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CHAPTER 1

CONVEXITY IN ECONOMICS.

1.1 INTRODUCTION.
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Chapter 1: Convexity in Economics.

1. INTRODUCTION.

Modern economic analysis uses strong mathematical tools
which allow the creation of models to analyze complex human
behavior. Most of these tools (Fixed Point Theorems, Variational
Inequalities, Nonempty Intersections, Concave Programming, Game
Theory,...) are based on the concept of convexity to obtain the

different results.

The concept of convex set (in a linear topological
space) is one of the most used mathematical notions in economic
analysis due to the fact that it is very intuitive and implies a
very regular behavior. Convexity in production sets, individual
preferences, choice sets or decision sets, etc. is a much used
assumption .and is considered as "natural" in economic models.
However, many authors (especially in experimental economics)
consider that this ‘"natural" character is not presented in

reality.

Next, we are going to comment on several economic
modelizations where convexity can be justified in a natural way,
as in the case of the existence of equilibrium (from the

consumers’ as well as the producers’ point of view), game theory
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Chapter 1: Convexity in Economics.

situations, decision problems under uncertainty (expected utility
theory). In these contexts, other situations where convexity is
not a natural assumption but only a technical requirement will be
mentioned.

-

The classical way of justifying the convexity assumption
of preferences would be to consider it as the mathematical
expression of a fundamental tendency of economic choice, namely,
the propensity to diversify consumption. This diversification is a
natural consequence, on the one hand, of the decreasing marginal
utility (successive units of a consumption good yield increasingly
smaller amounts of utility) which provides the concavity of the
utility function; and, on the other hand it can be justified by
means of decreasing marginal rate of substitution (keeping utility
constant, it is increasingly more expensive tc; replace units of a

consumption good by units of another).

Convexity has been one of the most important conditions
in many results which ensure the existence of maximal elements in
preference relations (Fan, 196l; Sonqenschein, 1971; Shafer, 1974,
etc.). This assumption allows us to obtain classical results in
contexts where individuals have preferences which are not

necessarily given by utility functions.
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Chapter 1: Convexity in Economics.

All the above mentioned can also be applied to
production. If we assume that inputs and outputs are perfectly
divisible, then convexity on the production set implies that from
any initial point at its boundary, it takes an increasingly large
amount of input to produce succesgive additional units of outputs.
Therefore, convexity in production sets is a characteristic of
economies with not increasing returns to scale. This statement can .
be derived from two basic requirements: on the one hand the
divisibility of all the inputs used in production, and on the
other hand the additivity property (that is, production activities
do not interfere with each other). In the context of decreasing
returns to scale and due to the fact that the production set is
convex, any production system which generates an efficient
aggregated production can be supported by means of a price system
in which each firm maximizes benefits. Furthermore, productions
which maximize benefits do not change discontinuously v{ith prices,
hence it is possible to apply Brouwer’s or Kakutani’s fixed point
Theorem which ensure the existence of equilibrium (Debreu, 1959;
Arrow and Hahn, 1977; Cornwal, 1984).

If an economy whose technology set has constant returns
to scale is considered, then the production set is a closed convex
cone. Economies which verify this ﬁroperty are those in which
there is free entry into and exit from production. That Iis,

outputs can be doubled (halved) by doubling (halving) inputs.
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Chapter 1: Convexity in Economics.

Another fact which strengthens the convexity assumption
is the case where economies with a continuum of agents is
considered (Aumann, 1964, 1966). In this case, by assuming that
agents do not necessarily have convex preferences it is obtained
that the aggregated excess demand correspondence is convex valued.
So, in order to prove the existence of equilibrium, classical
fixed point results to correspondences can be applied
{Brouwer, 1912; Kakutani, 1941). These kinds of results are based

on the application of Lyapunov’s Theorem (see Aumann, 1965,1966).

The expected utility theory of von Neumann and
Morgenstern has provided, in the form of the theory of risk
aversion, a powerful reinforcement to the diversification
principle (and therefore to the convexity). In these contexts the
results are presented in spaces (mixture spaces) where a convex
combination operation has been defined and in which preferences
over Iot‘;eries are considered. Mathematically, the hypothesis that
the preference function takes the form of a statistical
expectation is equivalent to the condition that it be linear in
the probgbilities. Moreover, the aversion risk hypothesis is
mathematically equivalent to the concavity assumption of the
utility function. Thus, the convexitiy condition 1is directly

implied by the model.
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Chapter 1: Convexity in Economics.

In the context of Game Theory it is usual to consider
convex sets. That is due to the fact that decisions are made on a
mixture strategy space (which is obtained by considering all of
the probability distributions over the pure strategy space) which

is a convex set.

In the same way, convexity is a usual condition to
ensure the existence of Nash’s equilibrium in noncooperative
games. In particular, compact convex strategy spaces and

quasiconcave continuous payoff functions will be required.

Although in the models mentioned above, convexity has
been justified as a "natural" requirement, ma;ly authors have
criticized this assumption from both the experimental and formal
points of view. Some of them argue that convexity is not an
intrinsic requirement of the model, but rather a technical one
which it would be desirable to eliminate. Farrell (1959) in the

context of competitive markets says,
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Chapter 1: Convexity in Economics.

"...1 shall argue, in the real world, the
relevant functions are often not convex.
However we shall see that the traditional
assumptions of convexity are by no means
essential to the optimality of competitive
markets and that the assertions to the contrary

are based on an elementary fallacy.”

Next, some of the criticisms of convexity are presented.

Starr (1969) criticizes the requirement of convex
preferences since this convexity postulates away all forms of
indivisibility and a «class of relations which one might call
anticomplementary (those in which there are two different goods
and the simultaneous use of both of them yields less satisfaction
to the consumer than would the use of one or the other. Examples
could be pep pills versus sleeping pills; white ‘wine versus red
wine; beach holidays versus mountain. holidays;...Evaluations of
estetic satisfaction tastes also tends not to be convex, as Bacon

{(in Arrow and Hanh, 1977) says,

"There is no excellent beauty which has nothing

strange in proportion”
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Chapter 1: Convexity in Economics.

In fact, this problem could be avoided whenever thése
goods could be kept for a future consumption. However, if goods
are "time dated”, as in fact happens in General Equilibrium
Theory, as a consequence preferences will not be convex

(Starr, 1969).

Although no convexities of preference relations or of
consumption sets can be mitigated by aggregation, they are
important because of the consequences they imply. In the case
considered by Aumann of economies with a continuum of agents,
Starr criticizes the fact that the weight of an individual in the

economy will never literally be zero,

"..Though it seems reasonable to treat an
individual as 5 x 10_9 of the United States
economy, I find it difficult to conceive of him

as 0 of it.”

Alternatively, Starr considers large economies where
preference agents are not necessarily convex, and in this context
he obtains the existence of an approximated equilibrium. In order
to do this, he applixs Shapley~Folkﬁan’s Theorem which allows the

effect of a fall in the degree of non convexity degree by
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Chapter 1: Convexity in Economics.

aggregating a large number of agents (Starr, 1969; Arrow and
Hahn, 1977) to be considered and the existence of approximated
equilibria (that is, a configuration a negligible distance from

the equilibrium) (Starr, 1969) to be obtained.

On the other hand, there are some situations in which
the production set is not necessarily convex. For instance, in the
cases where there are indivisible goods, set up costs, increasing
returns to scale or externalities in the model. The example used
by Arrow and Hanh is clear in this sense when the case of

indivisible goods is considered,

"...There are many goods, particulary
production instruments {spades, mineral mills)
which are produced in indivisible units.
Certainly, if the goods are indivi.sible, the
activities for which they are used cannot be
divisible. If it is possible to use a spade it
cannot therefore be deduced that there exists a
process where half a spade can be used.. A more
complicated example is that of recipients for

storage. The utility of bne such recipient is

proportional to the surface area (that is, if
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Chapter 1: Convexity in Economics.

the thickness of the walls is constant, it is
perhaps necessary to increase it with the
volume to resist the pressure of the contents.
This case can formally be considered as
indivisible, given that the geometric shape of
the recipient and recipients of different
sizes, must be considered as different goods
where each one is only produced in whole

guantities”

A different case would be an economy with a single input
and a single output which can only be used in a fixed amount

(e.g.airports,..).

An important situation in whi\ch convexity assumptions do
not appear in a natural way is that of economies with increasing
returns to scale. In the particular case of economies with '
constant returns to scale but initial set up costs, the uniform
distribution of these fixed costs between the different units
produced yields increasing returns to scale. Another fact which
could cause increaéing returns to scale is that of the
organizational advantages in the internal structure of production.

Adam Simth’s idea of labour productivity being determined through

10
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Chapter 1: Convexity in Economics.

the specialization and the division of labour, allows increasing
returns to be obtained on a scale significantly higher than the
individual labourer for a world where labour is the only input.
Generally in these situations it 1is not possible to apply the
classical model as the production sets are not convex

(Mas-Colell, 1987).

If economies with increasing returns to scale are
analyzed, the non convexity of the production set is observed. A
technical consequence of this non convexity is that it is not
possible to apply classical fixed point results (such as Brouwer’s
or Kakutani’s}) which ensure the existence of equilibrium due to
the supply correspondence might not be convex valued or even
defined. Another consequence is the incompatibility with perfect
cémpetition, so there are no general results to ensure the
existence of equilibrium. Moreover, imperfect competition leads to
either ineff icien‘t economic equilibrium or individual firms ending

| up large.

In economies with externalities, (that Iis, ‘When the
action of an agent affects either the objective function or the
feasible set of another and this action is not regulated by the
market), classical equilibrium r‘e.sults cannot be” applied since

they have non convexities.

11
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Chapter 1l: Convexity in Economics.

Therefore the assumptions of convex sets and convex
preferences are not appropiate when there are external effects, as
Starret (1972) pointed out. These non convexities are inherent to

both the possible action sets and preferences on the sets.

As we have mentioned, the hypothesis of convexity is
inherent in expected utility models. In recent experimental
research it is shown that this descriptive model of economic
behavior is not valid for describing a kind of choice problems
under risk, since in  these cases, individual preferences
systematically violate the axioms. Consider Allais’ paradox (1952)_
or the experimental work carried out by Kahneman and Tversky
(1979) or Machina (1982) who illustrate that principles on which
expected wutility is based are not satisfied. These experiments
show that individuals put more emphasié on certain results
relative to outcomes which are merely probable, and that agent
behavior is different in the presence of negative or positive
lotteries, etc. In particular, experimental evidence suggests that
individual preferences over Ilotteries are typically not linear in

the probabilities.

12
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Chapter 1: Convexity in Economics.

