to a different type of anti-coordination game. In Case 1, the payoff

of coordinating on o is higher than the payoff of an a-player in equilibrium. Therefore,

Case 1 represents exploitation games akin to the Hawk-Dove game. In Cases 2 and 3,
equilibrium payoffs are higher than any other payofs. Cases 2 and 3 represent situations of
pure complementary, in rvhich both players earn higher payoffs at equilibrium than out of

it. In Case 2 the payoff of coordinating on a is higher than the payoff of coordinating on B,
while the situation is reversed in Case 3.

It is worth noting that Nash networks are essential. In other words, ú¡ : 7 + gl¿: 0 in

equilibrium.2 On the other hand, their structure depends on how c and ) compare with the

parameters of the game. For example, when )c ) b (i.e. the cost of proposing a link is higher

than the payoff obtained when both agents play É), B-players do not have an incentive to

form links with other B-players. Therefore, in equilibrium there is no link among B-players.
Instead, when )c ( b, B-players are willing to propose links with any other agent playing B.
In addiiion, passive p-players are also willing to accept these offe¡s since (1 - ))" < b. Thus,

in equilibrium, all B-players are directly linked with all other B-players and the network of

links among them is essential and complete. The argument is similar for any other type of

link. For example, if ,\c > /, there is no link proposed from B-players to o-players. If the

contrary holds, i.e. )c < f , all p-players would want to propose links with all o-players.

These links would form, however, only if the o-players are willing to accept these offers, i.e.

( I - \ ) c < e .

The following shorthand notation will allow us to refer to all the possible types of Nash

networks. This is a qualitative representation of the network where we simply specify the

type of links that are profitable, i.e. that will form in equilibrium (if an equilibrium actually

exists). Here, "to be linked to" is taken to mean that the links go in only one direction,

whereas "to be linked with" signifies that the links may go in either direction - only in one

of them of course, since equilibrium networks involve no redundant links. This üype of links

will be referred as bid'irectional links since the two agents involved can afford the cost of

proposing it. A formal definition, however, will be presented later in the paper.

o B A a; the emptg graph-

. 0 * o : all B-players are linked to all a-players, but no a-player is linked to a

B-player.
. B i a : all p-pla1'ers are linked with all a-players.

. 0 - d : all B-players are linked to all o-players, and all a-players are linked with all

c-players.

. P ¿ d : all a-players are linked with all o-players and with all B-players.

. F = c : all p-players are linked with all B-players and with all o-players.

o d : all o-players are linked with all a-players.

. F = d: the complete graph.

The graphs 0 - q and B = a are referred as bi,partite graphs because only links across

groups (i,e., between o-players and B-players) are formed, while B -- d, P = d and F = o

2The sole exception occurs in the two-sided motlels where agents feel indifferent between being the

¿rctive or passive agent in the link.
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are referred as senx'i-bipartite graphs since links between agents choosing one particular action

also exist.

3.1. Varying the cost of the link. As a first approach, we will consider the cost

share as fixed and analyze the results when the cost oflinks varies. Using the above notation,

the foliowing result describes how the parameters of the model determine the type of Nash

network.

PRoposIuoN 9- # there erists a str'íct Nash equi,ICbrium, its networlc stt-ucture exhi,bits

the .followi.ng pattern of link formation:

Erploitation games

Case 1

0 < c < { b A ¿ d

f acc< {e
i " . . <m in { t ' ae , {d } A -d
* - "<  c<+d a.

* d < " < * / F ' a

* f  < " 04"

Complementrity games

Case 2 Case 3

0<c< ib A = d 0 < c < * d

{ b < c c J d 0=d {a<c< {a A = a

{ acc< {e F=o { b < c < { e 0=o
* . < " < m i n { 7 f ¡ e , } / } 0 -a *"  . ,  <  min{ t ' ;e ,  } / } F ' o
min{f;e, *fJ < 

" Aaq min{fre, */} < . Aaa

The proof is straightforward and thus omitted. Several interesting points follow from the

above ¡esult. First, it shows that (except for very low costs), the natu¡e of links is quite

complicated and the link proposal, and hence the network architecture depends very much

on the game that is being played.

There are two type of exploitation games. The first iype (Case 1.1 in Figure 2) holds when

S a * and is characterized by the fact that, for a certain range of the cost (specifically,

fr" a 
" 

< +d) the only "profitable" links are those between two o-players. The second

type (Case 1.2 in Figure 2) holds when ) . &.

If the game is one of strict complementarity (as in Cases 2 and 3), for certain values of the

cost, it supports bipartite graphs 0 = a as Nash networks. That is, both o-players and

B-players have an interest to be linked to players choosing the othe¡ action, while they do

not ¡¡¡ish to be linked with players choosing the same action.

A second point worth noting concerns the effect of increasing the linking costs. In each of

the three type of anti-coordination games, the effect of higher costs is broadly similar. The

payoffs of the anti-coordination game as well as tr define cut-off r,alues such that, as the

costs of link proposal surpasses them, an economic opportunity disappears along with its

corresponding type of link. The lengths of these cost ranges depend crucially on the value

g4
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/1i
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FlcuRp 2. Tvpe of Nash netwo¡ks found as we increase c.

of ). For example, in Case 2 the values of the cost for which we obtain a complete network

are c < b if ):1 whereas it spans to c < 2bif ^: .|. tnis is because in the former case,

the cost of the link is incurred only by the active agent whereas in the later case it is divided

equally between both agents involved in the link. Thus, higher values of the cost make the

link still profitable. The situation is similar for any other type of network. For example,

the values of the cost for rvhich we obtain a semi-bipartite graph of the type 0 = d are

b < c < d if ): l  whereas they are 2b < c <2dif ¡: tr- Notice that, if d <2b these two

ranges for the cost are disjoint. In general, we find that, aS the cost of link formation rises,

the possible types of Nash networks become more sparse, going from the complete network

to the empty network through three intermediary cases.3

We now analyze for every given value of ,\, how the number of players choosing each action

in equilibrium depends on c. In order to do this we restrict our attention to a particular

class of anti-coordination games, those that satisfy the following condition:

(3 .1) 2 d < f * e

This always holds for complementarity games, i.e. Cases 2 and 3, but it imposes an additional

restriction for exploitation games, i.e. Case 1. Nevertheless, if condition (3.1) does not hold

this represents an extreme case of exploitation game where the efrciency of links between o

and B-players is lower than the efficiency of links between a-players. This case introduces

some particular complications and therefore, its discussion is postponed to the Appendix.

Let s be any given strategy profile, and denote by ni to the number of k-players in it, where

k: cx,0. Our next result derives the lower and upper bounds for n! and nfi in equilibrium.

3An exception occurs in C¿¡se 1.1 where, for cost sufficiently high, there is an abrupt transition from a

complete netrvo¡k with all agents choosing a ( i.e. d) to the ernpty network.
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We derive this result by examining the best-responses for every possible case. To do so, we

need a piece of notation. Denote pB : T#-. Notice that pB is the probability of playing
p in the mixed strategy equilibrium of the anti-coordination game. Fix ) € [+, 1] and define

the two following ar:xiliary functions:

,1, >,(c) :

and

( pa if c < min{{b, *¿l

I n*f* if ió < c I min{ $ d, *")
p>(c) : {  # f r*Ei f *d<.<+b

I 5$# ir max{}b, *¿l < " < *"
I  t  i t  *u . ,  <  m in { { / ,  a \e }

Note that g¡ and rft^are continuous. It is straightforwa¡d to show that {^(c) < g^(c) for

all values of c < min{}/,f5u}. These functions bound the relative sizes of the different o-

and B-parts of the netwo¡k, as established by the following ¡esult.

PRoposI 'uoN 10.  Ass,¿rne2d < f  *  e.

f c < min{ ,i; ",lf} 
there erists a strict Nash equilibrium with np 'indiuiduats doi,ng B

if and only i,f

(n - l)r/¡(c) l nB <, (n - 1)rp^(c) + i

1/c > min{$ 
",}f} 

there is no stríct Nash equitibrium

The proof can be found in the Appendix.

Several interesting points follow from this result. It provides the precise relationship between

c and the range of proportions ff sustained in equilibrium in the respective games. In

particular, it states thaü for a low cost of forming links, the proportion of players choosing

actions o and B corresponds (roughly) to the mixed-strategy Nash equilibrium of the two-

person anti-coordination game. This simply follows from the fact that, for low linking

costs, players have incentives to form the complete netrvork and hence the link formation

mechanism has no particular influence on individual behavior. However, beyond this low

range, c has a profound impact on individual choice of actions which depends also on the

value of ).

If ) is sufficiently high, the upper bound p¡(c) increases whereas the lower bound r/¡(c)

decreases (see Figure 3). In particular, this implies that, the set of proportions sustained

in equilibrium also increases. The intuition for this result is the following. Notice that,

the difference between the cost incurred by an active and passive player increases v¡ith c.

Moreover, in most network structures, if a player switches action, she will maintain all her

"old" passive links -given that they are very cheap-and will have to form actively all her

pB 1f. c I min{}d, $b}
f  - \ r  . ^  1  .

,# f r i f *d<ccmin{ f rb ,+f }
=-.. - #4^- if "+ó < c < min{ *¿. J-e}
J - c - u . . - \ r - ^ t c  \    '  t -   J

*L* ¡max{ fr b, *¿} . c < min{{/, fr e}
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"new" links rvhich generally will be more than the ones supported before switching. This

implies that, the higher the value of c the lower the incentives to switch. Consequently,

situations rvith very asymmetric group sizes, i.e. with one group much larger than the

other, are sustained in equilibrium precisely because the players choosing the "popular"

action are supporting most of their links passively and thus they are free riding from most

of the linking costs.

For intermediate values of .\, the bounds f.or np in equilibrium exhibit a more complicated

behavior, In contrast with the previous case, there are some ranges of the cost where the

upper bound decreases with respect to c and others where the lower bound increases. To

illustrate this, focus on Case 2 of the anti-coordination game depicted in Figure 4. Notice

that, rvhen the cost is in the .ang" frb < c < {d then, the low-er bound ry'¡(c) increases

with respect to c. The intuition for this is as follows: in this range, Nash networks a¡e

semi-bipartite graphs, i.e. p ;: d- The low-er bound f.or np is obtained imposing that all

links between a and p-players are proposed by the B-players since this distribution of links

maximizes the incentive of an o-player to maintain her action. Nevertheless, passive links

are also costly and therefore an o-player has to incur in a cost of (1 - ))c for each passive

link. Since ó < (1 - ))", if an a-player considers the possibility of switching to p, she will

not accept to interact rvith any of the other B-players and therefore would refuse to pay for

any passive link she has with a B-player. The rest of the network however, rvould remain

intact. To sum up, when an a-player switches to action B she is saving np(l -,\)c. Hence, if

the value of c increases, the savings in the case of switching to B also increase. Therefore, in

contrast with the previous case) as c increases, an c player has higher incentives to switch

to action p which implies that the lower bound for nB increases.

Finall¡ let us assume that ) is low. For the sake of concreteness, assume ,f : i. In this

case, the linking costs is divided equally between the active and passive agent and thus,

there is no advantage from being the passive agent in the link. This generally implies that

the distribution of links has no influence on the incentives to switch actions. Therefore,

in this setting, when a player chooses her best response she only takes into consideration

the ¡elative sizes of the groups of agents choosing each action. Consequentl¡ there exjsts a

unique proportion (ff) sustained in equilibrium (see Figure 5).

3.2. Varying the cost share of the link. In the previous section, we have analyzed

the model considering the cost share ) as a fixed parameter and studying how the results

change when varying the value of c. We now want to explore an alternative approach. We

want to explicitly account for the influence of the cost share ,\ in the equilibrium outcomes.

Therefore, we assume c is fixed, and analyze how the results change as we vary ,\. As before,

we start with the qualitative features of Nash networks.
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(tnh Uny U))e (YA c

FlcuRp 3. Number of B-players in equilibrium for Case 2 and .\ close to 1.

(1/.1)b (x(¡-D)u (nP U/( H)M U))e ( t/( H)k c

FlcuRs 4. Number of B-players in equilibrium for Case 2 and intermediate

values of ). In particular f a *.

PnoposluoN 11. f fhere erists a stri,ct Nash equilibrium, its network structure ethibi,ts

the following pattern of link formation:

Erploi.tation garnes

Case 1

]  < .r < min{}ó, t} o = a

max{ } , l a }  .  r  <  m in { }e ,1 } 0=d
m a r { l e , I  -  l " }  <  )  <  m i n { } d , 1 0 -d

|< . r<m in { }d , t - 1 " \ a

mar{} , la , t  -  } " }  <  ¡  <  mn{} / ,  1} 0 n a

max i i i , * i < ¡< i - * " l J v a

nA

n

I lq/¿.1
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- nf in the N6h equilibrim

Flcunp 5. Number of B-players in equilibrium for Case 2 and ) :712.