In Game Theory , the non existence of Nash’s equilibria
is an important problem in oligopoly models. Examples of duopoly
models, where firms can produce at no cost and where demands arise
from well-behaved preferences in which no Nash equilibrium exists
(in pure strategies), are easily produced. In these examples
payoff functions are not quasiconcave and the best response
correspondence of one firm (which gives the profit-maximizing
response to the action of the other firms) is not convex-valued

(Vives, 1990).

In literature, there are some results which try to
ensure the existence of Nash’s equilibria under weaker conditions
over payoff functions relaxing convexity conditions. In this line,
we have to mention McClendon’s work (1986), who relaxes convexity
by considering contractibility conditions, or Kostreva’s work

\
(1989), who relaxes the assumption of convexity from the
computational point of view. Other results which have to be
mentioned are those of Baye, Tian and Zhou (1993), who
characterize the -existence of Nash’s equilibria with discontinuous
and non-quasiconcave payoffs; Vives’s work (1990) which analyzes
the existence of Nash’s equilibr‘ié considering lattices and upper

semicontinuous payoffs which verify certain monotonicity

properties, directly related to strategic complementarities, etc.

13
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Chapter 1: Convexity in Economics.

From the comments we have made above, the possibility of
eliminating or generalizing convexity in these models is of great
interest whenever this fact is compatible with results which solve

the mathematical problem which appears in economic modelization.

Technically, the problem can be stated in the following
terms: obtaining the existence of fixed point results without
using convexity conditions (since many problems are reduced to
applying appropriate fixed point results). Recent works have
analyzed this fact in the context of pure and applied mathematics.
Some works along this line are those of Horvath (1987, 1991),
Van de Vel (1993), ...among others who have introduced
generalizations of the notion of a convex set and have extended
some fixed point results. The present work follows this line of

reasearch.

14
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Chapter 1: Convexity in Economics.

The thesis is organized as follows: there are three
chapters which are dedicated to different steps in the research.
In Chapter 2 the notion of convexity is analyzed and the most
important properties of usual convexity have been summed up.
Moreover, the notion of abstract convexity is introduced and some
of the results presented in literature are put forward.
Subsequently, different notions of abstract convexities are
introduced and the relationship between these new notions and the
ones previously mentioned is given. In Chapter 3 the existence of
fixed point results relaxing the convexity is analyzed, and some
generalizations of classical theorems (such as Brouwer’s,
Kakutani’s, Browder’s,...) are obtained. Finally, in Chapter 4
different applications of fixed point results are shown: the
existence of maximal elements, the existence of equilibria in
abstract economies and the existence of Nash’s equilibria in

non-cooperative games.

15
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CHAPTER 2

ABSTRACT CONVEXITY

2.0. INTRODUCTfON.

2.1. USUAL CONVEXITY IN R".

2.2. ABSTRACT CONVEXITY STRUCTURES.

2.3. K-CONVEX STRUCTURE.

2.4. PARTICULAR CASES: RESTRICTIONS ON
FUNCTION K.

2.5. RELATIONSHIP BETWEEN THE DIFFERENT
NOTIONS OF ABSTRACT CONVEXITIES.

2.6. LOCAL CONVEXITY.
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Chapter 2. Abstract Convexity.

2.0. INTRODUCTION.

As mentioned in the previous chapter, the notion of the
convex set is a basic mathematical tool used in many economic
problems. Many generalizations of very different natures have been
made from this concept: star-shaped sets, contractible sets,
c-spaces (Horvath, 1987, 1990, 1991), simplicial convexities
(Bielawski, 1987) or convexitity induced by an order are some of

these generalizations.

In general, we can consider two different kinds of
generalizations. On the one hand, those which are motivated by
concrete problems, (e.g. the existence of continuous selections,
optimization problems,...). On the other hand, those stated from
the axiomatic point of view, where the notion of abstract
convexity is based on the properties of a family of sets (similar
to the properties of the convex sets in R").

In —par‘ticular', the notion of abstract convexity which
will be introduced is in the line of the former one and based on
the idea of substitute the segmenf which joins-any pair of points
{or the convex hull of a finite set of points) for a set which

plays their role. -

17
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Chapter 2. Abstract Convexity.

This chapter is organized as follows: in Section 2.1 the
usual convexity and some properties related to it are presented.
In Section 2.2 some extensions of the notion of convexity used in
literature are analyzed. In Section 2.3 a generalized convexity
structure, which will be called K-convex structure, is introduced.
In Section 2.4 some restrictions of this structure which appear
when additional conditions are imposed on the function K are
analyzed. In Section 2.5 the relatioship between the different
structures introduced in the previous sections is presented and

finally, Section 2.6 analyzes the case of local convexity.

18
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Chapter 2. Abstract Convexity.

2.1. CONVEX SETS. PROPERTIES.

In this Section the notion of the usual convex set in R
and some of its properties (see Rockafellar, 1972; Van Tiel, 1984)

are analyzed.

Definition 2.1.

Let X be a linear topological space over R. A subset AcX is a
convex set iff for any pair of points the segment which joins them
is contained in the subset, that is

vx,yeX { (1-t)x + ty: t € [0,1] } < A.

This notion can be defined equivalently in the following

way,

Definition 2.2.
Let X be a linear topological >space over R. A subset AcX is a
convex set iff for any finite family of elements in A

X1’Xz""x € A and non negative real numbers tl,tz,..,t e [0,1]
n n :

n n
such that Yt =1 it is verified that Y tx e A.
1 11

i=1 i=1

19
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Chapter 2. Abstract Convexity.

Definition 2.3.

Let X be a linear topological space over R. A (finite) convex

combination of the points X XX € X is a point of X which
n

can be represented in the form

n . n
Y tx  where Y ti=1 and te€[0,l] Vi=l2,..,n.
1 1 1

i=1 i=1

A consequence of the definition of convex set

following,

Theorem 2.1.

is the

The intersection of an arbitrary collection of convex sets is

convex.

As an immediate consequence of this result, an operator

who associates for any subset of X the smallest convex subset in

which it is contained, can be defined.

Definition 2.4.

Let A be a subset of a linear topological space over R. The

convex hull of A is the intersection of all the convex subsets of

X containing A.

C(A) = n { B: B is convex such that A ¢ B}

20
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Some properties verified by this operator are the

following,
1. A € C(A).
2. AcB = C(A) € C(B).
3. C(C(A)) = C(A).

4. Cl@) = @.

The following result illustrates another way in which
the convex hull of a set can be obtained by means of convex

combinations of finite families of the elements of the set.

Theorem 2.2.
Let A be a subset of a linear topological space over R,

A = {a_: iel}, then

1

C(A) = Y ta: J finite set, JcI, Y t=1, tel0,1]
ey jes !

The following result shows that convexity is inherited

by the closure and interior of a set.

Theorem 2.3.
Let AcX be convex. Then the interior of A, int (A), and the

closure of it, A , are convex sets. Furthermore if A is open then

C(A) is an open set.
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Now the well known Caratheéodory’s result is presented.

Theorem 2.4. [see Van Tiel, 1984]
If A ¢ R", then for each xeC(A), there exist n+l points of A

such that x is a convex combination of these points.

Definition 2.5.
Under Theorem 2.4. conditions, the Caratheodory number of R"
is defined as n+l, since each element of C(A) can be expressed as

a convex combination of no more than n+l elements of A.
By Theorem 2.3. C{A) is open whenever A is open, however
it is not true that C(A) is closed if A is closed. But in R", C(A)

is compact whenever A is compact.

Theorem 2.5. [Rockafellar, 1972; Van Tiel, 1984]

Ay

If A cR" is a compact set, then C(A) is a compact set.
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2.2. ABSTRACT CONVEXITY.

The notion of abstract convexity has been analysed and
used by many authors, among which we can mention Kay and
Womble (1971}, Jamison (1974}, Wieczorek (1983, 1992},

Soltan (1984), Bielawski (1987), Horvath (1991), etc.

Definition 2.6. [Kay and Womble, 1971]

A family € of subsets of a set X is termed a convexity
structure for X, with the pair (X, €) being called a convexity
space, whenever the following two conditions hold

1. @ and X belong to €.
2. € is closed under arbitrary intersections:

NA. € € for each subfamily {A } < €.
(eI i i i€l

Then elements of € are called €-convex (or simply convex)
subsets of X. Moreover € is called a Tl—convexity iff the

following condition holds

3. {x} e € for each x € X.

The abstract convexity notion allows us to raise the
definition of an operator similar to that of the closure operator

in topology.
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Definition 2.7. [Kay and Womble, 1971; Van de Vel, 1993]

Let X be a set in which an abstract convexity € has been
defined and let A be a subset of X, then the hull operator
generated by a convexity structure €, which we will call C-hull
(or convex hull) is defined by the relation

CeA)=nN{Be€:ASB), VAKX

This operator enjoys certain properties identical to those of

usual convexity, such as the following one

Proposition 2.1.

CQ.(A) is the smallest €-convex set which contains set A.

The convex hull allows us to define an operator between
the family of subsets of X
p: PX) —— P(X)
in the following way
p(A) = C(S:(A)
and which verif ies the following conditions
1. VA € P(X), A c p(A).
2. VAB € P(X), if Ac B then p(A) ¢ p(B).
3. VA € P(X), p(p(A)) = p(A).
A map p: P(X) —— P(X) which satisfies these conditions
is called convex hull on X. Note that from a convex hull an

abstract convexity structure can be defined in the following way:
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Ael < plA)=A

The convex hull of a finite set of points is called a
polytope and the hull of a two-point set is called an interval or

segment between these points (Van de Vel, 1993).

If a set is equipped with both a topology and a
convexity such that all polytopes are closed, then X is called a
topological convex structure. It is clear that usual convexity is
a topological convex structure, as ‘well as the abstract convexity

defined from the family of closed subsets of a topological space.

Furthermore it is possible to extend the notion of the

Carathéodory number to the context of abstract convexity.

Definition 2.8. [Kay and Womble, 1971]

A convexity structure €, has a Carathéodory number c iff c is
the smallest positive integer for which it is true that the €-hull
of any set A ¢ X is the union of the €-hulls of those subsets of A

whose cardinality is not greater than c. That is
Celd) =U{ Cy(B): Bc A, |Bl=c}

where |B| denotes the cardinality of set B.

25
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A generalization of this concept is as follows.

Definition 2.9. [Kay and Womble, 1971; Van de Vel, 1993]
A convexity structure € is domain finite iff the following

condition is satisfied

CQ.(A) =U{C€(B): Bc A, |B}] € +o }

Obviously an abstract cdnvexity defined on X such that
its Carathéodory number is ¢ is a domain finite convexity. However
the converse is not true (Kay and Womble, 1971). The following
result shows that under certain conditions, a subset A is a convex
set in a domain finite convexity if and only if the convex hull
for any pair of points of A belongs to A. To state this result we
need the notion of join hull commutative which is defined in the

following way.