Complementrity games

Case 2

] < . l  < min{}b, r} l r + a

mar{lb,+} < ) < min{}d, r}
mar{ !d , } }  <  ¡  <  min{ }e ,  1 } n - ^ .

mar{le, i  -  *u} < . \  < min{}/ ,  1 0 - a
min{} / ,  +}  <  ̂  <  1 -  * . F A a

Case 3

| < . r c m i n { } d , 1 } P - u

mar{ !d,á}  < r  < min{}6,  r } B = a

mar{)b,+}  < )  < min{}e,  1} F=o .
mar, {1e,1 -  * . }  <  ̂  <  min{ t / ,1} 0 - q ,
min{ } ¡ ,+ }<^< I - tu 0Aa

The proof is straightforward and thus omitted. Several interesting points follow from the

above result. First, again it shows that the nature of links is quite complicated and the

link proposal, and hence the network architecture depends very much on the game that is

being played. A general feature is that, as ) increases the network becomes more sparse. A

second point worth noting is that typically, given c, as we vary ) we do not cover all type of

network structures. For instance, if c ( min{b, d} then, the complete and essential network

É = d is the only type of network sustained in equilibrium for all values of ,\. However, the

conclusion ca¡r be very different for other values ofc. For instance, ifwe consider 2b < c < e.

I t i s s t ra igh t fo rwa rd . tosee tha t , i f +S l< f t ne fpeo f l ' l ashne tworkob ta ined i sB=d ,

otherwise a bipartite graph is formed.

We nor¡¡ analyze for every given value of c, how the number of players choosing each action

in equilibrium depends on ). To this effect, it is useful to introduce two auxiliary functions

9"(.\) and ú"(A) as follows:
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pp i f  mar{} , i  -  
*¿} < )  < min{}d, r}

#;$; ir mar{$, Ia,t - *a} . ¡ < min{}/, li

iT¿J+=rE if max{},1- *"} < ) < min{}d,1 - :b}
#* ¡-u*{* ,  t  -  2",2¿} .  ¡< min{J, f ,  1 -  *¿}

p " ( A ) :

Notice that g. and Q. a¡e the same functions tha¡ g¡ and 'ry'^ but the former ones are stated

in terms of ) whereas the later ones are stated in terms of c. It is straightforward to show

that r/"()) < ,p"()) for all ) € [+, 1] and c ) 0. Moreover, ,lt"(^) is decreasing whereas ,p"(,\)

is increasing. These functions bound the relative sizes of the different a- and p-parts of the

network, as established by the following result.

PRoposluoN 12. Assume 2d < f * e-

If mar{},l - 
}r} < ) < min{}/,7} there erists a strict Nash equi,Ii,briurn wi.th nB

i:nd'iuiduals doi.ng B if and onIE if

(n -  1)r / " ( ) )  < nB < (n -  1)p"( ) )  + 1

If + < ) < max{},1- l"} o, lf < ),11 there i,s no strict Nash equil ibrium.

The proof is similar to that of Proposition 10 and thus will also be presented in the Appendix.

We observe that, the higher the value of ) the higher the range of proportions ff sustained in

equilibrium. The intuition of this result is as follows: The higher ), the higher the difference

in the cost incurred by the active and passive agent from the link and thus the direction of

the links influences more the incentives of agents. As a consequence, some proportions are

sustained in equilibrium only because of a particular dist¡ibution of active and passive links.

In general, the lower the size of a group of agents choosing a particular action, the higher

the number of ünks proposed by them to the other group.

For low lalues of ), we can no longer count on these arguments in order to sustain a wide

variety of proportion in equilibrium and therefore the set of Nash equilibria shrinks. Indeed,

as aforementioned, for ): { we have a unique equilibrium state (see Figure 6).a

3.3. Distribution fnsensitive. Among the typically multiple equilibria that exist

in our model, we focus on those sharing a common feature. These are the distribution

insens'it'iue states. In order to define this concent formallv we need to specifv first the

meaning of bidi,recti,onal links.

pB 1f mar{L,l - la} < ) < min{}b, 1}

*-*i=* ir mar{},*o,t - l¿} . ) < min{f e,1}

#=r-,G=+fu if + < ̂  < min{}ó, r - i¿}
5-ir# if mar{1,14} . ¡ < min{1 - I¿,1"}
l  i f  mar{f ,e,1 -  l "}  a ,r  < min{}/ ,1}

aNotice that, i f  e* f  < c, there is no str ict Nash equil ibr ium for any ) € [+,1]
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I2 Iluc)b (uü

FlcuRp 6. Number of B-players in equilibrium for d, 2b < c < e, f ,b + d

DpprNltloN 5.

bidirectional if and

and

G'iuen a state (ge,(a¿)¿et¡), a link between two agents (say i and j) is
onlE if the following condi,tions hold:

r ( a ; , a ; ) - ) c ) 0

r(a¡ ,a¿)  -  )c  > 0

In other words, both agents involved in the link should be willing to propose it. This leads
us to the concept of distribution insensitive states.

DeFlwItloN 6. A state (go , (o¡)¿eN) is distribution insensitiue 'if any state resulting Jrom
a redi'stribution of actite and pass'iue bidirect'ional li.nks is a strict Nash equilibrium.

This notion is strong and captures the idea that there exist some states satisfying that the
allocation of costs of the links does not affect equilibria, i.e- they are robust to changes in
the direction of links. Typically, the higher (lower) the number of B-players in equilibriuur,

the higher (lower) the number of o-players that support actively their links. Nevertheless,

we will show that for distribution insensitive states these considerations are not relevant.

Notice that, if a state s is distribution insensitive then, any other state s/ differing from

s only in the distribution of active and passive bidirectional links will also be distribution

insensitive.

Thus, a set of distribution insensitive states can be characterized by the proportion of agents

choosing each action. The following result shows that for every c ) 0 and any given value of
A e lll2,1], there exists a proportion of agents playing each action satisfying that any Nash

equilibrium state with this particular proportion is distribution insensitive. Finally, we say
that a specific number of agents n! choosing B is distribution 'insens'iti,ue lf. there exists a

certain state with this number of B-players that is distribution insensitive.

PnoposruoN 13,  ,Leú Á e l7 l2,L l  and c > 0.

(n-I)p,Q)+l

h-l)Yt)), l

i
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(i)If the Nash network is of type F + d. then nfi is di.stribution insensitiue 'iff

( " - 7 ) p B < r b < ( n - I ) p B + 7

(ii)If the Nash network is of type 0 = d then nfi is di.stribution insensitiue iff

f  _ n  f  _ ¿
( " - t ) "  L 1 m * - 1 ( n - ! \ =  r =  *  

,  1 7
t  - d + e -  ) , c  

j  r v P  j  v w  - ' f  
- d l e -  \ c

(iii)If the Nash network is of type F = o, then ni is distributi,on insensitiae ,iff

ir, - r¡-J:2t - 1 n*o1 (n - l)---jl- L- + 1' J - o + e - A c  
J - o + e - A c

(iu)If the Nash network is of type 0 = a, th.en nfi is di,stributi,on insens,itiue ,iff

f - \ e  f - ) r
( n - 1 ) - - : - - - - - - - ' -  < n i ' <  / - - r \  '  " -  i 1'  - /  

f - l e - 2 ) c j ' v P j \ r v  
^ '  

f + " - 2 ^ "

(u)For any other type of network, all Nash equi,Iibri,a are d'istribution irnens'itiue.

This result implies that, there exists a uni,que distribution insensitive proportion in the

cases B = d, [3 = d, P = a and 0 = o whereas in the cases B -- a, 0 -- d and d

all Nash equilibria are distribution insensitive. We find that, the relative density of agents

choosing each action in the game generally depends on c and ). In particular, for 0 = d.

a n d g = " ( É = Q n f , i n c r e a s e s ( d e c r e a s e s ) a s c o r ) i n c r e a s e w h e r e a s i t i s c o n s t a n t f o r

We norv present the essential argument for this result, focusing for concreteness on the

range (Il\max{b, d} < 
" 

< (Ll\e, where equilibrium netrvorks are bipartite. Let s be any

strategy profile. Moreover, let qj'k be the number of active links of player z with players

choosing action k, where k e {o,P}. W" wíll avoid superscript s if there is no possible

confusion. Consider any distribution insensitive state with np players choosing B. Let i e N

be an agent who chooses a in the underlying state and supports qf links to B-players. Then,

in orde¡ fo¡ this player to be choosjng a best response, a necessary and suffi.cient condition

is that

(3.2) nBe - Acqf - (1 - ))c(nB - qf )

where f t (c )  : (nB-sn(b-  ( f  - ) )c ) i f  c< f rb ( i .e .  pass ive l inksbetweentwoB-p layers

are profitable) and R(c) : 0 otherwise. Notice that, in the former case a necessary and

sufficient condition for player i to be doing a best response is,

l | J . J /

whereas in the latter case the condition is,

r3 4)
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(.1.o/

The right hand sides of expressions (3.3) and (3.4) are both increasing in ql and the¡efore
they reach a maximum at qf : nB. Moreover, obselve that, substituting nB for qf in both
equations, the same condition is obtained given by:

f - \ e
nB>(n-1)- - - - l - - - - : j -' J  

+ e - ' ¿ ^ c

which is necessary and sufficient for distribution insensitivity to apply to the agent consid-

ered. Turning now the attention to the counterpart condition, for any agent j choosing p,

note that¡ we can argue by symmetry with the previous case and find that j is choosing a

best response if and onlv if.

thus,

(3.6)

which is again a necessary and sufrcient condition for distribution insensitivity concerning

any player choosing B. Combining (3.5) and (3.6), the desired conclusion follows. The

detailed proof is relegated to the Appendix.

Notice that, for low values of c distribution insensitiveness selects a unique equilibrium

value. \4rhen the number of agents playing B is equal to this value, a strategy profile is

an equilibrium no matter how the costs of bidirectional links are allocated among agents.

In contrast, when the size of the population of B-players is not distribution insensitive,

certain allocations of costs will not be sustained in equilibrium. The existence of distribution

insensitive states will play an important role for the analysis of the dynamics of the game.

4. Dynamics

In this section we extend the model to a dynamic framework. We provide a learning dynamics

where agents update their strategies using a modified version of the so-called myopic best

response. In this dynamics there are two stages. In the first stage, with a certain probability

independent across players, a player gets the opportunity of revising a component of her

strategy. When this occurs, she selects a myopic best response. That is, she chooses a

best response taking as given the other players' strategies in the previous period and the

remaining part of her strategy. In the second stage, with a positive probability independent

across bidirectional links, one of these links is chosen and the direction of it is reversed.

Recall that, these type of links are such that both agents can incur in the cost of proposing

it. Intuitively, this dynamics assumes more flexibility in the link formation process than in

the action taken by individuals.

Formally, we present a dynamic with discrete periods of times. At each ü, the state of

the system is given by the strategy profile s(¿) : lbon(t),"¡(t))l?:, specifying the action

played, and links established by each player. Let us suppose that, at every period ú, with an

independent probability p, a player revises over a particular component of her strategy, i.e.

with probability p she revises a particular proposal of iink 5f, or her action a¿. For simplicity,

this probability is independent across components and across individuals. Thus, for example,

e -  ) , c
n o ) ( n - L ) f + e _ 2 ^ c

f - \ e
np <(n- I )Tf f i¿+1
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rvith a probability p' a player may revise her complete strategy (all her proposals and her

action). In other words, this dynamics includes the possibility of revising together links and

actions.

Hence, with probability pk(1 - p)--k a player i gets the chance to revise over k components

ofher strategy which, using standard noüation, q/e write &S s¿: (s¿.,s¿_u) to distinguish

the components which can be revised from those that cannot. In that event, she is assumed

üo choose a mvooic best response:

l ¿  r \ s¿,(t)  e . t t" ,T&_ f I¿(s¿u, si-o(t-  1),s-¿(t  -  f  ))

That is, she selects a best response to what other players chose in the preceding period

and what she chose in the n - k components that a¡e not open for revision- If there are

several strategies that fulfill (4.1), then any of them is taken to be selected with, say, equal

probability.

Nforeover, with probability p', independent across bidirectional links, one of these links is

chosen and its direction is reversed. Note that, this process allows for a very specific kind

of mutation which takes into consideration only the possibility of exchanging the active and

passive roies in the suffrage of a bidirectional link. We next ¡elate the distribution insensitive

states with the absorbing sets of this dynamics. For concreteness, we have focused on the

cases rvhere the cost is not excessívely high.

PnoposluoN 14. Assume c < |e. The absorb'ing sets of the dynarnics are the distri-

bution ins ensiti,u e sets.

Proof: Note from Proposition 13 that when c < Je there is a unique distribution insensitive

proportion. Thus, given c and .\, the distribution insensitive states are characterized by the

type of links formed (g = o, 0 = d,V = oot p = d) and a specific proportion of agents

choosing each action. Let us denote by A(), c) to the set of distribution insensitive states.

We will show that A(), c) is the absorbing set of the dynamics.5 To do so, we will show that

the three following conditions hold:

1) If s e A(),c) and p(s,s') > 0, then sr e A(A,c) where p(s,s') is the probabil ity of

reaching s' from s.

2)  For  a l l  s ,  s '  €  A(^,  c) ,  p(s, r ' )  > 0.

3) For all sI ( A(),c), there exists a set ofstates {s1, s2,...,s*} such that 51 : 5/,

s-  € A(^,c)  and p(s¿,s¿11) > 0.

Proof of 1) Suppose s € ^(),c), and consider a state s' reached from s with probability

p(s, s') > 0. Since s is a distribution insensitive, it is a Nash equilibrium. This implies

that all players are choosing a best response. Nevertheless, with a positive probability the

direction of a bidirectional link might change. If this were the case, we would reach another

state with the same number of players doing each action, but with a different distribution

5To be precise, A(), c) represents a set of absorbing sets, where the diflerence betwee¡¡ two states in

different absorbing sets is simply a permut¿tion of the indeces of nodes. We avoid using additional notation

to distinguish betwee¡r these states.
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between active and passive bidirectional links. In particular, we would have reached a

distribution insensitive state as well.

Proof of 2) if we consider two states s,s' € A(.\,c), the difference between them can only

be in the direction of some bidirectional links. However, with a positive probability the

direction of these links is reversed and thus, s' could be reached from s and vice versa, i.e.

p(s, s ' )  > o.

Proof of 3) Consider s' I A(), c), we must show that there exists a path going from s'
to a distribution insensitive state. With a positive probability all players could get the
opportunity of revising thei¡ links. If this were the case, the state reached (denotedlV sr)
would have a specific architecture that could be either 0 = a, 0 = d, 0 = o or p + d
depending on the values of c and ̂ . To fix ideas, let us suppose that the network is of the
type 0 = o.6 If.n"u' : n! then s1 e A(),c) and so the proof would be completed. Assume

nT < nL and let op ,r;r )be the maximum number of active links an o-player in state s1 c&n
P  P  - m a x (  

-

sustain in equilibrium. Since 
""i 

< 
"h 

then Ql"*(,i , ) 
< ,"d . In other words, if the a-players

are choosing a best response they must have at least one passive link. Consider an o-player i

with a total number of active links qf . With a positive probabilit¡ in the next period all her

passive links could become active and thus, her total number of active links would be equal

to n"f . If this were the case, player i would not be choosing a best response. She would

switch to action p and would delete all her active links with the remaining p-players. In

addition, the p-players would delete their links with z. Let the new state reached be denoted

by s2. If now nff : n; then s2 is a distribution insensitive state and the proof would be

completed. If not, we would repeat this process again. It is straightforward to show that,

after a finite number of steps, we would reach a state s with n! players choosing action p,

thus a distribution insensitive state.

5. Conclusion

In this paper we have analyzed a setting where agents choose a subset of indivjduals with

whom to play an anti-coordination game, i.e. games where choosing dissimilar actions is

individually optimal. In the setup being considered agents interact only if there exist a link

between them. The cost of link formation (c) is not necessarily distributed as in the classical

one- or two-sided models. Instead, we consider a "general cost-sharing" model in which the

active agent always supports a higher proportion of the cost (being the partition of the

cost specified by the exogenous parameter )). We have characterized the Nash equilibria

of the game. As c and ) change there is a wide variety of Nash architectures: complete,

semi-bipartite, bipartite and empty networks. The proportions of agents choosing each

action susüainable in equilibrium depend crucially on the r,alues of c and ). The effect

that an increase of either c or ) has over these proportions is simila¡. For instance, as we

increase the vaiue of ) (i.e. we make the division of the linking costs more asymmetric)

the range of proportions sustainable in equilibrium increases. In particular, when ) takes

the lowest possible value (i.e. j) tfris proportion is uniquely determined in equilibrium and

coincides with the distribution insensitive proportion. Finally, we show that, the distribution

¡

6The proofs of the remaining cases go along the same lines
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insensitive states are the absorbing states of a myopic best response dynamics that allows

for changes in the direction of bidirectional links.

One of the main features of the model is that the acceptance of a proposed link is not modeled

expücitly as part of a second stage of the game. Instead, we have assumed that, a passive

agent always responds optimally to the proposer's offer. An alternative way of modeling the

process of link formation could be to consider a two-stage game. In the first stage, agents

can propose links to others and by doing so they incur in a sunk cost equal to )c. Then,

in the second stage, proposed agents accept or not to form these links anticipating that

acceptance implies bearing part of the cost (in particular (1 - ))c). We have not addressed

this alternative in the paper because, it is straightforward to show that, all Nash equilibria

of our primitive model are Nash outcomes of this alternative sequential version of the game.

Thus, our model has more selective power.

The main contribution of this paper is thaü it studies the effect that different values of

the cost share ()) has over the results of anti-coordination games played in an endogenous

network formation setup. This is a natural extension of our previous work (Bramoullé et

al., 2002) in which the model was strictly one-sided. In addition, we have presented a

general model of network formation that relies on the standard non-cooperative tools but

nevertheless allows the irnplementation of more realistic forms of sharing link costs,

6. Appendix

Proof of Proposition 10:

We will first show that the upper bound is precisely (n - 1)p¡@) * 1. This is calculated by

finding conditions for a p-player to be doing a best response. For the sake of concreteness

denote by BRB (BRo) to the expression "a B(o)-player is doing a best response". To

prove this ¡esult we need to consider separately the domains that induce different types of

networks in equilibrium. These are precisely 4, p = 6., É = a, A = d, A + a, g - d and

g - a.Nevertheless, when the network is of the typ" É = o or 0 = rr, we have to analyze

separately two cases depending on whether passive links between two agents choosing action

a are profitable or not. Thus, the total number of domains to analyze is 8.

( 1 )  
" < { m i n { b , d }

Nash networks are complete and essential (,6 + d). Consider any agent i choosing action

B. Then,

BRP <+  ( " - n i l f  +@B-  1 )b - , \ c (qu '+q f ) -  ( 1 - ) ) c (n  - t - s i  - q f )

e nB < (n - 1',--J- 
i- 

¡t
J  - a + e - D

Thus, a B-player is choosing a best response if and only if nB < @ - l)pB + 7.

( 2 )  * d < c < r n i n { \ b , * ¿ }
Nash networks are of the type F = o. Consider an agent i choosing action B. Notice that

if she switches to action a she will only want to inte¡act with those o-players that have
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proposed a link with her. Therefore,

BRP <+ (" - 
"B)f 

- \cq\ - (1 - ))c(n - np - sf) +

(np - l)b - x"sf - (1 - \)c(nB - t - qf)

-x"qf - (1 - \)c(np - t - qf)

¿r  nr .W'  
f * e - b - d

We want to find an upper bound f.or np thus we assume that agent z is in the best of the
possible situations. In other words q;o :0. Hence,

n p < ( n - I ) p p + l

(3)*d<r<+ó
Nash networks are also of the type É = o. Consider an agent i choosing action B. Notice

that the only difference with the previous case is that, if i switches to action a she will not

want to interact with o-players (neither actively nor passively). Therefore,

BRP <+  ( " - nd f  - \ c s i  - ( 1  - ) ) c (n -nB -s f )+ (nB -7 )b

-s"qf - (1 - \)c(nB - t - qf)

BRBenu .'  J *e -b - (1 - ) ) c

We also assume that qi :0. Then,

BRl3 e nB < (n- 1¡--J:-G: 
r)"- 

a 1
f  *e -b - (1 - . \ ) c '

( 4 )  +b<c<min { }d , }e }
Nash network are of the type A = d. Consider any agent choosing action B. Then,

BRP <+  ( " - r p ) f  * ( nB - l ) b -  ) c (q i+sh - (1 - ) ) c (n  - t - s?  - s f )

t - d
<+ nB 1 (n - t )T#u+1:  (n  -7 )pB+r

Notice that, the disiribution of active and passive links is not ¡elevant in this particuJar

case.

(5)  mar{ \d,  * ¡ }  .  c  < min{$ d,  *" }
Nash network are of the type 0 = a. Again, consider an agent i choosing action B. Then,

BRP +) (" - 
"p)f 

- Acq? - (1 - A)c(n - np - s?)

n(.f - d.) t e - ),c - q?Q'c - d)
v ' u ¡ 1  : -P '  

J + e - d - \ c
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As before, we want to find the upper bound lor nB in a Nash equilibrium. Thus, we impose
gfl :0- Then,

B R F e n B l ( n - r ¡  '  ,  { - Í  , , + r' t + e - c I - A c

( 6 ) rna r { f i d , *b }< "< * "
Nash network are of the type B = o. The difference with the previous case is that if

now a B-player switches to action a she would not want to accept passive links from other

o-players. If we consider an agent i choosing action B then,

BR| erp .
f + e - d - ) c

We assume gÍ :0. Then,

B R B  +  n B  1 ( n -  1 )  '  /  - , ( 1 -  
) ) c  . .  +  1

f + e - ) c - ( 1 - ) ) c

( z )  *u<c<min{ }d , f re }
Nash networks are of the type 0 - d. If we consider an agent e choosing action p tben,

BRP <+ (" - 
"d$ 

- tr") < (n - np)(d - \c)

< +  n > n p

(8) mor{{e, i¿} .  c < min{}/ ,  a\"}
Nash netwo¡ks are of the type 0 - o. If we consider an agent i choosing action B then,

BRP <+ (" - nB)U - )c) < 0

< +  n l n B

If we analyze carefully the results obtained previously we find that the eight different cases

described above give rise to the function (n - l)cp¡(c) * 1 presented in the proposition-

We shall now prove that the lower bound f.or np is precisely (n-l)tp(c) * 1. We have to

impose conditions for an a-player to be doing a best response. To do this, we will use the

expression for the upper bound obtained above and the symmetry of the game.

( i ) " < { m i n { b , d }

Nash networks are complete and essential (É = d). We need to exchange the values of nB, f
and d by no, e and b in the expression obtained in part (1) of the proof. Then, substituting

fra : T1. - n0 we obtain the condition,

( n - I ) p B < n B

(i i )  +b < c < min{\a, ¡ \a,  }e1
Nash networks are of the type 0 + ?. Consider an agent z' choosing action cv. The situation

is symmetric to case (2). As before, we simply need to exchange the lalues of nB, f and d

by nn, e and ó.

n o { ( n - 1 ¡ - - J : J - + t
I  - d + e - o

Thus, n - nB : no 1 (n - 1)# + 1' If we solve for nB, we find that,

( n - i ) p p < n p
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( i i i )  *ó  < "<+d
Nash networks are of the type 0 = d. The difference being that now, an agent i choosing

action o, when switching to action B would v¡ant to ínteract with those B-players proposing

a link rvith her. By symmetry with case (3) we obtain,

e - l l - \ ) n
no1(n- t ) ¡* f f i *1

Thus, if we solve for nB : I - Ttrat we find that,

nB < (n-D ¡ *i#í- ¡k.,u
(iv) id < c < min{{ó, {e} ___+
Nash networks are of the type 0 = o. By symmetry with case (4) we must have that,

e - h
no 1 (n -1 )  

U- t= r+ t
Thus, if we solve for nB : r'L - rla¡ we find that,

@ - t);Jr4 .- < na
I + e - o - A c

(v)  mar{ \d,  *a}  .  c  < min{$b,  }e}
Nash networks are of the type 0 = a. Consider an agent i choosing action a. In this case,

if i switches to action p she will want to interact with all the B-players that have proposed

a link to her. This case is symmetric to case (5), thus we must have

BRa eno < (n -  1¡-J-¿ -  - ¡  1
J + e - o - A c

Thus, if we solve for n6 : rL - Ttat we find that,

¡n_ t1--J-) ! - .n,
I + e - 0 -  c

( v i ) m a r { $ ó , * ¿ } . r < * "

Nash network are of the type p = o. The difference with the previous ca^se is that if

now a a-player switches to action B she would not want to accept passive links from other

B-players. By symmetry with Case (6) we have, Vy'e

BRaeno<(n-r¡ ,* f f i+1

Thus, if we solve for np : 11. - rla¡ we find that,

BRct e (n - r) 
¡ *#o _ x)". ru

( v i i )  { e c c < m i n { } d , * a }
Nash networks are of the type 0 - d. If we consider an agent i choosing action a then,

B R a  e  n p ( e -  ( t  - l ) . ] +  ( ' -  n p  - 7 ) d , >  ( n - " B - L ) f  + n B ( b  -  ( 1 -  I ) c )

<+ (n - r)-l- !- 1 np a (n - I)pp < nB
J  T t - u - u

(viii) mor{}u, 
"\Ai 

< c < min{}d, *u}
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Nash networks are of the type 0 -' d. The difference with the previous case is that if

now a o-player switches to action p she would not want to accept passive links from other

B-players. If we consider an agent i choosing action o then,

BRa <+ np(e- (1  -  ) )c )  +  (n -  nB -7 )d> (n -  nB - r ) f

< +  ( n - r ) . - - J ; i ? ; - -  -  < n p
! + e - d - \ L - ^ ) c

(ix) mar{}e, *¿} . c < min{},f, *a}
Nash networks are of the type A n o. If we consider an agent i choosing action o then,

BRa  <+  nBG-  ( t  -  ) ) c )  >  (n -  np - r ) ( f  - ) c )  +  nB(b -  ( t  - . \ ) c )

l f - ) c )<+ ("- r )Tiá=oi<"B

(x) nzor{}e, *d, *b} < c < min{J f,  f i"}
I\ash networks are of the type B -+ o. The diffe¡ence with the previous case is that if

now a o-player switches to action p she would not want to accept passive links from other

B-players. Then, if we consider an agent i choosing action c

BRa <+ np(e -

<+ (n -  1 )

(1 -  ))c) > (n -  nB - 1)( f  -  \c)

(/ - )")

f + " - ) c - ( 1 - ) ) c

(xi) Let us nolv show that, if min{}/, #;r} < c there is no strict Nash equilibrium.