Definition 2.10.
A convexity structure defined on a set X is called a join
hull commutative iff it is satisfied that for any convex set S in

X and for any xeX it is verified that

sLer CG(X’S} = C.(S {{x) v S)
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Theorem 2.6. [Kay and Womble, 1971; Van de Vel, 1993)
If € is a convexity structure defined on X which is join hull
commutative and domain finite, then

AcX is C-convex  iff CG({X,y)) €A vx,y€A

In the context of abstract convexity, there are some
authors who consider a different definition of abstract convexity
asking for additional conditions for the family of subsets which
defines the convexity. Next, some of the most important ones are

presented.

Definition 2.11. [Wieczorek, 1992]
A family of subsets € of a topological space X is called a
closed convexity iff it is verified that
1. € is a convexity structure on X.

2. YAeC, A is closed.

Note that this definition of abstract convexity does not
generalize the notion of wusual convexity (in topological vector
spaces), therefore it is an alternative definition.

A different notion of abstract convexity is the one used

by Van de Vel (1982, 1983, 1993). and Kindler and Trost (1989)

which requires the union of convex sets to verify some conditions.
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Definition 2.12. [Van de Vel, 1982]
A family of subsets € of a topological space X is called an
aligned abstract convexity iff it is verified that
1. € is a convexity structure on X.

2. € has to be closed under unions of chains.’

Many other authors consider a generalization of
convexity by means of assigning for any finite family of points a
subset of X which substitutes the convex hull of these points. In
this case the works of Horvath (1987, 1991), Curtis (1985) and
Bielawski (1987) must be mentioned. First of all the notion of
contractible set, which will be used to present these results, is

given.

Definition 2.13. .[Gray, 1975]

A topological space X is contractible if there is a point X,
in X and a continuous function- H: X x [0,]] ———X such that
¥x € X it is verified

1. H(x,1) = x*
2. H(x,0) = x
" So, a contractible set ‘X can be deformed continuously at

a point of X.

A family of subsets (A_},EI is called a chain iff it is totally
1 1

ordered by inclusion. -
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The notion of c—space2 was introduced by
Horvath (1987). The idea of this notion consists of associating
with any finite subset of X, a contractible set (which can be

interpreted as a "polytope").
Formally the notion of c-space is as follows,

Definition 2.14. [Horvath, 1987, 1991]
Let X be a topological space, é c-structure on X is given by
a mapping
F: <X> —X
{(where <X> is the family of nonempty subsets of X) such that:
1. VAce <X>b, F(A) is nonempty and contractible.
2. VA Be<X>, AcB implies F(A) € F(B).

then, (X, F) is called c-space.

Observe that this definition includes the notion of

usual convexity in topological vector spaces as a particular case.

Initially this concept was called” H-space by Horvath (1987) and
was used in this way by Bardaro and Ceppitelli (1988},
Tarafdar (1990, 1991, 1992), etc. However Horvath later called it
c-space.
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Definition 2.15. [Horvath, 1987, 1991]
Let (X,F) be a c-space, a subset D ¢ X is called an F-set iff
it is satisfied

YA € <D>, F(A) €D

The following result shows that a family of F-sets

defines an abstract convexity on X.

Proposition 2.2.

Let X be a topological space in which a c-structure is
defined by means of a function F. Then the family {Ai}iEI of
F-sets, i.e.

Ai € X such that Ai is an F-set
is an abstract convexity on X.
On the other hand, Bielawski (1987)3 introduces an
abstract convexity structure from a family of continuous
functions. In particular he associates with any finite subset of X

. . . . 4 . X .
a continuous function defined on the simplex whose dimension is .

the cardinality of the considered finite set.

3Cur‘tis {1985) works with this kind of structure but does not
define it formally.

*The n-dimensional simplex A < R™! is defined as f ollows,

n
A={xeR"; x =Ste , tz 0, St=1)
n 11 1 1

where e are the canonical vectors of R.
1
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Definition 2.16. [Bielawski, 1987]
Let X be a topological space. It is said to have a simplicial
convexity if for each nelN, and for each

(X,x,...x)eXn=Xx.‘.’?xX
1 2 n

there exists a continucus map
olx ,x,..x A — X
1 2 n n-1
such that it verifies
1. vxeX  o{x](1) = x.

2. vn=2, Vix ,x ,
1’72

Lx)eX' Vit,t,.t)eA
n 1" 2 n

n-1

if t = 0 then
1
Olx ,x ,...x Nt .t ,..,.t) =d[x .l(t )
1 2 n 1 2 n -1 -1

where x = denotes that x_  is omitted in (xl,xz,...x )
N -1 1 n

Note that usual convexity can be viewed as a particular

case of this structure considering the function & as follows,

Pl ,x,..xJt,t,...,t)=tx +tx +.+tx
1 2 n 1 2 n 11 2 2 nn

Furthermore this convexity structure is related to the
sets which are stable under the functions Q[xl,xz,...xn] from

which it is defined.
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Definition 2.17. [Bielawski, 1987]
Let X be a topological space where a simplicial convexity is

defined. A subset A of X is called simplicial convex iff VneN and

Val,az,..,a € A it is verified that
n

dla ,a ,..,.a J(u) € A Yu € A
1" 2 n n-1

It is easy to -show that simplicial convex sets are
stable under arbitrary intersections, therefore they define an

abstract convex structure.

Proposition 2.3.

The family of simplicial convex sets defines an abstract

convex structure on X. Furthermore it is a Tl—convexity.

Another method that is used in literature to generate
convexity structures is by means of interval operators which
associate for any pair of points a subset of X. In this line we
can mention Prenowitz and Jantosciak’s results (1979) who
introduce the notion of co;lvexity by means of a union operation
defined from the axiomatic point of view. Thus, for any pair of

points x,y € X a nonempty subset of X, X-y, is associated. -Some

of the assumptions required are the following,
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A.1 Existence law of join: Va,b € X, a'b # o.

A.2 Commutative law: Va,b € X, a-b = b-a.

A.3 Associative law: Va,b,c € X, (a-b)-c = a-(b-c).
A.4 Idempotent law: Va € X, ara = a.

The idea of this operation is to substitute the segment
joining up a pair of points {(a,b € X) for the set a-b, although in

general a and b do not belong to the set a-b.

The convexity defined by ’the union operation is given by
means of the following relation,
Ael & VabeA a‘b e A
Furthermore, as in the previous cases, usual convexity
is a particular case of this structure ({defining the union

operation as the segment which joins up pairs of points).

.
Another particular case consists of associating a path
joining up pairs of points, which is not necessarily the segment.

It is the notion of equiconnected space.

®(a-b)c= U (z-¢)
z€a*b
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Definition 2.18. [Dugundji, 1965; Himmelberg, 1965]
A metric topological space X is equiconnected iff there
exists a continuous function T: X x X x [0,1] ——X such that
t(a,b,0) = a, t(a,b,1) = b, t{a,a,t) = a

for any t € [0,1] and for any a,beX.

Let it be observed that for any pair of points x,y € X
we can associate the following continuous function T :[0,1] —X,
xy
verifying T _(0)=x, t_(l)=y. Then T  represents a path from x to
Xy Xy Xy

y, so we can define the abstract convexity in the following terms,

Definition 2.19.
A nonempty subset of an equiconnected space A ¢ X is

equi-convex iff the path joining points of A is contained in A.

It is clear that this family also defines an abstract

T -convexity.

6
In general, AR spaces (absolute retracts) are
equiconnected spaces (Dugundji, 1965). Moreover, in contexts of
metric spaces with finite dimensionality, equiconnected spaces

coincide with AR ones.

® A set X is an absolute retract (AR) if'it is a metric space and
for any other metric space Y and any closed subset AcX, it is
verified that any continucus function f:A ——X can be continuously
extended to Y.
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2.3. K~-CONVEX STRUCTURE.

In this Section a different way of defining an abstract
convexity .is presented. This case includes some of the ones
mentioned in the previous Section as a particular case. This
structure is based on the idea of considering functions joining
pairs of points. That is, the segments used in usual convexity
are substituted for an alternative path previously fixed on X. The
function which defines this path will be called the K;-convex
function and X will be said to have a K-convex structure.

Formally, we give the following definition,

Definition 2.20.
A K-convex structure on the set X is given by means of a
function
K: X x X x [0,1] —>X

Futhermore (X, K} will be called a K-convex space.

So, for any pair of points x,yeX a subset given by
K(x,y,[0,1]) = U {K{x,y,t): tel0,1]} is associated (in a similar

way to the case of the union operation).

From this function we can consider a family € of subsets
of X which is an abstract convexfty on X and where the abstract
convex sets are exactly the sets which are stable under this

function. ~
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Proposition 2.4.
Let (X,K) be a K-convex space,
K: X x X x [0,1] —X
then the family of sets € such that
Ael & VxyeA K(x,y,[0,1]) ¢ A
defines an abstract convexity. The elements of € will be called

K-convex sets.

Furthermore it 1is an aligned convexity (Definition
2.14.), that is, the union of an arbitrary collection of K-convex

sets totally ordered by inclusion is a K-convex set.

From this convexity a convex hull operator can be

defined in the usual way,
CK(A) = { B: AcB, B is K-convex }
|

Another important property of this convexity is that it
is finite domain7, that is, the convex hull of an arbitrary set
coincides with the union of the convex hulls of all of its finite
subsets:

CK(A) =U{ CK(B): B c A, IBJ < 4+ )}

7 Proposition [Van de Vel, 1993]

Let X be a set where a convexity structure stable under unions of
chains has been defined, then this convexity is finite domain.
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The following examples show different situations where a

K-convex structure can be defined in a natural way.

Example 2.1l.: Usual Convexity.

If X is a vector space, then the usual convexity is a
particular case of the K-convex structure. To show this we
’consider the following function,

K: X x X x [0,1]] — X
K(x,y,t) = (1’—t)x + ty
In this case, function K associates for any pair of points

the segment which joins them.

Note that in this case the K-convex sets coincide with

the family of convex sets of X.
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Example 2.2 : Log. convexity in R:+.

Another possible way of defining the path joining points

in R is by means of the logarithmic image of the segment

++

joins them. In this case function K is given as follows,

K :R% x R%+ x [0,1] — R%+

. _ . - n
if x = (xl, e, xn) 5y (yl, ey yn) , X, € R+
K(x,y,t) = [xl—t yt, e, xt ytJ

1 1 n n

which defines a path joining x and y.