It is straightforward to see this when i¡ a f5" because, if this were the case, none of

the links are profitable thus the only possible Nash equilibrium is the empty network. The

empty network, however is not a strict Nash equilibrium. On the contrary, what happens

if $e . +/ ?. Then, for some values of ), we might have that fre < c < {d and if

this were the case, there could be a strict Nash equilibrium with all players choosing a (i.e.,

d). l,et us sho.w that this is not possible. Consider a state where all players are choosing

a. Take i e N, then she is choosing a best response if and only if,

BRa <+ (n -L)d-  s f^c -  (n  -1  -  q i ) (1  - . \ )c

<+ (f - ^")qi > (n - 1)(/ - d)

In contrast with previous situations, here rve obtain that the higher the number of active

links, the higher the incentives to maintain your action. Moreover, q? : # yields a

necessary and sufrcient condition for the existence of a strict Nash equilibrium with all

players choosing o. It is necessary because, if Sy > a/ there must exist another player, say

j e N, rvith gre a + who probably would not be choosing a best response. It is sufficient

because by construction, the state where all players have the same number of active links,

i.e. qtr : + for all j € ¡ú is a strict Nash equilibrium- Therefore'

B R o e ) c < 2 d - f

Notice that, this implies f * e < 2d which contradicts assumption (3.1)'

1 n a
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To conclude, let us show that for every given c > 0, úr(") < pxk). For simplicity we focus
on Case 2 (i.e. b < d < e < "f) of the anti-coordination game.

Conside¡ that c < min{}d, frA} tn"" ,lrxG) : pB. The following can holds:

1. If c < min{}b, *¿}, then cp¡(c) - pB and thus r/¡(c) : p¡(.).

2.If Lxb < c < min{frd,*"}, then 9¡(c) = #4=n and thus ,l 'xk) lvxk).
Consider that ]d < c < min{frb,*f} then t/¡(c) : #n.The following holds:

1. If *b < ¿ < min{¡\d,iu}, then 9¡(c) : W{=Ln a¡d thus ,lr>,(") S px?).
2.I f  \e < c < min{}/ ,  f re},  then 9¡(c) = 1 and thusT/¡(c) < p¡(c).

Consider that *b < c < min{} d, !^e} then t/¡(c) : ¡+#:¡;. It must be the case

that +b < c < min{frd,i"}, then e¡(c) : ¡¡{:Lt and thus ,lrxk) l pxk).

Finally, consider tttat -o"{frb,+d} < c < min{}/, r.\e} then T/¡(c) : #*. The
follorving holds:

1. If +b < c < min{* d,*u}, then 9¡(c) : ¡+!:*n and thus ,l 'xk) 3 p>,(c).

2. If max{}b,*d} < 
" 

I *r, then e¡(c) : 5# and thus ,l,xk) S pxk).

3 .  I f  { e < c < m i n { } f  , f r " } ,  t h e n 9 ¡ ( c )  = l  a n d t h u s r / ¡ ( c )  < p x k ) .  !

R r i u a R x  1 -  A s s u m e f  + e < Z ¿ .

PRoposlrtoN 15. ffc < min{1i;u,lf} there exi,sts a strict Nash equi,Iibrium w'ith nB
indiuiduals doing B i.f and only if

(n .  -  l )T / ¡ (c )  1nB 1(n  -  1 )e¡ (c )  +  1 ,

lf #3 < 
" 

< 2!f there eri,sts a strict Nash equili.brium with all ind.iuiduals d,oing a,
i . e . ,  n B :  Q

ff ?+ < c there'is no strict Nash equili,brium

This result is easily derived from the previous proof. Nbtice that, now the upper and

lower bounds for np are discontinuous.

Proof of Proposition 12:
This proposition is obtained by rewriting the intervals where the functions r/¡(c) and 9¡(c)
are defined as expressions where the independent variable is ) whereas c is a parameter. To

illustrate, consider the lower bound ,b;,k). If c < min{{d, *¡} then r/¡(c) : pp. For what
values of ) do we obtain ,/"()) : pp ? We can answer this question by simply solving for ) in

the inequality c < min{}d,*A}. Notice that, we obtain *or{l,t-*¿} < .\ < min{fd,1}.

The same could be done for the ¡emaining case. tr

Proof of Proposition 13:
( i )  .  <  ( t l \ )m in \b .d j
The Nash networks obtajned are complete and essential (i.e. 0 ¿ d). Consider any agent

i e No that supports qf; active links with other c-players and t * Sf active links with

B-players. Then, in order for this player to be choosing a best response, a necessary and

sufficient condition is that.

B R a  < +  n B e * ( n - n p - I ) d , *  ) , c ( q i  + q f )  -  ( i  -  ) ) c ( n  - t -  q 7  - s f )

|  - d

< +  n B > \ n - l ) j _ ¿ + " _ A
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We focus now on the counterpart condition for any agent 7 € /{B. Then, in order for this
player to be choosing a best response, a necessary a¡d sufficient condition is that,

B R P  < +  ( " - " 8 ) f  * ( n B -  1 ) b - . \ c ( q r e  * n h -  ( 1 - . \ ) c ( n  - t - q i  - - q f )

<+ nP < (n - 1¡-J-!- + t
J  - d + e - o

Combining the expressions obtained for BRa and BRl3, the desired conclusion follows.
( i i )  (1i))b < c < (1/))min{d,e}

Nash networks are semibipartite graphs of the type É = d. Consider any agent i € N,.

Then,

B R a  e  n B e * ( n - n B - 7 ) d . -  ) c ( q i  + q n -  ( 1 - ) ) c ( n  - t  - q i  -  q f )

w h e r e  - R ( c )  :  ( n B - s f ) ( b - ( 1  - ) ) c )  i f  .  <  ¡ \ b a n d  l ? ( c ) : 0 i f  
" >  f ^ b .  D u e t o t h e

fact that we want to calculate conditions for the existence of distribution insensitive states

we will consider the worst possible situation for an a-player. That is, we assume qf : rB.

Under this assumption R(c) is constant and equal to 0. Hence,

BRa e nB > (n - t¡-*J- 3--' t - d + e - A c

Consider now any agent j € I{B. Then,

BRl <+ (" - 
"df 

- ^cstr - (1 - I)c(n - nB - qtr)

<+ ,a  <  (n -  1 ¡ - - - / :  
a  -  11' J - d + e - A c

( i i i ) ( 1 / ) ) d < c < ( i / ) ) b  
_

Nash netrvorks are also semibipartite graphs of the type 0 = a. This case is s¡..rnmetric to

the previous one. Thus, we can simply exchange d, f and nB by b, e and no. We obtain,

e - b
(r, - 1)

e -b+ f - ) c

Given that flp : n - na we have that,

1n - r¡-J:2!-- { ns{ ('- 1)
j - A c + e - o

f - \ c + l
f - ) c * e - b

( iv)  (1/ ) )max{b,  d\  < 
"< 

(1/ . \ )e

Nash networks are bipartite graphs (i-e., É = a). Consider any agent'l € l/,. Then,

BRc t  e  npe -  \ cq f  -  ( 1 -  \ ) c (nB-qh

Since we want to calculate conditions over the number of agents choosing each action for

the existence of a disiribution insensitive state we will again consider the worst possible
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situation for an a-player. That is, we assume qf : ,B. Under this assumption ft(c) is
constant and equal to 0. Hence,

B R a e n B > ( n - t ) ,  / - ) ! .-  - /  
f  * e - 2 \ c

Consider an agent ¡ e NB, by symmetry with the previous case we know that,

BRB e no ) (n- 1)-- 
:: f9-

' t  + e - z \ c
thus,

B R p  e  n B < ( n - r )  ,  
u - ) 1 .

* e - 2 \ c
f  _  \ ^

<+ nB < (n - 1)---J----::- + 1'  t  + e - z ^ c

( v )  { e < c
Nash networks are of the types 0 - a and p --+ d. In the first case, links between B and a-
players are only profitable if they are proposed by B-players. Thus, the are no bidirectional
Iinks. In the second case, links between the a-players are bidirectional- However, it is
straightforward to show that all Nash equilibria are robust to changes in the directions of
links formed by two a-players. !
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CHAPTER 4

fncentives and Hierarchy: an Experirnental Approach

Abstract

We run an experiment based on a model in which a group of agents -organizedhierarchically-

have the option of reducing the probability of failure of a joint project by investing towards

their decisions. We test the behavioral and efficiency properties of several mechanisms that

specify a distribution of benefits in case of success across the levels of the hierarchy.

1. Introduction

In a recent paper, Winter (2000) considers a stylized model on hierarchical organization

in which agents have the option of reducing the probability of failure by investing towards

their decisions, In the model, hierarchy is defined by way of a sequential game with perfect

information in which superíors (i.e, players who move later in the sequence) can observe

the investment decisions of their subordi,nates (i.e. all players who have moved previously).

A mechanism specifies a distribution of benefits in case of success across the levels of the

hierarchy. Ii is said to be i,naestment-induc'ing if the unique subgame perfect equilibrium of

the induced game requires all agents to invest. It is also said to be optimal if it does so at

minimal cost for the principal.

In this respect, Winter characte¡izes optimal investment-inducing mechaJrisms in several

versions of the benchma.rk model. In particular, she addresses the problem of allocating

individuals with diverse qualifications to different levels of the hierarchy as well as allocating

tasks of different importance across different hierarchy levels.

We provide a glance of Winter's methodology by way of this simple example.l Consider a

cube consisted of 27 boxes arranged in three layers with three rows and th¡ee columns per

layer. An object is hidden in one of the boxes with equal probability for each box. Three

individuals are assigned by the principal to fiointly) Iocate the object. Player t has to

determine the layer at which the object resides, player 2 the row, and player 3 the column.

Each player can purchase the information concerning her correct decision at cost c. If she

doesn't purchase the information, she is assumed to choose one of the three available options

with equal probability.

To locate the object, players move in sequence. First, player 1 decides whether to purchase

the information, then player 2 (observing player 1's decision) and then player 3 (observing

the purchasing decisions of 1 and 2). Finally, players submit their location decisions, and

the corresponding box is opened. If the object is not found in the box each player ¡ecejves a

lSee Winte¡  (2000),  Sect ion 1.
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payoff of zero. If the object is found, benefits b1, b2 and b3 are awarded to the three players.

Note that this informational definition of hierarchy implies that player 3 is at the top of the

hierarchy while player 1 is at the bottom. As it turns out, in this example, the only optimal

investment-inducing scheme assigns a benefit of 1.038c to player 1, 7.I25c to player 2 and

1.5c to player 3.

In other words, the higher is the position in the hierarch¡ the higher must be the corre-

sponding benefit to make sure that, in equilibrium, investment will be provided. The reason

behind this result is that (sequentially) "rational" first-movers (i.e. subordinates) should

correctly anticipate that their decision not to invest will generate a "shirking cascade" along

the chain. This, in turn, reduces the comparative adr,antage of not investing. This effect

gradually reduces as long as we go down the game tree (i.e- rve move up along the hier-

archy). The model also provides a rational for the efficiency of hierarchical (as opposed

to flat) organizational structures. This is because it is only needed to tailor benefits along

the unique (efficient) equilibrium path, while providing enough incentives to invest out of

equilibrium would yield a much more costly bill for the principal.

The results above crucially depend on two basic assumptions:

1. Players' preferences only depend (in a linear fashion) on the monetary rewards they

receive. This implies that players (i) are assumed to be risk neutral and that (ii)

preferences are not interdependent across players.

2. All players correctly apply backward induction when they make their decisions (in

other words, players are sequentially rational and they also know that thei,r opponents

are s eq u ential Ig ra ti o nal ).

In these respects, there is already substantial experimental evidence that casts doubts on the

empirical content of both (widely used in applied industrial organization) assumptions.2 On

the othe¡ hand, this evidence also shows that empirical content varies significantly depending

on the strategic context to which it is applied. The most controversial experimental evidence

on these issues comes from public good games arrd games of reciproc'ifui (such as ultimatum

or trust games). In these cases, the debate has focused on two different (and somehow

complementary) determinants of subjects' behavior:

o Social (i.e. interdependent) preferences, that is, preferences which do not depend

only on the monetary rewards players receive in the game, but also on the rewards

of others.

o Social norrns lwith particular reference to nor-rns of reciprocitg). Following Camerer

and Fehr (2001), "...Reciprocity means that people are willing to reward friendly

actions and to punish hostile actions although the reward or punishment causes a

net reduction in the material payoff of those who reward or punish." (p. Z).

Although Winter's model is proposed as the solution of a stereotypical principal-agent prob-

lem in presence of a formal (although purely informational) hierarchy, there a¡e clea¡ analo-

gies with public good or reciprocity games. First, investment can be conside¡ed a public

good, insofar it increases the probability of success of all group members and, therefore, the

2As for backward iuduction, see Binmore et al. (2002) and the literatu¡e cited therein. As for interde-

pendent ut i l i t ies,  see,  a¡¡ong others,  Ochs and Roth (1989) and Costa Gomes and Zauner (2001).
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probability (for all) to obtain the associated rewa¡d. Second, since the game is sequential and

investment decisions are perfectly observed along the hierarchy, this opens the possibility to

implement reciprocal behavior (e.g. investing only when all predecessors have invested). As

we shall see, reciprocal behavior can be explained by simply appealing to profit maximizing

behavior in some of the experimental games, such as Winter's basic model, but not in others.

This allows us to investigate on the social norm component of reciprocal behavior.

Also for the organizational design issue (i.e. hierarchical vs. flat organizations) conflicting

evidence on the model's results comes from the organizational behavior literature. The basic

idea is that sharing information (even on labor productivity) can enhance team spiriü and,

by this way, team productivity. With the broad label of high-cornm'itment human resource

rnanagenlemi we refer to organizational practices that tend to relax híerarchical relations

within an organization, not only at the level of corporate governance, but also as far as

informational acquisition and sharing is concerned.3

The object of this paper is to explore experimentally Winter's model from a mechanism

design perspective. More precisely, we ri,se our data to discuss the emp'irical releuance of

each and euery theoretical assumption upon which Winter's optimal solut'íon is d,eriued. To

this aim, 'we do not only collect evidence on Winter's basic model (denoted by INI here-

after), but rve also test the efficiency and behavioral properties of schemes which rely on a

less demanding solution concept, namely lttrash equilibrium (NASH). This second incentive

scheme is more costly (i.e. it distributes higher aggregate benefits) insofar it must provide

first-movers enough incentives to invest even if followers do not. As a consequence, compared

with INI, the ranking of benefits along the hierarchy is reversed. To explore the impact of

interdependent utilities on INI's efficiency, we also run sessions as costly as INI, but such

that benefits are uniform across players. These benefit schemes a¡e called LINI and, they

would be more efrcient if subjects exhibited a strong inequality ave¡sion. In addition, we

run sessions in which hierarchE is absent (insofar all players are asked to move simultane-

ously), We also check for group size effects, that is, we investigate on how an increase in

the group size (and therefore, in the overall complexity of the game subjects play) affects

the behavioral properties of the model. Last, but not least, we test the assumption of risk

neutrality which is crucial to calculate the optimal benefit schemes in Winter's model.

Our experimental study yields the following conclusions. For INI, we observe a significant

proportion of inefficient outcomes, with inefficiency growing together with the group size.

Better results can be obtain by way of more expensive schemes such as NASH. However,

even in this case, we are far from achieving full efficiency. Finall¡ although UNI is the least

efficient, its efficiency is higher than what theory would predict. In other words, uniform

benefit schemes enhances efficienc¡ even if investing does not correspond to any equilibrium

strategy for any player.

If rve compare the efficiency of the simultaneous (flat) game*form t¡eatments with that

of their sequential counterparts we find more eficiency in the simultaneous case. This

result indicates that players invest more when they face the same information, i.e. in more

symmetric informational contexts.

3See, for  example,  Baron and Kreps (1999)
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Our study also highlights a (non strategic) correlation between benefits'levels and propensity

to invest. We also observe that, a player's propensity to invest is positively correlated

with her payoff but negatively correlated with the payoffs of the remaining members of her

group. To put it differently, players' behavior seems sensitive not only to absolute payoffs

but also to relatiue payoffs. Thus, our experimental evidence can be explained by appealing

to interdependent or social preferences. Some instances of this effect lies on the fact that

along the effcient path, players exert more effort the higher the position in the hierarchy in

INI rvhereas the opposite holds in NASH. We observe that the impact of this factor raries

significantly with player position. In particular, it is stronger for players at higher positions

in the hierarchy.

Our evidence also shows the relevance of the social norrns of reciproci,ty, that is players'

propensity to invest is reinforced by similar behavior of their predecessors. For instance, rve

find evidence that in INI and UNI, along the efficient path, subjects invest more the higher

their position in the hierarchy. As aforementioned, this can be explain by simply appeaüng

to a positive correlation between benefit levels in INI but not in UNI since benefits are

uniform along the hierarchy.

Social preferences and social norms have been object of attention of several recent experi-

mental studies.a To disentangle between these effects, we run panel regressions to estimate

the parameters of a simple mean-variance utility function based on the work by Costa-Gomes

and Zauner (2001) which postulates that subjects' preferences also depend on the payoffs

of others. By analogy with current literature, our estimates show the existence of social

preferences. Our estimates also show that reciprocity matters. We interpret reciprocity as

a structural break in the relevant parameters conditional on information sets (i.e. predeces-

sors actions). In this respect, we find that along the efficient path agents exhibit a higher

concern to the opponents' payoff which yields a higher investment on their behalf-

The estimates of the utility function postulated above also allow us to study risk attitudes.

In this respect, our resulüs indicate that subjects are risk averse, although the degree of risk

aversion is lower the closer they find themselves to the efficient path.

The remainde¡ of the paper is arranged as follo¡vs. Section 2 provides a brief synopsis of

the theory underlying the experiment, as developed in Winter (2000). Section 3 describes

the experimental design, while Section 4 summarizes the descriptive ¡esulüs and investigates

subjects' behavior using panel data estimations. Finally, Section 5 concludes, followed by

an appendix containing the experimental instructions.

2. The model

In what follows, we shall briefly introduce the games object of our experimental study.

2.1. The basic model. The organizational project involves n activities performed by

n individuals (henceforth players) who are ordered increasingly according to their hierarchy

position in the organization. That is, player i * 1 superuises players i, i  - 1.,... ,n. The

consequence of supervision is purely info¡mational. That is, i supervises j means that player

4See, arnong others, Charness and R¿bin (2002) and the literature cited thereln
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i can observe the behavior of player j and in particular the effort that has been exerted by

player 7 towards the performance of her activity. On the contrar¡ subordinates cannot

similarly obse¡ve the behavior of their bosses.

This relation dictates the order of moves in a sequential game of perfect information. Players

act sequentially in the order I,2, ...,n. Each player in her turn decides whether to invest

towards the performance of her activity. This investment can be interpreted as an acquisition

of costly information reievant to that player's decision making. We denote by ó¿ e i0, 1)

the investment decision of player i, where 6¿ : 1 (0) if player i does (not) invest. The cost

of investment in the model is c and is assumed to be constant across players.s

Each player, before making her investment decision, observes the decision of all her prede-

cessors (i.e. her subordinates). Each player's activity results in either success or failure. If

player i invests, i.e., á¿ : 1, then her activity is successful with probability 1. However, if

6¿:0, her success probabil ity is cr e (0, 1).6

The events of successful activities are independent across players. The project terminates

successfully if and only if all activities have been performed successfully. If the project fails,

then all piayers receive a payoff of zero. If the project succeeds, then player i receives a

benefit, b¿ ) 0.7 Thus players' benefits are conditional only on the project's realization and

not on individual investment decisions. This assumption clearly recalls the classic principal-

agent problem, here studied in presence of a formal hierarchy across agents. Unlike the

classical principal-agent problem, all agents are assumed to be expected benefit maximizers

(i.e. risk-neutral).

More precisely, the game's payoffs can be calculated as follows. Let ó: (át,... ,6n) €

{0,1}" denote the action combination taken by all players. Then, player its expected payoff

is given by

r¿ (6) : b¿a@-Di 6') - 6;".

Denote by G(ó) the extensive form game induced by the vector of benefits b: (h,. .. ,bn).
In the sequel we shall solve this game by characterizing its subgame perfect equilibria (SPE).

The principal wishes to design a mechanism that induces all players to invest (in equilibrium).

A mechanism is an allocation of benefits in case of success, i.e. a vector b. We say that

the mechanism b is investment-inducing (INI) if all the SPE of G(b) entail investment by

all players, i.e. ó : (1, . . . ,1). In additíon, the principal attempts to achieve this goal with

minimal benefit distribution. \A¡e will say that an INI mechanism b* is optimal if

n n

\-a: < \-a,
L J ' - Z J -

swinter (2000) also consjde¡s the case of asymmetric costs.
6All experimental treatnlents are characterized by a uniform probability of success, o. Winter (2000)

also explores the case of asymmetric probabilities across players.
7In the original rlodel, payoffs :rre expressed as sancti,ons in cuse oJ failu,re. We preferred the (equiva-

lent) frame of. lteneJit,s i,n case of s'Lt,ccess. wl¡ich we consider more approriate fo¡ an experimental study.
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for every other INI mechanism b.

3. The experimental design

In rvhat follows, we describe the features of the r,arious experimental treatments in detail.

3.1. Subjects. The experiment was conducted in 12 sessions in May, 2001. A total of

144 students (12 per session) were recruited among the undergraduate student population of

the University of Alicante -mainly, undergraduate students from the Economics Department

with no (or very little) prior exposure to game theory. Each session lasted for approximately

one hour. Instructions were provided by a self-paced, interactive computer program that

introduced and described the experiment. Copies of written instructions (identical to the

instructions on the screen) were also distributed.s

The 12 experimental sessions were run in a computer lab. In the first (last) 6 sessions, sub-

jects played in groups with n:2 (n:3). Each ercperimental session involved 12/n groups

of n subjects playing 20 rounds of a sequence of 3 treatments. The order of treatments va¡ied

among sessions, to control for inter-treatment learning effects. Therefore, all experimental

sessions consisted of 20 x 3: 60 rounds in total.e

In all rounds of each session subjects played anonymously with varying opponents. Subjects

were informed that the composition of their group would change at every round, but their

player position (i.e. their position in the hierarchy) would remain the same throughout the

session. At the end of each round, each player knew rvhether the project was successful for

that round and the associated monetary payoff

3.2. Payoffs. All subjects received 500 Spanish peseta.s (3 euros approx.) to show up.

Benefits in the game were, on average, 10% higher than the corresponding theoretical r.alues

shown in Table 1. This was to ensure uniqueness of equilibrium.lo Arrerage earnings were

2500 pesetas (16 euros approx.), including the participation fee.

3.3. Group size. As v¡e mentioned previously' we run t¡eatments with different group

size. In particular, we collected evidence on the "basic model" (the optimal INI mechanism)

with both n : 2 and n : 3, selecting one group size or the other depending on the other

issues at stake.

6The experiment was programmed and condr¡cted with ihe software z-Tree (Fischbacher, 1999).
9With t.he only exception of 2 sessions in which subjects played a sequence of 4 treatments (see Sub-

sect ion 3.8 belou' ) .
lowith a slight abuse in notation, denote by G(e) the game induced by the following benefit scheme:

? : a- * e. hr other worcls, ?- co..""ponds to a plan an e "more generous" tha¡l the optirnal INI, as

calculatred in Winter (2000). Given this notation, this is equivalent to say that the unique SPE of G(0) is

"ef f ic ient"  ( i .e.  i t  induces everybody to work) .

As it. stands. t,his statement is f¿lse. In fact, there a¡e other, "inefficient" SPEs, all having in common

that nobody invesl,s along the equilibrium path. Precisely, for all ,k € N, define by s(,b) the prrre strategy

profile by which pla¡'er j € N does not invest ¿rt ¿ll info¡m¿tion sets if j < k ancl also at all infor¡¡ration sets

but the one corresponding to the effcient path if j > ,t.

It. is not difficult to see that, for all k € N, s(fr) is a pure strategy SPE (with s(1) corresponding to

the "efficielt" one). Clearlv, all these inefficient SPEs q'ould disappear raisingall benefits by an e (in other

words, unir¡ueness is garanteed for all G(e), with e > 0).
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3.4. lbeatments. Table 1 summarizes the three different benefit schemes tested in

experiment: INI, UNI and NASH.

n :2 b 1 b2

INI c __9_' I  
-d

UNI c \z+o )
9 ( ' t  -a2 \

...g
2 ( 1 . - a 2

NASH c
;it:;r

c
l - c

n:3 b l b2 b3

INI c
i:;5

c
i:;;5

c

UNI
q(o'tjlo +4St!) a"+3a"+4a+3 a"+3a'+4a+3

I o ) ( a 2 + o +  1 ) - a z  ) { o r + a + l l -  e ¿  l l  a ¿  +  e + \

NASH C

d':n-\
c

;it:;T
c

Table 1 Benefit schemes for all treatments

Treatment INI corresponds to the basic model of Section 2. In this case, the unique subgame

perfect equilibrium is outcome equivalent to the optimal solution in which all players invest.

This game has also a (not subgame perfect) Nash equilibrium in which none of the players

invest.

In treatment UNI the sum of benefits is as in INI but it is distributed uniformly across

players. In this case, the unique (subgame perfect) Nash equilibrium is such that all players

should not invest at every information set.

Finally, in treatment NASH, benefits are distributed so that all Nash equilibria are outcome

equivalent to the optimal solution. Notice that, this scheme is more costly than INI, to

provide first-movers enough incentives to invest even if followers do not. More precisely, in

NASH, b1 is set high enough to induce investment by player 1 even if all other players in the

hierarchy do not invest in any information set; b2 is set high enough to induce investment

by player 2 even if all other players in the hierarchy except player 1 choose not to invest in

any information set, and so on. In corsequence, in NASH, the ranking of benefits is reversed

compared with INI, whiie ór, the last player's benefit, is the same than in INI.

3.5. Benchmark treatments. In what follows, we denote by benchmark games the

II{I, NASH and UNI treatments with n : 2 and, ct -- 0.5. The remaining treatments for

which we have collected evidence will be used as terms of comparisons of these benchmarks.

3.6. Simultaneous trs. sequential treatments. By analogy with the basic model, all

benchmark treatments involve a sequential game of perfect information. In these treatments,

subjects were informed in each round about the action of their subordinates before they

were asked to make their decision. However, some experimental treatments modify this

structure by simply considering a purely fl,at organizat'ion. In this case, there is no hierarchl':

players take simultaneously their decisions without any prior knowledge of the decision of

other members in their group. For simplicit¡ we have collected evidence of simultaneous

treatments only for 2-player games.

The simultaneous version of INI, denoted by SINI hereafter, unlike its sequential counterpart,

has a unique Nash equilibrium in which all players should not invest. The simultaneous

version of UNI, denoted by SUNI hereafter, also has a unique Nash equilibrium in which

9 1

the
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players should not invest. Finally, the simultaneous counterpart of NASH, denoted by

SNASH hereafter, has a unique Nash equilibrium in which all players should invest. This is

because, in this case, not investing is a strictly dominated strategy for player 1- Thus, the

induced game can be solved by the iterated deletion of strictly dominated strategies.