In this case, a subset A ¢ !R:_ is K-convex iff
log(A) = { (logx,,..,logx ): (x,...x ) € A}
1 n 1 n

is a convex set.
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Example 2.3. [Castagnoli and Mazzoleni, 1987]
Let A be a convex set and X a set such that there exists a
biyection from X into A,
h: X— A
In this particular case it is possible to define a K-convex
structure by means of function h as follows,

K: X x X x [0,1]] — X

K(x,y,t) = h‘l[ (1-t)h(x) + thiy) ]

In this context a subset B is K-convex iff h(B) is a convex

subset of A.

Until now, all of the examples presented correspond to
convex sets or situations where a biyection from these sets into
convex sets can be stated. The following example (used by Horvath
(1991) in the context of c-spaces) shows a non contractible set
(and therefore not homeomorph to a convex set) where a K-convex

structure can be defined.
Example 2.4.
Let X ¢ R” be the following set,

X={xeR:0<a=1Ixl =b,abeR}

Considering the complex representation,
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a function K can be defined as follows
K: X x X x [0,1] — X

K(x,y,t) = [(]_—t)px + tpy) ei((l—t)(x.x+t(xy)

It is important to note that in this example K-convex sets

cannot be contractible sets.

In the following sectior;, additional conditions are
imposed on function K in order to ensure that the abstract
convexity generated by function K satisfies certain "desirable"
properties: for instance, that any pair of points x,y belongs to
the set K(x,y,[0,1]1); that K(x,y,[0,11) varies in a continuous
way whenever the ends do; etc. So, different abstract convexity
structures are presented which v'erify properties similar to the

ones of usual convexity.
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2.4. PARTICULAR CASES: RESTRICTIONS TO FUNCTION K.

If some continuity conditions are imposed on function K
and it is required that Vx,y , X,y € K(x,y,[0,1]1), then restricted
structures can be defined where the meaning of function K is

completely clear.

Now some particular cases of K-convex structures are

presented.

2.4.1. K-convex continuous structure.
Definition 2.21.
If X is a topological space, a K-convex continuous structure
is defined by a continuous function
K: X x X x [0,1] — X

such that

K(x,y,0} = x K(x,y,1) =y
It is obvious that in any equiconnected set a K-convex
continuous structure can be defined, moreover verifying that

K(x,x,t) = x Vvtel0,1]. Therefore spaces with K-convex continuous

structures generalize equiconnected spaces.
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From function K, a family of continuous paths joining

pairs of points of X can be defined,
K :[0,1] — X
xy
K (t) = K{x,y,t)
xy

Furthermore it is verified that if we consider points
which are close together (x’ close to x, y’ close to y), then the
path which joins X and y and the path which joins X’ and y’ are

also close together.

Obviously in any convex set a K-convex continuous
structure can be defined, although it is not possible to define it
in any set. The next proposition states the conditions which have
to be required by X so that a K-convex continuous structure can be

defined on X.

Proposition 2.5.

Let X be a subset of a topological space, then it is possible
to define a K-convex continuous structure on X iff X is a
contractible set.
Proof.

Let K be the function which defines the K-convex continuous
structure. For any fix a € X, -the following function can be
considered,

H:Xx [0, 1] — X
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H(x,t) = K(x,a,t)
It is a continuous function since K is continuous and
furthermore it verifies that
H(x, 0) = x , H(x, 1} =a

so X is a contractible set.

Conversely, if X is a contractible set then there exists a
continuous function H which satisfies the previous assumptions,
and from which it is possible to define the following function K,

H(x,2t) te[0, 0.51]
Kix,y,t) =
H(y,2-2t) te[0.5, 1]

which defines a K-convex continuous structure on X.

It is important to note that although the
contractibility condition and the condition of having a K-convex
continuous structure are equivalent,” it does not mean that
K-convex subsets coincide with contractible subsets. That is due
to the fact that the family of contractible sets is not stable
under arbitrary intersections, and therefore it does not define an
abstract convexity. Hence the abstr»act convexity defined by
function K is given by some of the contractible subsets of X
(since it is true that any K-convex set is contractible).

Now some examples of sets where a K-convex continuous

structure can be defined are shown.

43

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 1994



Abstract convexity. Fixed points and applications. Juan Vicente Llinares Ciscar

Chapter 2. Abstract Convexity.

Example 2.5.: Star-shaped set.
If X is a linear space, a subset of X is called a star-shaped
set iff

oneX such that tx + (l—t)xo e X vxeX , vtelo, 1]

In this case function K is given as follows,

K: X x X x [0,1]] — X

AY

(1-2t)x + 21:xo te[0, 0’5]
K(x,y,t) =

(2—2t)x0 + (2t-1y " tel0’s, 1]

Note that function K does not define an equiconnected
structure on X since it does not verify that Ki(x,x,t) = x
vV telO 1L Hovs;ever a similar function which defines an
equiconnected structure on X can bé considered.

The next example shows a star-shaped set which is nét

an equiconnected one.
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Example 2.6.
Let A ¢ R be the following set,

A=U{(x, x/mn),xel0,1]:neN}ul0o, 1llx{0}

A is a star-shaped set which is not equiconnected as it is

not locally equiconnecteds.

Other kinds of sets where it is possible to define a
K-convex coentinuous structure is the case of comprehensive sets.
These sets are interesting as they appear in many economic
situations, such as in the analysis of' production (free disposal

assumption), bargaining problems, etc.

8 Theorem [Dugundji, 1965]
Equiconnectéd spaces are precisely the contractible locally

equiconnected ones. -
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Example 2.7.
Let X ¢ R" be a set which satisfies that
vxeX if y = x then yeX
From the definition of the set it is easy to show that
vx,v € X XAy = [min(xi,yi)] e X
This fact allows us to define a function K which provides the
K-convex continuous structure to the set X.

(1-2t)x + 2t(xAy) si t e [0,0.5]
K(x,y,t) =

(2-2t)} (xAy) + (2t-1)y si t e [0.5,1]

Observe that this function is continuous since the minimum is

. . . n
a continuous function in R .
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If X is a topological space with a K-convex continuous
structure, then an operator (from function K) which is in the same
line as the convex hull, but which in general does not coincide
with it can be defined.

In order to define this operator, consider the function

z: P(X)— P(X)
such that:
z(A) = K(AxAx[O,1])
since K(x,y,0) = x and K(x,y,1) = y, then A & K(AxAx[0,1}]), so it
is clear that
A ¢ z(A) € z(z(A)) € ...

then if we call
we obtain that

and it is possiﬁble to prove that CK(A) =y Ai, since the K-convex
hull is the srn\éllest K-convex set which contains A. From this
operator the following definition of stability is stated which is .
closely related to the Carathéodory number associated with

abstract convexity.

Definition 2.22.
If nelN, then a K-convex structure on a topological space X
is n-stable if it is verified that

VYA c X - z(A™) = A"
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If K defines an n-stable K-convex structure on X, then
C (A) = A"
K
so any point of the K-convex hull of a set A can be obtained from

a finite number of elements of A.

Proposition 2.6.

Let (X,K) be a set with an n-stable K-convex structure, then
it has a Carathéodory number c such that ¢ = 2"t
Proof.

By the n-stability we have,

n

if x € C(A)=A"= KA™! x A" « [0,1])

then there exist xrll_l, XZ_I e AMH t"'€[0,1] such that

x=K(x 7, x , ¢t
1 2

But since A" = K(A™? x A™? « [0,1]), reasoning in the

same way it is obtained that there exist 5
n-2 n-2 n-2 n-2 n-2 n-2 n-2
X 5, x %, x 7, x e A T, t 7,0t € [0,1]
1 2 3 3 1
-1 -2 ~2 -2
such that x" = K( x7%, x" , )
1 1 2 1
-1 -2 ~2 -2
x" = K( x7°%, x" , t" )
2 3 4 2
therefore
n-2 n-2 n-2 n-2 n-2 n-2 n-1
x = K X ., X t K{x X t t
[K( 1 2 7 1 ), Kl 3’ a2 ), ]
~2 n-2 n-2 n-2
, and hence x e C(x" , X, x T, x ).
K 1 2 3 4

Reasoning in a recursive way it is obtained that
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1 11
x € Cl(x,x ,x ,....x ).
K 17273

. n-1
where the number of elements is never more than 2 .

To obtain a result equivalent to Carathéodory’s we need

to introduce the following conditions,

1. Idempotent: K(a,a,t) = a. vV t e [0,1].
2. Simetry: K(a,b,[0,1]) = K(b,a,[0,1]).
3. Associativity:

K(K(a,b,[0,11),c,[0,1}) = K(K(a,c,[0,1]),b,[0,1])

Proposition 2.7.

Let X be a topological space with a K;convex structure which
satisfies conditions 1, 2 and 3. Then the K-convex structure is
n-stable iff the Caratheodory number is less than or equal to

n-1

2

To prove this result we need some lemmas.

Lemma 2.1.

Under the assumptions of Proposition 2.7. we have that

CK((x,y}) = K(x,y,{0,11)
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Proof.

It is enough to show that K(x,y,[0,1]) is a K-~convex set and
then apply that it is the smallest K-convex set which contains
the subset {x,y}.

So, if a, b € K(x,y,[0,1]) we have to prove that

K(a,b,[0,1) ¢ K(x,y,[0,1]).
We know that there exist s,t € [0,1] such that
a = K(x,y,s); b = K(x,y,t)
If we denote z = K(a,b,r) with r e [0,1], then
z = K(a,b,r) = K(K(X,y,s),K(x,y,t),r)
and applying conditions 1,2,3 we obtain that 3r’ e [0,1] such
that

z = K(x,y,r’) € K(x,y,[0,1])

The previous lemma states that under conditions 1, 2
wand 3, the path which joins any pair of points is a K-convex set.
The following lemma presents a useful property of the K-convex

structure to obtain the K-convex hull of any set.

Lemma 2.2.
Under the assumptions of Proposition 2.7., the convexity
generated by the K-convex structure is join hull commutative, that

is, if A is a K-convex subset and x € X then

C{A v {x}) =UC(a,x)
K K
a€A -
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Proof.

Let A be a K-convex subset of X. Since we know that

Avui{xrc U CK(a,x) and U CK(a,x) < CK(A v {x})
a€A ac€A

if U CK(a,X) were a K-convex set, it would verify the lemma
aCA

since it would be the smallest K-convex set which contains
A v {x}.