3.7. Risk aversion. The theoretical model assumes that agents are risk neutral. This

assumption is needed to calculate the "efficient" optimal INI scheme as the cheapest benefit

profile that would induce a group of expected profit maximizers agents to invest. Clearly,

if agents were risk averse (lovers), the corresponding optimal INI scheme would be cheaper

(more expensive).

We can use our experiment to investigate on this issue by means of two alternative ap

proaches. First, recall that, in the benchmark treatments, we set a : 0.5. To test subjects'

risk attitudes, we check whether changes in a yield changes in subjects'behavior. To this

aim, we consider some additional 3-player treatments in which a :0.25. Second, we have

considered additional treatments (also for &player games) in which players' payoffs are no

longer random, but correspond to the expected payoffs subjects are due to receive depending

on the number of their group members that invest, minus (if any) investment costs. Obvi-

ously, for these treatments, the concept of "successful project" has no meaning, because the

outcome of the project is a deterministic function of the decisions taken by the players. This

is why we presented deterministic treatments without any frame, that is, without any story

behind. In unframed treatments subjects were introduced to the game by simply desc¡ib-

ing the corresponding (deterministic) payofffunction, without any reference to "projects",

"investments", "costs" or "probability of successt'.

3.8. Sequence of treatments. The following Tables 2 and 3 summarize the sequence

of treatments characterizing the 12 experimental sessions. As we mentioned earlier, subjects

in sessions with n : 2 (Table 2) experienced 3 out of the 6 possible treatments, always

startins with a simultaneous treatment.

SESSION TRr TRz TRs
FR} SUNI SNASH INI
FR3 SNASH SINI UNI
FR' SINI SUNI NASH

FRá SINI UNI INI
FR' SNASH INI UNI
FR8 SUNI NASH INI

Table 2 - Experimental sessions with n:2

As Table 3 shows, subjects in sessions with n = 3 experienced 3 out the 9 possible treatments

in the first 4 sessions and 4 out of the 9 possible treatments in the last 2 sessions. We

have used subscripts FR and UNFR to distinguish between framed and unframed sessions

respectively, while the corresponding value of o is reported as a superscript.
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';;;"' 

rRs rR¿
FR3 rNr;s uNr;5 rNrf N/A
FRg UNris rNr35 uNr; NIA
FR3 uNr.f rNrf NASH| N/A
FRlo rNr's NASHi UNr; NIA
ur\rFRár rNri uNri rNris uNris
UNFR32 rNr?s UNrJs rNrJ UNri

Table 3 - Experimental sessions with n :3

4. Results

In reporting our experimental results, we begin by describing the efficiency and behavioral

properties of all experimental treatments. Later, we develop a panel data analysis to investi-

gate more in depth the issues of interdependent utilities, hierarchy architecture, reciprocity

and ¡isk aversion.

4.1. Outcomes. Tables 4 and 5 compare the various experimental treatments with

respect to their efficiency properties, that is, their ability to induce subjects to invest. We do

so by reporting five indicators: the relative frequency of. successful projects (succ), erpected

successful projects (esucc), fi,rst-best (fb), Iast-besú (lb) and auerage frequency of contributors

(contr) for the 2-player and &player treatments respectively.

Table 4: Outcomes distributions in 2-player treatments

Table 5: Outcomes distributions in &player treatments

By "successful projects" we denote the relative frequency of matches in which the project

was successful. Recall that, this occurs only when all players did their task correctly and, for

a given player, this event has a probability of (o) 1 when (not) investing. AIso notice that,

from the principal's viewpoint, this is the only information arailable. By "expected success-

ful projects" we denote \he ex-ante probability of obtaining a successful project given the

aggregate distribution of players' behavior. This indicator has the advantage of eliminating
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INI NASH UNI SINI SNASH SUN]

succ .64 .61 .52 - Q . o l .58

.59 .64 .bo - ( c .70 .62

ft .36 .40 .30 . D J .44 .34
Ib .38 .23 .39 .08 . 1 1 .20
contr .49 .58 .44 .  l , J .67 . o t

rNrf NASH'; uNrf rNrf5 uNrfs rNrf uNr.t rNrfs uNrts
succ .43 .oo .43 .bu .55 .33 .76 .22 11

esucc .43 .60 .46 .51 .54 .J ' f .16 .22 1 1

ft .24 .34 .26 .48 .48 .22 .01 .20 .08
Ib .39 .05 .23 .28 .22 . b ( _83 .oo .80
contr .68 .50 ,Dó .64 .26 .07 .25 . r4
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the possible bias in the frequency of actual successful projects due to the randomness of the

process. I\evertheless j esucc has also its drawbacks, as it might not coincide with the ac-

tual history subjects are observing along the experiment (which may influence their behavior

in many different ways).ll By "first-best" we denote the relative frequency of matches in

rvhich all players in a group have invested. By "last-best" we denote the relative frequency

of matches in which no group member decided to invest. Finall¡ by "auerage frequencg of

contributors" (contr) we denote the relative frequency of players in a group who decided to

invest.

In what follows, we shall summarize the main characteristics of the outcome distributions,

depending on the various design frameworks presented in Section 3.

4.I.7. Benchmark treatments. We begin by comparing the results obtained in the three

benchmark treatments, that is, the 2-player sequential treatments INI, NASH and UNI.

Here rve observe that, for all treatments, outcome distributions substantially differ from

their theoretical predictions (take, for example, esrlcc. whose subgame perfect equilibrium

values should correspond to 1 for INI and NASH and a2 : .25 for UNI). If we compare

efficiency across treatments, we can see that esuccis highest in NASH, followed by INI and

finally by UNI. The same ranking is preserved for ail the other efficiency indicators except

for succ, where INI is slighily more efrcient than NASH. In other words, the eficiency of

a treatment seems to be positively correlated to its aggregate cost (independently on the

strategic features of the induced game). This may be the reason why, contrary to what

theory would predict, the outcome distributions for (the equally costly) INI and UNI are

not different for most of the efficiency indicators considered. In other words, uniform benefits

seem to enhance efficiency, even ifinvesting does not correspond to any equilibrium strategy

for any player. If we compare the relative frequencies of .fó and lb, we observe that they

are approximately the same in INI whereas /b is higher (lower) than lb in NASH (UNI).

This evidence might be a consequence of the fact that in INI both l't and lb are equilibrium

outcomes whereas in NASH (UNI) only ft (Ib) is an equilibrium outcome.

4.7.2. Si.multaneous us. sequenti.al treatrnents. If we compare the efficiency measures of

simultaneous r.rs. sequential treatments we observe that simultaneous treatments are in gen-

eral more efficient. This is particularly surprising in the case of INI, since, the (equilibrium)

strategic properties of INI and SINI are precisely the opposite, insofar the unique SPE of

INI (SINI) would require all players (not) to invest. Similar considerations hold when we

compare NASH and its simultaneous counterpart SNASH. In this case, despite the difference

in the game-form, the strategic properties of NASH and SNASH are essentially the same

but the experimental evidence shows that SNASH is more efficient. Also notice that, for

any given benefit scheme, simultaneous treatments are particularly effective in reducing (up

to 4 times as much in the case of INI) the relative frequency of last-best outcomes, rather

than increasing the relative frequency of first-best outcomes.
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4.7.3. Group size. To analyze how changes in the group size affects outcome distribu-

tions, we compare the results of the benchmarks INI, NASH and UNI with those of their

corresponding 3-player treatments, that is, INIf , NASHf and UNIf . In this respect, INI

has 59% of expected successful outcomes, whe¡eas this frequency falls to 43% when we con-

sider the larger group treatment. Thus, for IIJI, we observe t}r,at applying a further round

of backward induction has a signifi,cant'impact on the incenti.ue scheme's ffici.ency. Also

for UNI, we observe a higher rate of expected success when n :2 (56%) than when n : 3

(46%)- In contrast, efficiency of NASH seems more robust to group size, with a slighter

higher proportion $a%) of expected successful outcomes with n : 2 than with rz : 3

(60%). For the remaining efficiency measures we observe that, in general, all treatments

display higher efficiency when n : 2. For example, if we observe the results obtained fo¡

first-best, again, eficiency of INI seems very sensitive to group size (36% the in small group

treatments whereas 24%in the large group treatments), while the same does not occur in

the case of NASH and UNI.

4.7.4. Risk auersion. To analyze the effects of changes in a, we first look at the framed

treatments. Here we notice that changes in o are important. In particular, both for INI aird

UNI, we observe higher efficiency when a is equal to 0.25. A possible explanation for this

evidence is that subjects are risk averse and therefore show a higher propensity to invest

when the probability of success in case of not investing is lov¡er. Similar considerations

hold when we compare, for a given o, the efficiency of framed (stochastic) 'us. unframed

(deterministic) treatments. In this case, outcome distributions (with the sole exception of

UNI) are in general significantly more efficient in the framed treatments. On the other hand,

as shown in Table 5, (expected) benefits increase with a. As we previously mentioned,

subjects' propensity to invest seems positively correlated with benefit level. In this respect,

if we compare the results obtained in the unframed (deterministic) treatments depending on

the value of a, we see that efficiency increases with c. Clearly, this result should not depend

on the degree of subjects' risk aversion since, in the unframed treatments, subjects always

receive just their expected profits. We shall come back to discuss the role of a as a measure

of subjects' risk aversion in Section 4.3 below.

4.2. Behavior. We now move on to analyze the behavioral properties of the lanious

treatments. As Figure 1 shows, we employed three different game-forms: one extensive form

(f1) and one strategic (fz) for the 2-player treatments, and a unique extensive form (f3)

for all 3-plaver treatments.

Figure i: The experimeniai game-iorms
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Let pf be player e's (population) behavioral strategy at information set k, defined as the

relative frequency with which subjects in player i's position invest at information set k.
According to this notation, aggregate behavior in the va¡ious experimental treatments is

summarized in Tables 6 (fr), 7 (lz), and 8 (f3).

STR.
TREATM.

l

P 1
. , 1
It2

t
lú2

I N I .50 .24 .72
NASH 172 . 1 5 .54

UNI .51 .22 < a
. ¿ I

Table 6: Aggregate behavior in the benchmark t¡eatments

STR.
TREATM

pl I

tL2

s1¡/1 .74 .72

S N A S H . i J .60
SUNI . o l .Dó

Table 7: Aggregate behavior in the 2-player simultaneous treatments

Table B: Aggregate behavior in the 3-player treatments

By analogy with Subsection 4.1, we shall look at subjects' behavior depending on the rarious

design frameworks presented in Section 3.

4.2.7. Benchmark treatmenús. We begin by comparing subjects' aggregate behavior for

the three benchmark treatments, as shown in Table 6. Again, the first striking evidence is

the difference between actual behavior and theoretical prediction- Take, for example, the

case of pl in INI, whose value (.5) is exactly half of the corresponding equilibrium value.

This evidence notwithstanding, we also observe changes in behavior depending on the benefit

scheme employed. For example, the relative frequency of investment decisions for subjects in

player 1's position is much higher in NASH (73%) than in any other benchma¡k treatment

(50% and 51% in INI and UNI, respectively). Recall that NASH distributes higher aggregate

rewards than INI and UNI. Moreover, the order of benefits is reversed: the higher (lower) the
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benefit the lower (higher) the position in the hierarchy for NASH (INI), with UNI distributing

benefits uniformly across players. Given this, the difference in player 1's behavior could then,

again, simply be explained by ihe diffe¡ence in absolute benefi.ts. Focusing noq/ on player 2's

behavior, we find that, along the "efficient" path, the relative frequency of players 2 who

invest (p!) is higher in INI (72%) than in U¡ü (57%) or NASH (51%). Here, appealing simply

to (non-strategic) response to absolute payoffs is more problematic, since b2 : 7_9; in both

INI and NASH and ó2 : ## < t'; in UNI. Contrary to what happens for player 1,

player 2's behavior seems very sensitive lo relat'iue benef,ts, the higher being the propensity

to invest the higher the diference in benefits. In other words, for the benchmark treatments,

player 2's behavior could be explained by appealing to 'interdepend,ent preferences (this effect

being much stronger than for subjects in players 1's position).

4.2.2. Simultaneous us. sequential treatments. As for the simultaneous treatments, sub-
jects' aggregate behavior is summarized in Table 7. If we compare the behavioral properties

of sequential and simultaneous treatments, we observe that, with the exception of NASH,

players 1 invest more in simultaneous treatments. This evidence might indicate that sym-

metric information has generally a positive effect in player 1's investment decision. Similar

considerations hold when we look at player 2. Here we notice that the relative frequency of

investment decision in simultaneous treatments (p] of Table 7 is not very different from the

relative frequency of investment decision along the efficient path in sequential treatments

(that is, ¡rl in Table 6), In other rvords, in simultaneous treatments, player 2 behaves as

if she had observed player 1 investing beforeharid. This effect yields an overall higher fre-

quency of investment on behalf of player 2 in all simultaneous treatments which, in turn,

yields higher efficiency.

4.2.3. Group saze. Aggregate statistics of behaüoral strategies for 3-player treatments

are summarized in Table 8. We begin by comparing the behaüoral properties of the three

benchmarks INI, UNI and NASH with their 3-player counterparts INIf , UNIf and NASHf .

Again, in INIf and UNIf (NASHf), along the efficient path, subjects invest more (less)

the higher their position in the hierarchy (40%,77% and 83% for INIf , 58%,60% and 73To

for UNIf and 95%, 72Yo and 49To for NASHf). Clearly, as in Section 4.2.1, we cannot

explain this evidence by simply appealing to a positive correlation between benefit absolute

levels and propensities to invest (which may explain this result in the case of INIf and

NASHf , but not in the case of UNIf ). Not to mention the fact that bs is the same in INIf

and NASHf , although player 3 invests more in INIf. By analogy with the discussion in

Section 4.2-1, the behavior subjects may also be sensitive to relative payoffs. An alternative

(and somehow complementary) explanation for this evidence makes appeal to reciprocity:

players' propensity to invest is reinforced by a similar behavio¡ of their predecessors.