Next it is shown that the set

.U C (a,x)
K .
aEA

is a K-convex set. Consider u,v € U CK(a,x), we have to prove
a€A

that the path which joins u and v is contained in this set. Since

u and v are in the union,

Ja,a € A: ue Cla, x) =K@, x, [0,1D
1 2 K1 1

K(az, x, [0,11)

veCla, x)
K 2

so there exist tl, t2 € [0,1] such that

u =K@, x, t)
1 1

v = K(az, X, tz)

Therefore Vr € [0,1] we have:

K(u, v, r) = K[K(a , %, t ), Kla, x, 1), r] =
1 1 2 2
and reasoning in the same way as in Lemma 2.1. we obtain

= K[K(al, a_, 1), X, rJ = K(a3,'x, r') e CK(aS,x) c aleJACK(a,X)

where a3 = K(al, az, t) € A since A is a K-convex set.
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Finally the following lemma is a generalization of Lemma
2.1. which allows us to obtain the K-convex hull of a finite set

from function K in a recursive way.

Lemma 2.3.

Under the assumptions of Proposition 2.7. it is verified that
C ({x,..,x }) = K(..K(K(x ,x ,[0,1]),x _,[0,1D)..),x,[0,1])
K 1 n n n-1 n-2 1

\iti e [0,1], Vi=12,...,n.
Proof.

We prove the result by induction on n. If n=2 then we are in
the case of Lemma 2.1. Assume that the result is true whenever the
cardinality of the set is at the most n.

Consider the set B = (Xl,xz,..,gn,xnﬂ). It can be expressed

in the following way.

B=AU (xn } where A={x,x,..,X)

+1 1’72 n

Then

CK(A) C CK(B)

{xml} C CK(B)
morebver

BcC((A)U{& }ccC(B)
K n+l K

therefore

CK(B) = CK(CK(A) U (xml})

and applying Lemma 2.2.
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CB =Cc(cA)yUix »N=U C {a,x ) =
K K X n+l K n+
aGCk(A)

and by the inductive hypothesis

K(K(..K{K{x ,x,t}x ,t )..),x,t)
n+l n n n 11

V)
tielo,1] -1 n-1

C (B) = K(K(..K(K(x ,x ,[0,1D,x ,{0,1])...),x,[0,1D)
K n+l n n-1 1

Proof of Proposition 2.7.
Proposition 2.6. proves one of the implications.
Conversely, let ¢ = 2! be the Carathéodory number of the

K-convex structure. Then for any ASX it is verified that

CK(A) = U { CK(F): IF| = ¢, Fc A}

Let us assume that the structure is not c-stable, then there

C

. c+l c+1
exists X € A - A,

But A C CK(A), X € CK(A) and by the
definition of the Carathéodory number we obtain

CK(A) = U ( CK(F): IF| = ¢, Fc A}

therefore x € CK(F) for some F such that |F|] s ¢, F ¢ A and by

Lemma 2.3. we obtain that X € Ac, which is a contradiction.

Similar conditions to those of Proposition 2.7. were
introduced by many other authors (see Wieczorek, 1992) in other

contexts of abstract convexity.
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Under stability conditions, the following proposition
which generalizes a well known result from the usual convexity

(Theorem 2.5.) is verified.

Proposition 2.8.

Let X be a topological space with an n-stable K-convex
continuous structure. If A ¢ X is a compact subset, then CK(A) is
also compact.

Proof.

Since K is an n~stable K-convex continuous structure, we know

that

C(A) = A"
but
A=A, A=z, ..., A" = z2a"™h
z(A) = K(A x A x [0,1])

so, it is clear that z(A) is a compact subset due to \'the fact that
A and [0,1] are compact and K continuous. Applying this argument:
repeatedly it is obtained that A" is compact and therefore that

CK(A) is also a compact subset.
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2.4.2. mc-spaces.

If the continuity condition in function K which defines
the K-convex continuous structure is relaxed, we obtain a
generalization of this concept. Now the idea is to associate for
any finite family of points, a family of functions requiring that
their composition is a continuous function. This composition
generates a set associated with the family of finite points in a
similar way to the case of c-spaces or simplicial convexities.
However in contrast with these case;s., no monotone condition on the

associated sets is now required.

Definition 2.23.

A topological space X is mec-space if for any nonempty finite
subset of X, A < X, there exists a %‘amily of elements bi,
i=0,..,|Al-1 (not necessarily different) and a family of functions

PL:Xx [0, 1> X  i= 01, ..., lAl-l
such that

L P} (x,0) = x, P} (x, 1) = b, VxeX.

2. The following function

G,: [o, 11" — X

given by

Gt t,.t )= PA[..PA [PA [b ,1],t ],t ]]t]
A 01 n-1 0 n-1{ n n n-1 n-2 0

is a continuous function.
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Note that the notion of mc-space ranges over a wide
field of possibilities, since it can appear in context completely
different. For instance, every nonempty topological space X is
mc-space since it is possible to define for any nonempty finite
subset, AcX, the family of functions P?, Vi=0,...,|Al-l, in the
following way: if we fix aeX (X#@) we consider

P?(x,t)

X , vxeX, Vte[0,1)
A
Pi(x,l) = a vxeX

It is <clear that from these functions it is obtained that

G (t,..,t ) is a continuous function.
A0 n-1

In the previous case, functions P? are defined independently
of the finite subset A which is considered. However, in other
cases,functions P? can be directly reiated with elements of A, as
in the case of convex sets:

P?(x,t) = (1-t)x + tai vxeX, VYtelo,1]
where A = (ao’él"."a|A|—1} a_nd bi = a Vi

1

Moreover, note that if X has a K-convex continuous
structure and we consider functions P (x,t) = K(x,a,t), then they
1 1

define an mc-structure on X. Therefore mc-spaces are extensions of

K-convex continuous structures.
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Example 2.4. shows an mc-space where it is not possible
to define a K-convex continuous structure since it is not a

contractible set (it has a "hole").

In this structure for any nonempty finite subset of X
(A = {ao, ,an)), for each element a e A and for each x e X,
there exists a function P?(x): [0, 1}— X , satisfying that

PAx)(0) = x and PAx)(1) = b..

If P? is continuous, then it represents a path which
joins x and bi. Furthermore, if bi is equal to a, P‘:(x,[o,l])
represents a continuous path which joins x and a. These paths
depend, in a sense, on the points which are considered, as well as

the finite subsets of A which contain them. So, in contrast to the

K-convex structure, the nature of these paths can be very

different.
Therefore, function GA can be interpreted as follows:
the point P* (b ., A )=p , represents a point of the
. n-1 n n-1 n-1
. . . . A _ -
path which joins bn with bn_l, Pn-z(pn-f?\n—z) =p _, is a

point of the path which joins P with bn—z’ etc.
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So if we want to ensure that the composition of
functions P'_x is continuous, we need to ask for the continuity of
1
a A . H nomn -
functions P (z) : [0, 1]— X in any point "z" which belongs to
1

the path joining b, and p. , with i = 0,...,n-2.
i+1 1+2 )
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Finally note that if t =1, then any t such that ji,
i J
does not affect the function GA (since Pl_:(x,l) = b, YxeX).

1

Moreover if t = 0O, then b will not appear in this path.
1 1

From an mc-space structure it is always possible to
define an abstract convexity given by the family of sets which are
stable under function GA. To define this convexity we need some

previous concepts.

Definition 2.24.
Let X be an mc-space and Z a subset of X. VA € <X>, such
that AnZ = g, AnZ = {ao,al,..,a }, we define the restriction of
n

function GA to Z as follows:

G . [0, 1I" — X
Alz
A A A
GA,Z(t) = PL(.P. (P"(a Dt )..)t)

\Y

where P'_x are the functions associated with the elements a €A which
1 1

belong to Z.

From this notion we define mc-sets (which are an.

extension of K-convex sets) in the following way.
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Definition 2.25.
A subset Z of an mc-space X is an mc-set iff it is verified
VA € <X>, AnZ * @ G, 011" € Z
The family of mc-sets 1is stable wunder arbitrary
intersections, so it defines an abstract convexity on X. As has
been  done previously, in this case we can define an mc-hull -
operator in the usual way.

C (A) = {Bl AcB, B is an mc-set}
mc
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2.5. RELATION BETWEEN THE DIFFERENT ABSTRACT CONVEXITIES.

In this Section the relationship between the different
kinds of convexity introduced in the previous Sections is
analyzed. Some of them are easy to prove, for example that an
equiconnected space has a K-convex continuous structure or that
the K-convex continuous structure is a particular case of the
c-space. Those which are not immediatel_y obtained are proved

throughout this Section.

The following result shows that a c-space is a K-convex

space in which the F-sets are K-convex sets.

Proposition 2.9.

Let (X, F) be a c-space, then there exists a function K such
that (X, K} is a K-convex space. Fufther‘mor'e F-sets are
K-convex sets.

Proof.

Since (X,F) is a c-space, then Vx € X it is possible to

choose x* € F({x}), because of F({x}) # @.

Through the monotone of F we obtain that
vx,y € X, F({x}) ¢ F({x,y})) and FHy})) < F{x, y}

hence x*,y* € F({x,y}). Applying that F({x,y})) is a contractible
set, there exists a continuous path joining x* and y* which is

contained in F({x, y}).
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Therefore we can define function K as follows
K: X x X x [0,]] — X
where  K(x,y,[0,1]) is the path which joins x* and y*. So it is
satisfied

Vx,y € X Kix,y,[0,11) < F({x,y})

In order to show that F-sets are K-convex sets, it is enough
to verify that the path which joins any pair of points of an F-set
is included in the set. But it is immediate from the definition of
an F-set and due to the way in which K is defined. Therefore it is

verified that

K(x,y,[0,1]) ¢ F({x, y}) .

Proposition 2.10.
Let (X,K) be a space with a K-convex continuous structure,

then it is possible to define a simplicial convexity in X.

Proof.

Consider the family of functions <I>[al,a2,..an] as follows,
®la ,a ,..a It ,..,t }=K(..K{a ,a ,t )a ,..)..},a,t)
1 2 n 1 n-1 n n-1 n-1 n-2 11

The simplicial convexity generated by & coincides with the

one which is obtained from K.
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On the other hand, it 1is important to note that
simplicial convexity is a K-convex structure as the following
result shows.

Proposition 2.11.

- Let X be a space with a simplicial convexity generated by o,
then there exists a function K which defines a K-convex structure
on X. Moreover, simplicial convex sets are K-convex sets.

Proof.

From the simplicial convexity, we have that Vx,y € X there
exists a continuous function

dx,yl: AI————> X
Considering the following function
K: X x X x [0,1]] — X K(x,y,t) = &[x,yl(t,1-t)

| it defines a K-convex structure on X.

Moreover, if A is a simplicial convex set then it is obtained
that

vn € N, V(al,az,...an) € A, Vu e An_1 @[al,az,..,an](u) e A

and in particular

VX y€A K(x,y,[0,1]) = <I>[x,y](A1) S A

Therefore simplicial convex sets are K~convex sets.

The next proposition shows that mc-space structures
contain, as a particular case, c-spaces (in the sense that F-sets

are also mc-sets).
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Proposition 2.12.

Let (X,F) be a c-space, then X is an mc-space. Moreover
F-sets are mc-sets.

Proof.

Since (X,F) is a «c-space, then for any finite subset
A=(ao,a1,...,an} of X, we assign the contractible set F(A). Thus a
singular face structure9 can be defined as follows,

F7:<N> ——X
F' () = F((ai : i e J})
where N = {0,1,...,n}. So we can apply one of Horvath’s results
(1991) to ensure the existence of a continuous function
g:An —X
such that for any J € N
g(AJ) c F()) = F((ai 1 e J})

Next, we are going to prove that X is an mc-space by means
of function g. If we denote by (ei: i=0,..,n} the cannonical base
of [le, functions - P‘::Xx[O,l] ——X are defined in the following

way:

Definition [Horvath, 1991]

Let X be a topological space, an N dimensional singular face
structure on X is a map F:<N>-—X such that:

1. VJe<N> F(J) is nonempty and contractible.

2. V],Je<N> if JcJ’ then F(J)cF(J’).

Theorem [Horvath, 1991] _
Let X be a topological space and F:<N> ——X a singular face

structure on X. Then there exists a continuous function f:An ——X
such that VJe<N>, f(An)cF(J). -
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P:(x,l) = g(en) =b

n

ph (PA(X,I),t ) = g[t e + (1-t )e]
n-1 n n-1 n-1 n

n-1 n-1

ph [PA [PA(x,l),t ],t ]:
n-2| n-1 n n-1 n-2

in general

n j-1
glte + Z t.e_[ﬂ (l—t,)]
k k j i i
j=k+1 i=k

(Functions P? will be defined in those values not considered
until now so that it would be an mc-space, that is P‘f‘(x,o) = X,
1

and P’:(x,n = gle)).

Finally,

where « are functions which vary continuously with t and
1

furthermore it is verified that ¥ oci=1. So, the composition
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GA:[O,l]n————>X is a continuous function since it is defined by
means of the composition of continuous functions, so it defines an

mc-space structure.

We only need to show that F-sets are mc-cets. If Z is an
F-set, then V A’ € <Z>, it is satisfied that F(A’) < Z.
Consider A € <X>, such that AnZ # @, and let us denote
A’= AnZ, then as a result of the way used to define the
mc-structure, we have
GAIZ([o,u"‘) < gd) € F(ANZ) = F(A’) € Z
where J = {i : ae AnZ}.

Therefore F-sets are mc-sets.

The following example shows an mc-space which is not

a c-space, in the sense that mc-sets do not coincide with F-sets.

Example 2.8.

[o2]
Consider the following subset of R: X = U [2n,2n+1] (neN).

n=0

Then it is possible to prove that X is an mc-space whose mc-sets
are not F-sets. In order to do it, we define the following

functions: VA = (al,...,a } e <>
n

P?(X,O)

It

X

max(A) = a* Vte(0,1]

P?(x,t)
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So it is clear that GA is a continuous function since
A A
G,t,...,t)=P((..P(a,l),t J).t)=a* vt €[0,1]
o] n n n-1 0 i
therefore X is an mec-space.

In this context we can ensure that the following subsets are
mc-sets:
ZW = [w,+w) n X Yw e X
Thus, Zw is an mc-set since for every finite subset A of X such

that AnZ # @ we know that a* € Z , therefore
w w

G [[0,l]m]=a’*eZ
AIZW w

However it is not possible to define a c-structure on X in
which Zw were F-sets (VweX). It is due to if F:<X> ——X defines
a c-structure on X, then it has to be verified that F(A) - VAe<X>
has to be a contr‘actible set, and therefore to be ‘included in some
interval [2n,2n+1]. ;\/Ioreover, by the monotonicity condition (if
ASB then F(A)SF(B)) this interval has to be the same for every
Ae<X>), since in other case they would be in two different
connected components and they would not be contractible sets.

Therefore it is clear now that Z is not an F-set whenever w>2n+l
w

(for every Ae<Z > it is verified F(A) is not included in Zw).
w
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Next, it is proved in a similar way as
Proposition 2.12., that a simplicial convexity induces an

mc-structure, in which simplicial convex sets are mc-sets.

Proposition 2.13.
Let X be a space with a simplicial convexity generated by &.
Then in X there exists an mc-structure where the simplicial convex

sets are mc-sets.

Proof.
Since X has a simplicial convexity €(®), then for any
nonempty finite subset A < X, A = {ao,al,...,a }, there is a
n
continuous function
dla ,a,...,a 1:A — X
0o 1 n n
such that
1. &[x1(1) = x.
i)
2. %la,a,...,a l(t,t,..,0,...,t )= ®la 1t )
o 1 n 01 n -1 -i
then it is possible to define an mc-structure by means of the

function &[a ,a,...,a ]
0o 1 n

P%:Xx[0,1] —X
in the following way

PA(x,l) = &la ,a,...,.a e ) = a

n o 1 n n n

A A

P” (P'{x,1},t ) = ®la ,a,...,a ][t e + (1-t )e)
1 n n-1 0o 1 - n n-1 n

n-1 n-1
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p [PA [PA(X,I),t J,t ):
n-2 n-1 n n-1 n-2

q’[ao’al’ o ’an] [tn—zen-2+(l—tn—2) [tn—len—1+(1-tn—l)en] ]

in general
PA[ p* [PA[a ,1},t ],t ] ],t}=
k n-1 n n n-1 n-2 k
n j-1
@[ao,al,...,an] tkek + Z tjej[” (l-ti)]
j=k+1 i=k
finally

¢la ,a,...,a e
[ [ X A n] i

i=0
where o« are functions which vary continuously with t and
1 1

furthermoreit is verified that ¥ o =1.
1

So, the composition GA:[O,I]n —X
G (t.,t,.,t )= PA[..PA [PA[a ,1],t ]Jt ]=
A 01 n-1 [¢] n-1 n{ n n-1 4]

@[ao,al,...,an] oe

i=0
is a continuous function since it is defined by means of the

composition of continuous functions, so X is an mc-space.
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{Functions Pf‘ will be defined in those values not considered
1
until now so that it would be an mc-space, that is P?(X,O) = X,

and P':(x,l) = @[ao,al,...,an](ei)).

We only need to show that simplicial convex sets are mc-sets;
therfore if Z is a simplicial convex set then V A’ € <Z>, it is
verified that ¢&[a ,a,...,a (A ) € Z.

0o 1 m m
Let A e <X>, with AnZ # o, and let us denote

A’= AnZ = {a ,...,ai } then as a result of the way used to define
1
0 m

the mc-structure, we have

GAIZ([O’H ) = ‘I>[ai . ](Am) <z

o] m

where J = {i : a€ AnZ}.

Therefore simplicial convex sets are mc-sets.
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Summing up we have proved the following relations:

USUAL CONVEXITY

EQUICONNECTED

— CONTINUOUS K-CONVEX STRUCTURE

!

SIMPLICIAL CONVEXITY C-SPACE

’ MC-SPACES

K-CONVEX STRUCTURE
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2.6. LOCAL CONVEXITY.

Finally, the notion of local convexity (which assumes
that each point has a neighborhood base of convex sets) and its
extension to the context of abstract convexities are analyzed. It
is important to consider this case due to the many applications of
convexity that require local properties, so the local abstract
convexity will be wused throughout the following chapters to
generalize some results from wusual convexity. In this Section we
introduce the notions of local convexity in some of the particular

contexts of abstract convexities mentioned in the last Sections.

Definition 2.26. [Van de Vel, 1993]
A set X is locally convex if each point has a neighborhood

base of abstract convex sets.

In particular, in the ‘case of wusual convexity, this

concept can be expressed in the following way:

Definition 2.27.
A linear topological space X ié locally convex if the point O

has a neighborhood base of usual convex sets.

A simple example of locally convex space in the usual

convexity is the following: -
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Example 2.9.
A normed space X is locally convex due to it is possible to
define a base of neighbourhoods at O as follows,

B(0,e) = {x : lixll = &}

When we want to extend the notion of local convexity,
apart from asking for the balls to be abstract convex sets, we
need to require the balls of abstract convex sets

B(E,e) = { x € X| d(x,E) < g }

to be abstract convex sets.

Definition 2.28. [Horvath, 1991]
A metric c-space (X,d) is a locally c—space10 if the open

balis of points of X as well as the balls of F-sets, are F-sets.

In this line, but in the context of K-convex spaces and

mc-spaces, we give the following definitions:

This concept' corresponds to the notion of Ic-metric space

introduced by Horvath (1991).
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Definition 2.29.
A metric space (X,d) with a K-convex continuous structure is
a locally K-convex space iff Ve>0 it is verified that
{ x e X|] d(X,E) < ¢ }

is a K-convex set whenever E is a K~convex one.

Definition 2.30.

A metric mc-space is a locally mc-space iff Ve>0 it is

verified that
{x e X: dx,E) < £}

is an mc-set whenever E is an mc-set.
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0. INTRODUCTION.

Fixed point Theory analyzes the conditions under which
we can ensure that a function f, defined from a topological space
into itself, has a fixed point. That is, there exists a point x
such that x = f(x) or x € f(x), depending on whether f is a
function or a correspondence respectively. These results are a
basic mathematical tool used to prove the existence of solutions
to several problems in econornics.‘ This is due to the fact that
most of these problems can be reformulated as problems of

the existence of fixed point for specific functions.

For instance, a classical problem in economic theory is
the existence of equilibrium (in macroeconomics, Leontief
economies,...} which in some cases is solved by proving the
existence of the solution of equations '\'such as f(z) =0
(f:E ——E). But these problems can be formulated as a fixed point
problem by considering the following function: p(z) = z - f(z). In
the same way, we can mention the problem of the existence of a
solution to  complementarity  problems (z =0z - f(z) = 0),
variational inequalities [ (=" - z)-f(2’) =z O l,..., among others,
which are also basic in the solving of equilibrium existence

, problems (general equilibrium, distributive problems,...) and
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which can be reformulated as fixed point problems. In particular,
the solution to complementarity problems can be obtained from the
fixed points of the following function: g(x) = sup{0,x-f(x)}; in
the case of variational inequalities, by considering the following
correspondence: o(x,y) = n(y)xf(x) where n(y) is the set
{ x € Domi{f): Xy = zy Vz € Dom(f) } (see Border, 1985; Harker and

Pang, 1990; Villar, 1992).