The comparison between the experimental evidence between INI and INIf also challenges

Winter's theoretical model on a different ground. If players behave consistently with back-

rvard ind.uction, they shouid display identical behavior in INI and in the subgame of INIf

starting from the decision node in rvhich player 2 has observed player 1 investing. This

assumption, often termed as subgame consistency, is strongly rejected by our experimental
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evidence.l2 Players 2 and 3 invest significantly more in INIf than players 1 and 2 in INI-

Again, this, together with the evidence obtained in UNIf , may be due to the presence of

some reciprocal component in late-moverst behavior.

4.2.4- Risk auersion. To analyze the effect of changes in a on players' behavior we

compare the behaüoral properties of INIf and UNIf with those of INIfs and UNIf5 (see

Table 8). In line with the discussion in Section 4.1.4, we observe a negative correlation

between a and the propensity to invest. By the same token, for a given a, players generally

invest more in framed than in unf¡amed t¡eatments both in and out the efficient path (with

few exceptions, such as the case of player 3 in INI). This evidence, consistent with ¡isk

aversion, makes always higher overall efficiency in framed treatments.

4.3. Panel regressions. The experimental evidence we just described seems to chal-

lenge Winter's theoretical model in many respects.

o First, we observe that the basic model INI is not very efficient. Better results can be

obtained by way of the more expensive NASH although, even in this case, we are far

from the theoretical prediction of full efrciency.

o We also observe that the strategic properties of the r,arious games are not as important

as expected. Take, for example, the striking similarities in the behavioral properties

of INI and UNI: in general the efficiency indicators for INI are higher although, in

many cases, this difference is not significant.

o Also for the backward induction hypothesis, our evidence raises several controversial

questions. For example, adding one additional player in the hierarchy decreases signif-

icantly II,II's overall eficiency. In other words, applying a further ¡ound of backward

induction has a significant negative impact on the propensity to invest. In contrast,

efficiency in l'lash seems much more robust to changes in group size. Again, this is

mainly due to player 1's behavior: pl : .95 for NASHf and only .4 in INIf .

o This difference also reflects a (non-strategic) positive correlation between players'

benefits and their propensity to invest. As we noticed, sometimes this correlation

seems to refer to absolute payoffs, while in other instances players (in particular, for

last movers) seem to be sensitive to relative payoffs, showing some form of interde-

pendent preferences.

o Another factor that plays in favor of NASH efficiency is related to role of reciprocity in

explaining late-movers' behavior. Investment on behalf of player 1 seems to positively

influence late-move¡s' propensity to follow.

¡ Treatments with flat (simultaneous) architectures are more efficient than their se-

quential counterparts. This results could indicate that situations in which players

have symmetric information generate higher incentives for mutual investment.

o We have also found evidence consistent with the hypothesis that agents are risk

averse. This last issue is less problematic for the model because, even if the principal

cannot measure the (possibly heterogeneous) degree ofrisk aversion ofeach individual

subject (necessary to achieve optimally), setting benefits under the assumption of risk

r2The terrn subgarne consistency is borrowed from Binmore et al. (2002), who also collect cont.radicting

evidence i ¡ r  the case of  the c lassic Ul t imatu¡n Ga¡ne.
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neutrality would put the principal on the "safe side". In fact, if players are risk averse

the "theoretical" benefit schemes required to generate optimal investment inducing

mechanjsms should be cheaper.

This contradicting evidence calls for further investigation. To fully exploit the panel structure
of our database, we employ some logit (random effect) regressions of the following form:

(4 .1 ) yrob(6"(t) - 1) : ¡(B' x r"(t)) * e" + e"(ú),

where / is the logistic fu.nction and e" - iid N(0,o1) is tne unobserved (time-invariant)

heterogeneity that characterizes subject s and e"(ú) -iid N(0,o!) ts an idiosyncratic error

term (we further assume, as standard in ihe literature, €" .L s"(¿)). The dependent variable

ó"(ú) denotes the investment decision of s at time ü. For some of our regressions we only

consider observations of subjects playing in a particular player's position (remember that,

for a given subject, player's position was kept constant). In this case, the dependent variable

ó!(t) denotes the investment decision of subject s in k's player position at time ü, with ,k = 2

meaning "subjects in player 2 and 3's position" for 3-player regressions (i.e. in 3-player
regressions, observations of late-movers are pooled together).

Note that zr(ú) represents the vector of regressors and B represents the vector of the cor-

responding coefficients in (4.1). We shall now describe the different rariables used in the

different regressions.

The first group of explanatory variables refers to benefits. This is done by means of two

alternative approaches. The first approach uses as regressors benefits' face ralues. We de-

note by b,(f) to subject s benefit at time ú, with oó,(t) denoting the benefit of subject s

opponent(s) (in three player treatments this simply means the average of the benefits of the

other two players belonging to the same group as s). To investigate issues related to risk

attitude, in 3-player regressions, we also consider sqb"(ú), the square of b"(t). The second

approach treats benefit schemes as dummy variables. In this case, TR"(f) : 1 (0) if player

s at period ú was playing a treatment with the benefit scheme equal (different) to ?lR, with

TR: UNI,NASH (i.e. treatment effects are measured with respect to the basic model

rNr).

We also use player position as a regressor. This variable is denoted by pl"(t) and takes the

values 7,2 or 3 depending on the position in the hierarchy of subject s at period ú.

As for 2-player treatments, we also consider a dummy rariable (seg) to distinguish between

sequential and simultaneous mechanisms. That is, seq"(t) : 1 (0) if subject s at period ú

is participating in a sequential (simultaneous) treatment. As for 3-player treatments, we

will also define dummy variables to measure the effects of changes in o and frame. That

i s , a l p h a " ( t ) : 1 ( 0 ) i f s u b j e c t s a t p e r i o d ü i s p a r t i c i p a t i n g i n a t r e a t m e n t w i t h o : 0 . 5

(o:0.25)  and f rarne"(¿)  :  f  (0)  i f  thesubject  s  at  per iodt  ispar t ic ipat inginaframed

(unframed) treatment.

The last group of explanatory va¡iables refers to subjects' actual experience. We denote by

mean6 
"(t) 

to the average investment of subject s opponent(s) until period ú - l. By the
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same token, Iast6 
"(t) 

is the (average) investment of subject s opponent(s) in period ú - 1. To

check for within-treatment learning effects we also use the dummy variable losú10"(ú) :1

(0) if ¿ > 10 (¿ < 10).t3. Finally, for sequential treatments, we also consider a dummy

variable, h'ist, Lo summatize first-mover investment decisions within a single round. That

is hisú"(ú) :1 if all predecessors of subject s have invested in period i and áisü"(ú) :0

otherwise. Obviously, hist appears as a regressor only in equations where the dependent

variable is ó3(¿).

Estimations of the r,arious regressions are summarized in Tables 9 (2-player treatments)

and 10 (3-player treatments). For each variable, we report the corresponding coefrcient

and (between brackets) the associated pvalue. As mentioned above, we have also run some

regressions that only use a proper subset of the entire data set. For example, for equations

(7) and (B) in Table 9 we only use the data from sequential treatments. To highlight this,

in these equations we have written in boldface the number 1 in the cell corresponding to the

variable seq (without any pvalue).

4.3,7. Benchmark treatments. To test for treatment effects, we begin by looking at equa-

tion (3) of Table 9. Here we see that subjects invest significantly more (less) in INI than

in (NASH) UNI, although only the difference betrveen INI and UNI is statistically signifi-

cant. We also observe from equation (2-3), that two-player sessions exhibit a negative (and

significant) correlation between investment and player position. We can refine this analysis

disaggregating for player position (equations (+7)). In this case, we observe that subjects

in INI invest more than in UNI independently on their piayer position, although this differ-

ence is only significant in case of player 2. The comparison between INI and NASH offers

a rather different scenario. NASH treatment effect is always significant, but with opposite

sign, depending on player position. In particular, as we already noticed in Section 4.2, player

1 (2) invesis significantly less (more) in INI than in l.fASH.

Estimations of equations (2), (4), (6) and (8) provide some explanation for this evidence.

Here we notice that investment is positively (negatively) correlated with the (opponents')

benefit level. However, negative correlation between investment decisions and opponents'

benefits is significant only in the case of players 2 and sequential treatments (as for player 1
-see eq. (4)- neither oó nor seq are significant). In other words, as already noticed in Section

4.2, the role of interdependent preferences) measured by ob, seems much more prominent

in case of player 2 when she had previously observed player 1's decision. As for the role

of experience, we notice that lostlO is almost always not significant. On the other hand,

subjects seem to tal<e into account their personal experience (and more than one period in

the past), insofar mean6 has in general a much higher explanatory power than losfó. These

consideration notwithstanding, past experience plays no role when players can directly ob-

serve currenii investment decisions of their subordinates (see the estimates of mean6,Iast6

and hist in equations (8-9)). This evidence calls for reciprocifg as one of the determinants

of later movers' behavior.

13We also considered dummy variables to check for inter-treatmezt learning effects (that is, associated

to the sequence of treatments within a session). These va¡iables turned out to be never significative, neither

individually nor jointly, and have been omitted in the final estimations. The same conside¡ations hold fo¡

variables related to subjects'previous (or cumulated) pa-voffs.
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4.3.2. Si,multaneous us. sequential treatments. Our panel data regressions also confirm

that simultaneous treatments are more effi.cient: the estimates of the seg coefficients of equa-
tions (2-3) are both negative and significant. Disaggregating for player position (equations

(4-7)), we find that this difference is only due to player 2's behavior, insofar only the seq
coefficients in equations (G7) are significant. This result confirms that subjects are less

"strategic" than what theory would predict since, although player 1's information at the
time she has to make her choice does not differ from simultaneous to sequential treatments,

in sequential treatments she could take her first-mover advantage to influence her opponents'

behavior.

We refine these conclusions disaggregating our dataset considering sequential and simulta-

neous treatments separately. As for simultaneous treatments (eq. 7a-b), we first notice

that, once controlled fo¡ ihe other explanatory variables, pl is not significant. Again, this
is consistent with the fact that, aside for benefits, in simultaneous treatments the informa-
tion structure is symmetric across players. Another interesting evidence refers to the role of

mean6. As we already noticed in Section 4-2-2, in simultaneous treatments, player 2 behaves

as if she observed player 1 investing beforehand. In other rvords, player 2's expectations are

"more optimistic" than what her own personal experience should suggest. This conjecture

is reinforced by the fact that, if we consider mean6 as a proxy of players' expectations, in
eq. (7a-b), mean6 is not significant.

If we now focus on sequential games, we observe that player 2's behavior is mostly determined

by player 1's decision, measured by the variable hi.st. That is, if player t has (not) invested

then player 2 does (not) invest. This reinforces the hypothesis that reciprocity may also be

a relevant factor to explain player 2's behavior.

4.3.3. Group size. Table 10 reports estimations fo¡ the 3-player treatments. The UNI
and NASH treatment dummies (equation (11)) keep the same sign as for 2-player treatments,

although, in this case, they are both statistically significant. Again, we refine this conclusion

disaggregating for player position (remember that, in 3-player regressions, observations of
players 2 and 3 are pooled together). Here we observe (equation (13)) that, consistently with

2-player treatments, for player 1, there are not significant differences in behavior between

INI and UNI treatments. As for the comparison between INI and NASH, we observe the

same pattern of behavior as in 2-player treatments: subjects as player 1 (2 and 3) invest

significantly less (more) in INI than in NASH. By analogy with Section 4.3.1, we turn our

attention to equations (10), (12) and (13a), where treatment effects are taken into account

by considering face value benefits directly. Here we confirm a positive correlation (always

significant and much stronger than in the 2-player case) between benefit levels and propensity

to invest. As for the issue of interdependent utilities (measured by the impact of ob in the

regressions) the question is a bit more complicated. In equation (10) ob is negative, but not

significant. In contrast, disaggregating for player position (equations (12) and (13a)) makes

ob negative and strongly significant only in case of player 1. To explain this, notice that the

only difference between equations (10) and (12) lies in the fact that pl is included in the

regression in (10), but not in (12). In equation (10), pl is negative and strongly significant.

In other words, consistently with 2-player regressions, higher positions in the hierarchy are

1 0 1
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associated to lower propensity to invest. Clearly, pl does not belong to the set of regressors
of (12), since equation (12) only refers to observations of subjects playing as player 1. On the
other hand, pl belongs to the set of regressors of (13a), since observations of player 2 and 3
are pooled together. Also in equation (13a) pl is negative and strongly significant. However,
in equation (14), where hist is also included in the regression, pl is no longer significant
while ob is. In other words, our analysis shov¡s a significant difference in behavior between
player 1 and the rest of he¡ followers. First, player 1's action strongly influences the decision
to invest of her followers. The higher player 1's benefit, the higher her willingness to invest,
the higher the reciprocal effect of her action on the decision of her followers (like in the
2-player case, hzst is positive and strongly significant in all the regressions we considered).
Interdependent preference effects, much stronger than in the 2-player case for either player
position, play again in favor of NASH with respect to INI in case of player 1. By the same
token, interdependent preference effects play in favor of INI with respect to NASH in the case
of late-movers, although this effect is not suficient to counterbalance the loss in efficiency

caused, in INI, by player 1's behavior.