A different kind of problem which can be solved by means
of fixed point theory, is the case of inequality systems stated as
m

a nonempty finite intersection problem ( nI-",I # © ) by making use
i=1

of Knaster-Kuratowski-Mazurkiewicz’s result (KKM). In this case it
is also possible to solve the problem by proving the existence of
a fixed point of a specific function (see Border, 1985;

Villar, 1992).

On the other hand, it is important to note that the
existence of maximal elements, the existence of Nash equilibrium
in non-cooperative games, etc. are all problems which can also be

solved by means of fixed point theory.

Therefore, it is very interesting to analyze extensions
of fixed point results by relaxing the conditions usually imposed

on them in order to cover more situaticns than those covered by
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the known classical results. One of the most important conditions
used in fixed point results in order to solve some economic
problems is that of the convexity of both the mapping and the set
where the mapping is defined. In this line, we have to mention
Horvath’s work (1987, 1991) who generalizes fixed point results
and obtains the existence of continuous selection to

correspondences.

This chapter is devoted to analyzing fixed point results
and the existence of continuous selections or approximations to
correspondences by relaxing the convexity and using abstract
convexities instead. In fact, we analyze this problem in some of
the abstract convexities introduced in the previous chapter. This
chapter is organized as follows: in Section 3.1 the basic
definitions which will be used in this development are introduced.
In Section 3.2 classical fixed point theorems used in economic
analysis are presented. Finally in Section 3.3, extensions of
fixed point theorems to the context of abstract convexities are
presented and new results in the new abstract -convexities

presented in chapter 2 are proved.
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1. PRELIMINARIES.

In this Section several concepts and well known results
which will be wused throughout the work are presented (see

Dugundji and Granas, 1982 or Istratescu 1981).

Definition 3.1.
Let X be a topological space, a family of open subsets of X

(Wi)iEI such that X = U W_ is called an open covering of X.
1
P€1

Definition 3.2.
Let {W,}iEI be a covering of X. Then if J is contained in I
1

and {W')‘EJ is again a covering, it is called a subcovering.
11

Definition 3.3.

coveri AW
Let (Wi)i‘EI and {wj}jEJ be two coverings of X. { i}'iEI

is a refinement of (W_),EJ if for every i€l there exists jel
i

such that W_ ¢ Wj.
1

Definition 3.4.
A covering (W'}'el of a topological space X is called locally
11
finite if for every xeX there exists a neighborhood VX of X such

that W n V # @ only for a finite number of indexes.
1 X
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Definition 3.5.
A Hausdorff topological space X is called paracompact if each

open covering has a locally finite open refinement.

Definition 3.6.
Let X be a Hausdorff topological space, X is said to be
compact if for each open covering of X there exists a finite

subcovering.

First of all we present some previous results which are

needed to prove fixed point theorems.

Defin?tion 3.7.
Let {Wi}i:1 be a finite open covering of a topological space
X. A finite partition of unity subordinate to this covering
{Wi}i:1 is a set of continuous functions
lﬂi:X—ﬁ R

such that

. YxeX Illi(X)ZO

2. VxeX YTy =1

i=1

3. VxeW llli(x)=0
i .
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Theorem 3.1. [Istratescu, 1981]
Let X be a compact Hausdorff topological space and {W,),n1 a
1 1=

finite open covering of X. Then there exists a partition of unity

subordinate to this covering.

Next, the notion of correspondence and continuity

for correspondences are formally given.

Definition 3.8.

Let X, Y be topological spaces, and P(X), P(Y) the family of
all the subsets of X and Y. A correspondence from X into Y is a

function from X into P(Y)

r:X-— P(Y)
and it will be denoted by

'"X— -,s—Y

Definition 3.9.

let X, Y be topological spaces and I'X—>— Y a
correspondence. It is said that

r''(y) ={xeX: yelx}

are the inverse images of TI.

. -1 .
A correspondence has open inverse images whenever [ (y) is

an open set for every yeY.
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The graph of a correspondence I''X-—3—3 Y is given by

the following subset of X x Y:

Gr(l) = { (x,y) € XxY| y e I'(x) }

Definition 3.10.

Let X and Y be two topological spaces and I''X —>—>3 Y a
correspondence such that for all x € X , I'(x)#@. Then it is said
to be upper semicontinuous at XOEX if for any arbitrary
neighborhood V of T (xo) » there exists a neighborhood U of X
such that I'(x) ¢ V for all xeU.

The correspondence I' is said to be upper semicontinuous

(u.s.c.) on X if it is upper semicontinuous at each point x € X.

Definition 3.11.

Let X and Y be two topological spaces and I''X —>— Y a
correspondence such that for all x \e X , F(x)#o. Then it is said
to be lower semicontinuous at xoeX if for any arbitrary
neighborhood V of I'(xo) , there exists a neighborhood U of X,
such that ¥x € U it is verified that T(x) n V # .

The correspondence T is said to be lower semicontinuous

(.s.c.) on X if it is lower semicontinuous at each point x € X.
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Definition 3.12.

Let X and Y be two topological spaces and let I''X——— Y be
a correspondence with I'(x)#@ for all x € X. Then T is said to be
continuous at x € X if it is upper and lower semicontinuous. The
correspondence I' is called continuous on X if it is continuous at

each point x € X.

One of the problems which will be analyzed throughout
the work is the existence of fixed points. This concept, which is
stated in the context of functions (x*: f(x*) = x*), has been

extended to the context of correspondences in the following way:

Definition 3.13.

Let X be a topological space and I''*X——> Y a
correspondence. Then x* € X is called a fixed point of T if it is
verified that

xX* € I(x*).

Two different ways of defining a function associated
WitAh a correspondence is to consider whether a function whose
images are contained in correspondence images, or a function whose
graph is as close as is wanted to the correspondence graph.

Formally we give the following definitions:
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Definition 3.14.
Let I''X——>— Y be a correspondence. A selection from I is a
function f: X—— Y such that for every x € X

f(x) € T(x)

Definition 3.15.

Let X,Y be metric spaces ~and let T: X——>> Y be a
correspondence. A family {fi)iEI of functions between X and Y
indexed by a nonempty filtering set 1 is an approximation for I if

Ve>0  3jel Vizj  Gr(f) < B_(Gr(D)
1

Hereafter, Hausdorff topological spaces will be

considered.
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2. CLASSICAL FIXED POINT THEOREMS.

Perhaps the most important result in the fixed point
theory is the famous Theorem of Brouwer (1912) which says that the
closed unit ball R" has the fixed point property, that is, if B"

denotes this ball and f:B" ——B" is a continuous function, then

there exists a point x*eB" such that f(x*)=x*.

One of its possible extensions consists of substituting
the wunit sphere for any other compact and convex subset of a

finite dimensional euclidean space.

Theorem 3.2. [Brouwer, 1912]
If C is a compact convex set in a finite dimensional space
and f:C—— C is any continuous mapping, then there exists a point

x*eC such that f(x*)=x*.

This result was extended to the context of nonfinite

dimensional spaces (locally convex) by Schauder-Thychonoff.
Theorem 3.3. [Schauder-Thychonoff, see Dugundji and Granas, 1982]
Let C be a compact convex subset of a locally convex

topological space. Then any continuous function f:C—— C has a

fixed point.
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Brouwer’s result is the main tool used to extend fixed
point results to correspondences because the way used to obtain
these extensions consists of considering a continuous
approximation to or selection of the correspondence in which the
existence of fixed points is ensured by Brouwer’s result. Since
these fixed points are also fixed points to the correspondence the
problem is solved.

The first extension of this theorem to correspondences

considered is that of von Neumann (1937).

Theorem 3.4. [Von Neumann, 1937; Kakutani, 1941]
Let X and Y be two nonempty compact convex sets each in a
finite dimensibnal euclidean space. Let E and F be two closed
subsets of X x Y. Suppose that for each y € Y
E(y) = {x e X| (x,5) e E}

is nonempty, closed and convex and also for each x € X
Fix)={yeY| xy) e F}

is nonempty, closed and convex.

In this case EnF = a.

Kakutani (1941) obtains an extension of Brouwer’s
Theorem by considering compact convex valued correspondences in a

compact convex set in the Euclidean space.
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Theorem 3.5. [Kakutani, 1941]
Let E be an Euclidean space and C a nonempty bounded closed
convex set in X. Let I"C——>> C be an upper semicontinuous

correspondence and closed convex valued. Then I' has a fixed point.

Another result along the same line is that of Fan
(1961), which was obtained independently by Browder (1967), where"
the existence of a fixed point 1is proved using conditions

different to those of Kakutani.

Theorem 3.6. [Fan, 1961; Browder, 1967]
Let E be a topological vector space and C a nonempty compact
convex subset of E. Let I'C-——> C be a nonempty convex valued

correspondence with open images. Then I' has a fixed point in C.

As we mentioned above, the way to prove the existence of
fixed points to correspondences consists of constructing a
continuous selection or approximation to which Brouwer’s result is
applied. Therefore the existence of continuous approximations to
or selections. of correspondences has been of vitai importance in

the theory of fixed point.
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The following results, by Yannelis and Prabhakar (1983),
ensure the existence of a continuous selection of a correspondence
and, from this, the existence of fixed points to  this

correspondence is obtained.

Theorem 3.7. [Yannelis and Prabhakar, 1983]

Let X be a paracompact space and Y a linear topological‘
space. Suppose that TI': X——— Y is a nonempty convex valued
correspondence which has open invérse images. Then there exists a
continuous function f:X——>Y such that for all xeX

f(x) e I'(x).

Corollary 3.1. [Yannelis and Prabhakar, 1983]

Let X be a compact convex nonempty subset of a linear
topological space E and suppose that IX——> X is a nonempty
b“-convex valued correspondence which has open inverse images. Then T

has a fixed point.

These results will be extended to the context of

abstract convexities in the following section.
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3. FIXED POINT THEOREMS IN ABSTRACT CONVEXITIES.

In the context of fixed point theory in abstract
convexities we have to mention Horvath’s work (1987, 1991), who
obtains selection and fixed point results to correspondences in
c-spaces; Bielawski (1987), who proves similar results in the
context of simplicial convexities and Curtis (1985) who obtains
selection results in a context similar to that of simplicial
convexities. Other works which are also interesting in this
framework are those of Keimel and Wieczorek (1988) and Wieczorek

(1992) who use closed convexity.

In this Section the existence of fixed points in some of

the abstract convexities mentioned in Chapter 2 is analyzed.
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3.1. Fixed point Theorems in c-spaces.