Finally, we turn our attention to the reciprocity issue. As in the 2-piayer case, hisü turns
out to be the crucial variable in explaining late-movers' behavior, who basically seem to

mimic the investment decisions of their predecessors. Notice that, for both INI and NASH,

reciprocal behavior is perfectly consistent with expected profit maximization. The same does
not hold in the case of UNI, whose unique equilibrium strategy profile requires all players

not to invest at every information set. This is the reason why, in equations (1&17), we
disaggregate our dataset depending on whether the benefit scheme was UNI or not and
analyze the effect of. hist in the 2 subsamples separately. In this case, we find that hi.st ís
positive and strongly significant in both regressions. Moreover, looking at the g5% confidence

intervals of the estimates of hi,st in equations (1G17), we can reject the null hypothesis that

the hist coefficient in equation (17) (i.e. 3.51) is higher than the hist coefficient in equation

(16) (i.e. 3.183). We interpret this as evidence of the crucial role of reciprocity in explaining

late-movers' behavior.

To summarize: increasing the group size (i.e. increasing the overall complexity subjects

face) reduces the impact of strategic considerations and, at the same time, increases the role

of other factors (such as interdependent preferences or norms of reciprocity) in explaining

subjects' behavior. These effects play a different role depending on subjects' player position,

suggesting that subjects' preferences may change depending on the role they play in the
game.

4.3.4. Ri,sk auersion. We begin by noting tbat alpha and f rame are significant r.ariables

almost Ín all regressions of Table 10. Both these results are consistent with the hypothesis

that subjects are risk averse. By the same token, estimates of sqb are negative and strongly

significant in all cases.

4.4. Social preferences us. social norms revisited: a panel estimation of a

sirnple mean-variance utility function. Throughout this paper, we made several times

reference to social preferences and social norrns (i.e. reciprocity) effects in explaining the

r02
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discrepancy beti¡'een theory and evidence in subjects' behavior. Our regressions unambigu-

ously show significant correlations between other group members benefits and actions and

investment decisions to reject the hypothesis that players only look at the monetary rewards

they expect to gain in the game. Given this, the next question would then be: which of the

two effects is predom'inant? To answer this question) we may first notice that, no matter

how you define them, the distinction between social norms and social preferences is fuzzy.

After all, the "willingness to (costly) reward (punish) friendly (hosiile) actions" -our work-

ing definition of reciprocity- may simply reflect a concern in other players' payoff, that is,

may simply be considered as the consequence of the existence of a system of values based

on social preferences.

Social preferences have been the object of many experimental papers, mainly in the context

of the Ultimatum game.la Among the r.anious formalizations proposed by the literature, we

shall follow more closely the approach considered by Costa-Gomes and Zauner (2001). In

their paper, they consider a utiiity function whose deterministic part (supplemented by an

error designed to facilitate empirical application) is given by

( 4 r \ u¿(n¿,r¡) : ^lt ir¡ * 1z¡r j

where n-¿ (a¡) defines player z (opponent)'s monetary payoff in the game.

Befo¡e rve proceed, the¡e is a caveat he¡e. All estimations so fa¡ use benefits (as opposed

to monetary payoffs) as regressors. The adrantage of this approach is that benefits ca¡r be

considered as truly exogenous variables, whe¡eas payoffs are not (insofar they depend on

the players' strategy profiles and the realization of the random process which determines,

given the group members' choices, whether the project has been successful). On the other

hand, we cannot use benefits to estimate a utility function analogous fo (4.2), since they

do not correspond to what subjects actually get in the game. In Costa-Gomes and Zauner

(2001), the endogeneity problem is solved imposing rather restricting (rational expectation)

equilibrium conditions on players' beliefs, estimating the values of 7, and 72 that fit best
-using maximum likelihood- the equilibria of the induced garnes. We prefer not to follow

this route, focusing only on player n's behavior (i.e. the last mover) for which (given perfect

information) the opponents' strategy profile can be considered a pre-determined (although

not purely exogenous) variable.

In what follows, we shall only consider observations of 3-player treatments. More precisely,

let T5$r) (nL3(ó3)) denote the (average) payoff player 3 (opponents) gets at jnformatjon

set ,k if she opts for áction ó¡ € {0, 1} . Clearly, (in contrast with (4.2)), rf ,I e {3, -3}

is a random variable, with mean pf (h) and variance of (6s). We shall postulate a utility

function of the followine form:

(4.3)
"5(ó3) 

: l!pt$) + t\p\s@ü + rá"5(ós)

laSee, e.g.  Bol ton (1991),  Ochs and Roth (1989),  Bol ton and Ockenfels (2000) and Feh¡ and Schmidt

{  1  999 ) .
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that is, a simple mean-rariance utility function which also includes a parameter (7f)

measuring player 3's responsiveness to the average opponents'pa1'off. From (4.3), we derive
the foliowing equation:

( 4  L \ prob(6!( t )  -  1)  :  ¡0 l tp|+1t lp, \3+1!no!¡*  e" +e"(ú),

where tpf = pf (r) - ¡,f (o) 1to!: "5(i) 
- 

"5(0)).
Notice some important differences with the estimation procedure proposed by Costa-Gomes
and Zauner (2001):

1. We allow 1l,m: l,...,3, to vary in k, that is, across information sets (although we
impose f*: f* since, by construction,rT63): zrl(ó¡) for all I and á3);

2. We do not impose any equilibrium condition (at the cost of restricting our sample to
subjects in player 3's position);

3. We include a parameter (rá) to take into account the randomness of the payoff

function;

4. Consistently with (4.1), also (4.4) includes the individual random effect e,.

Table 11 contains the estimations of two alternative equations based on (a.a). Equation
(21) estimaies the nested model which imposes the restriction i^ : ú- : "y1* = 1* (i.e.

by analogy with Costa-Gomes and Zauner (2001), assumes that 1l is constant in k). In
this case, all coefficients are significant and consistent with the estimates of Table i0 (that

is, late-movers show a positive (negative) concern to their own (opponents') payoff and are
risk-averse). Equation (21) also includes last7} in the set of regressors. Once again, this
time variable is not significant and, in the following equation (22),we shall pool the data
over the 20 periods.

On the other hand, in equation (22), we let 7l rary in k. With an abuse of notation,
coefficients 7l andllhave to be interpreted as measuring the deviations from the estimates

of. 1* that occur at information sets 1 and 4.

1. As for 7l , we can accept the null hypothesis ll : 'y1: 0 (i.e. 7, being constant across

information sets). The estimates of 7l and 7f, both independently and jointly, are

not significantly different than 0. In other words, there is a component in subjects'

behavior which is well explained by (expected) payoff maximization. In addition,

this component seems not to be history dependent (as standard rationality would

assume).

2. As for 7r, the picture is ¡ather different. Here the data strongly reject the null

hypothesis lL : lt: 0, In this case, the estimates of 1f and 1|, both independently

and jointly are significantly different than 0. Moreover, they are also significantly

different to each other. showing a higher concern to the opponents' payoff associated

to higher investment on their behalf. We interpret this result as an evidence of. the
predominance of the social norm ouer the soci,al preference effect.

3. Also the estimates 7! are not constant in k. In particular, subjects display a lower de-

gree of risk aversion the close¡ they find themselves to the equilibrium path (although

the marginal effect is always negative).
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6 .  APPENDIX .  EXPERI \ {ENTAL  INSTRUCTIONS

5. Conclusion

This paper employs experimental techniques to a classic mechanism design problem: the

principal has to decide horv to optimally allocate benefits along the hierarchy so that the

probability of attaining a successful project is maximized. In this respect, we have run

sessions to test diffe¡ent benefit schemes and to compare their behavioral and efficiency

nrnnpr t ipq

Our experiments show that, despite a significant evidence of out-of-equilibrium ("irra-

tional") play, incentiues matter in the characterization of the aggregate play and that sub-

jects react "strategically" to the competing implementation schemes. In other words, our

evidence can be fruitfully applied to help the principal in enhancing efficiency. In this respect,

our results show that simultaneous treatments perform better than their sequential coun-

terparts. Moreover, the role of social preferences and reciprocity raises interesting questions

for the designer. We observe that players display a natu¡al tendency to reciprocal behavior.

This highlights the importance of inducing first-movers enough incentives to invest in order

to generate an "investment cascade" along the hierarchy. Nevertheless, subjects also exhib-

ited interdependent preferences. Specifically a player's propensity to invest is negatively

correlated rvith the payoffs of the remaining members of her group. Thus, schemes should

be symmetric enough in order to mitigate this "emy" effect.

Our experiments ¿lso show that full effciency is never accomplished and that the probability

of success is positively correlated with the scheme's cost. Thus, in general, the principal faces

the following trade-off: how much is she willing to pay to increase the overall probability of

success? To answer this question Winter's model cannot be directly applied. This is because,

as standard in many contributions to this field (take e.g. Holmstrom, 1982), the principal

has lexicographic preferences when considering the efficiency of a mechanism and its cost

(that is, she minimizes the cost of the scheme conditional on maximizing the probability of

attaining a successful project). A natu¡al way of extending Winter's basic model would be to

assume a risk neutral principal that maximizes expected profits, anticipating the probability

of success obtained with every available mechanism. Given this assumption, we can use

the experimental evidence to proved ihe principal with this information. In a preliminary

attempt to develop this problem López-Pintado and Ponti (2004) find that, despite its lack

of efficiency Winter's original investment scheme can be thought as an optimal solution to

this mechanism design problem with "bounded rationality" in the sense that, if the value of

the project for the principal is not "too high" (ifthis value tends to infinity, the lexicographic

preference would again be restored) the INI mechanism provides he¡ with the highest profits.

6. Appendix. Experimental fnstructions

WELCOME TO THE EXPERIMENT !

. This is an experiment to study how people solve decision problems-

r We are only interested in what people do on average, and keep no record at all of

how our individual subiects behave.
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6 .  APPEND]X .  EXPER]MENTAL  INSTRUCTIONS

o Please do not feel that any particular behavior is expected from you. On the other

hand, keep also in mind that your behavior will affect the amount of money you will

earn.

o On the following you will find a series of instructions explaining how the experiment

wo¡ks and how to use the computer during the experiment,

o Please do not disturb the other subjects during the course of the experiment. If you

need any help, please raise your hand and wait silently. You will be assisted shortly-

HOW YOU CAN MAKE MONEY?

o Although throughout the experiment all your benefits will be expressed in PESETAS,

at the end of the experiment you will be paid the corresponding amount in EUROS.

o The experiment will consist of three sessions with 20 rounds each.

o At the beginning of each session you will receive 300 ptas. This amount will increase

or decrease at the end of the session depending on how the game evolves.

. At the end of the three sessions you will be paid the TOTAL amount of money

accumulated throughout the experiment.

THE GAME (I)

¡ Note that you have been assigned a PLAYER number. This number appears on the

right of your screen and depends on the computer you are using. Recall that 1'ou
have been randomly assigned to this computer. Thus, "a priori" each player has the

same probability of having one number or the other.

o This number represents your player position in a sequence of TWO players (PLAYER

1 and PLAYER 2). Your PLAYER number will remain the same throughout the

experiment.

¡ The composition of your group (the other subject belonging to it) will CHANGE

from one ¡ound to the other.

THE GAME (II)

o In each round your group must accomplish a certain project. A project consists in a

task for each player. The project will be successful only in the case that ALL players

in your group complete their task successfully.

o In each round you must decide whether to PAY 10 ptas. or not. If you decide to

PAY you will complete your task successfully. If you decide NOT TO PAY you rvill

complete your task successfully with probability 712-

o The same occurs for your partner. The decision whether to pay or not will be taken

simultaneously. Therefore you will not know the decision of your partner when 1'ou

take your decision.

o If the project is successful, each player will receive a "prize", independently on the

decision of whether to pay or not. This prize is the amount that appears on the right

of your screen.

o For example, in this session, if the project is SUCCESSFUL, then PLAYER 1 ivill

receive a prize of 44 ptas. and PLAYER 2 will receive a prize of 22 ptas.
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6 .  APPENDIX .  EXPER]MENTAL  ]NSTRUCT]ONS

If the project is ItrOT SUCCESSFUL, none of the players will receive a prize.

THE GAME (III)
To summarize:

In each round you must simply decide if either to PAY 10 ptas., in which case you

will successfully complete your task with probability 1, or NOT TO PAY 10 ptas.,

in which case your will successfully complete your task with probability 712.

The project is successful if and only if ALL players in your complete their task

successfully. If ihis is the case, independently on having paid or noü, each player

receives the amount of money that appears on the right of your screen.

The project rvill not be successful if at least one player in your group completes her

task successfuily. If this were the case, there will be no prize for either player.

THE FOLLOWING TABLE MIGHT HELP YOU TAKE YOUR DECISION
Recall that, if a player decides NOT TO PAY she will complete he¡ task successfully
with a probability of 112. The table shows with which percentage of probability the

project will be successful given your decision of whether to PAY or NOT PAY (row)

and the decision of your partner (columns).

Probability of attaining

a successful project

Your partner's decision

PAY NOT PAY

Your
decision

PAY n0% 50%
NOT PAY 50% 25%

Example:

If your partner decides NOT TO PAY then, you must look at the second column in the

table. If you decide to PAY the project will be successful with a 50% probability. If, on the

other hand, you decide NOT TO PAY the project will be successful with a 25% probability.
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