As we mentioned in the previous chapter, the notion of
c-space was introduced by Horvath (1987, 1991) to generalize the
convexity and to obtain some results of selection and fixed point
to correspondences equivalent to those of usual convexity. The
following result proves the existence of a continuous selection to
lower  semicontinuous correspondences and extends Michael’s
Theorem (1956)"". This result is presented in the context of

locally c-spaces.

Theorem 3.8. [Horvath, 1991]
Let X be a paracompact space, (Y,F) a complete locally
c-space12 and I'X——— Y a lower semicontinuous map such that

VxeX I'(x) is a nonempty closed F-set. Then there is a continuous

selection for T.

The next result covers the extension of Browder’s and

Fan’s Theorems (Theorem 3.6.) to c-spaces.

"' Theorem [Michael, 1956]

Let X be a perfectly normal topological space, then every
l.s.c. correspondence from X in itself with closed convex and
nonempty images admits continuous selection.

12 See Definition 2.28.
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Theorem 3.9."°
Let (X,F) be a compact c-space and a correspondence
' X——>— X such that
1. ¥xeX, I'(x) is a nonempty F-set.
2. X = U {int T"(y): yex).

Then I' has a fixed point.

The following result states the existence of a
continuous approximation to upper semicontinuous correspondences
whose images are F-sets. Therefore it is used to prove the

extension of Kakutani’s Theorem (Theorem 3.5.) to c-spaces.

Theorem 3.10.
Let (X,F) be a compact locally c-space and a correspondence
X ——> X such that
1. T is upper semicontinuous.
2. ¥k € X I'(x) is a nonemtpty compact F-set.
Then Ve > O there exists a continuous function fe:X -—X such,
that Gr(fe) € B(Gr(I), e).

Furthermore, T has a fixed point.

“This result is not stated exactly as Horvath (1991} did; it is

in fact derived from Horvath’s result.
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To prove this result we need the following lemma.

Lemma 3.1.
Let X be a metric compact topological space and I X —s X
an upper semicontinuous correspondence . Then Ve > O there exist

xo,...,x €X and positive real numbers 60,...,5 such that
n n

{B(x,,éi/zt): i=0,...,n}
1

is an open covering of X. Moreover, there exists a finite
partition of unity (l[li)i:o subordinate to this covering such that
for all x € X 3j € {0,...,n} such that
!ﬁi(x) >0 implies r‘(xi) < B(I‘(xj),e/Z)
Proof.
Fix € > 0. Since T is upper semicontinuous we have that for

every X € X there exists 3(x) > 0 such that for any

z € B(x,8(x)), it is verified K

I'(z) ¢ B ( I'(x) ,%) (1
Moreover, we can take &(x) <—§—

The family of balls {B(x, 6(X)/4)}xe\(, covers the compact

space X. Let {B(x_, 6_/4)}fl 0 be a finite subcovering and {wi}ino
1 1 1= . =

a finjte partition of unity subordinate to this subcover,

¥ t//i(x) =1, gl;_‘(x) = 0, Y (x>0 = x € B(Xx’ 51/4)
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Let J(x)={1i : wi(x) > 0 }, it is satisfied that
x € Blx, 8/4) ¥i e J(x)
H 1

If we take 5j = max {8: ie)(x)}, we have Vi € J(x),
1

X € B(xi,é./zl), thus x e B(x, &8./2),
j i i
hence

B(x_l, 51/4) € Blx. &),
P

Therefore by (1}, for any i € J(x)

Mx) cB(I(x).<)
i j 2

Proof of Theorem 3.10.
a. Existence of continuous approximation.

By Lemma 3.1, there exists a covering (B(xi,81/4)}?=0 and a
finite partition of unity (wi}ir—:o subordinate to it.A continuous
function ‘IIS:X———% An can be defined by

\Ile(x)=(lllo(x),....,wn(x))
Moreover, for any i=O,1,..,n we cari choose A € F(Xi).

Hence, since (X,F) is a c-space and applying one of Horvath’s

results (1991), we have that for any V¥ ooy € X there

n

. . . . . . . . 14
exists a continuous function defined on the n-dimensional simplex

14A =C0(eo,...,e} is the standar simplex of dimension N, where
n n
N+1

(eo,...,e) is the cannonical base of R and for JEN -
n .

A =CO{e: ielJ}.
J i
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g A — X
n
such that if J € N={0,...,n}
g(A)EF({yi:ieJ))

>

Since V x € X, ¥ (x) € A , in particular \I'C(X) € AJ(
n

£ X)

therefore

g(\I/e(x)) e gf AJ( ) ¢ F({_v_x s ie Jx)

X)
Moreover since I'(x) is an F-set and X a locally c-space then
J
B(l"(xj), €/2) is an F-set, and applying Lemma 3.1.
y. € F(xi) < B(I‘(xj), €/2) whenever | € J(x)
1
so it is verified that
g(\Pe(x)) € F({yi :ie Jx)) € B(T(x), £/2)
]
Therefore if we denote fe = go \Ife , we have
f (x}) € B(T(x )}, £/2)
€ J
so there exists y’ € I'(x) such that
J

‘d(fe(x), y') < €/2

and by the proof of Lemma 3.1. x € B(x, 8) with 53< €/2 ,s0
i

dilx, f (x)), (x, ¥)) =dlx, x)+dl f(x),y)<e
€ j j £

and we can conclude
(x, fe(X)) € B(Gr(IN), ¢).

where fs: is a continuous function because g and \I/e are also

continuous.
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b. Existence of fixed points.

Let (ei}, €> 0 Vi € N a decreasing sequence of real numbers
which converges to 0. Let (fi} be the sequence of continuous
approximations to I' which are obtained by reasoning as above for
every €. Then

(x, fi(x)) € B(Gr(T), £)

1

If we take the following function

¥ oog A — 5 A
1 n n

it is continuous from a compact convex subset into itself, so
applying Brouwer’s Theorem we can ensure the existence of a fixed

point z_.
1

g(‘Ili(g(zi)) = g(ziJ
and if we denote XT = g(z ) we have that
1
g(¥ (x*)) = x*
)3 1 1
Therefore

f(x*)= x*

i i

1

that is, f . has a fixed point x*. Hence
. i

(x’;‘ , £ (x’;)) € B(Gr(T), s:_l)

and from this sequence {x*} and by considering that X is compact,
i :
we know that there exists a subsequence which converges to some

point X. ,
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Therefore

d((x, x), Gr(T')) = Lim d (xi:‘ , f(x*)), Gr(r‘)] = 0
1 1

Since Gr(T') is a closed set
(x, x) € Grl
that is

X € I'x
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3.2. Fixed point Theorems in simplicial convexities.

Bielawski (1987) introduces the simplicial convexity and
proves several generalizations of classical fixed point results.
In  particular, he obtains a selection result to lower
semicontinuous correspondences. This resuit, in the case of open

inverse image correspondences is as follows:

Theorem 3.11. [Bielawski, 1987]

Let C€(®) be a simplicial convexity on a topological space X.
Let Y be a paracompact space and let ! Y—>> X be a
correspondence such that I'(x) is a nonempty simplicial convex set
and l"_l(y) is an open set for each x € X. Then ' has a continuous

selection.

Originally, this result was wrongly stated by Bielawski
since he does not require the correspondence to have simplicial
A}

convex values (which is needed to ensure that the continuous

function obtained is in fact, a selection).

To prove the  existence of a fixed point to
correspondences with open inverse images, Bielawski considers a

structure less general than simplicial cénvexity which he calls
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finitely local convexity (Bielawski, 1987)*°

The next theorem
shows that the same result can be stated in the context of
simplicial convexity. Firstly, a continucus selection of the

correspondence will be obtained and, afterwards, Brouwer’s Theorem

will be applied to this selection.

Theorem 3.12.

Let €(®) be a simplicial convexity on a compact topological
space X and let ! X——s» X be a correspondence with open inverse
images and nonempty simplicial convex values.

Then I' has a continuous selection and a fixed point.

Proof.
Since I‘_l(y) is an open set for each yeX and TI(x) # @ for

each xeX, then { I‘"l(y) } ex is an open covering of X, which is a
. y
compact set. So there exists a finite subcovering

-1 n
{T (y_l) }1:0

' Definition [Bielawski, 1987] _
- A convexity € on a topological space X is called finitely
local if there exists a simplicial convexity €(&} such that
€ < €(®) and for each finite subset {xl,xz,..,x }cX there exists a
n

perfectly normal set C[X1’X2”"Xn] having the fixed point

property for compact maps such thét
Plx ,x ,..,x (A ) cClx,x,..,x ] ¢ CAx ,x_,..,x }

1’72 n -1 1’72 n €772

n

)
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and a continuous finite partition of wunity subordinate to this
subcovering,

Wi, yx)zo0, Tu(lx)=1, (x>0 » x e iy

i i=0 i i i
We define the following function ¥:

¥: X——> A ¥(x) = (z/lo(x),\//l(x), sy (X))

n n

If we take J(x)={ i : l,(li(X) > 0 }, then we have

y; € Mx) vielx) (1)
On the other hand, since X has a simplicial convexity
structure, we can define a continuous function f:X —>X as

follows:

f(x) = <I>[yo, el yn](llxo(x), npn(x))

And applying that I'(x) is a simplicial convex set and by (1)
for every i e Jx), y, € Tx)
we have that f is a continuous selection of I', that is
f(x) € T'(x)

This function f is a composition of the following functions:

¥:X——> A, . A —X
n n
So if we take g = ¥ o ¢, it is a continuous function defined
from a compact convex set (A ) into itself. Therefore, we can
n

apply Brouwer’s Theorem and conclude that g has a fixed point.

Ix €A :‘g(x) X
o n o o
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Hence

¥ (d(x)) =290 (x)
[o] o
and if we denote x* = &( xo) we have
f( x* ) = x*

that is, f has a fixed point which is also a fixed point to the

correspondence T.
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3.3. Fixed point Theorems in K-convex continuous structures.

Although the results obtained in the context of K-convex
continuous structures are immediate consequences of the ones
obtained in the context of mc-spaces (which will be presented in
the next section), we will present them now since the‘ way ,Of
proving is constructive and it is interesting to show how the
selection as well as the approximation to correspondences is
constructed. In both cases, the baéic idea is the existence of
paths which vary continuously and that the functions are

constructed by means of the composition of these paths.

Theorem 3.13.

Let X be a compact topological space with a K-convex
continuous structure and let I X ———» X be a nonempty K-convex
valued correspondence with inverse open images. Then there exists

a continuous selection of T and I has a fixed point.

Proof.
As in Theorem. 3.12., we can ensure that there exist
. finit tition of  unit Wwr"
yo,yl,yz, Y and a inite partiti y 1/1_l i—o

subordinate to {F_l(yi))ir_‘o such that

y.ex) Viedx)={i ¢p(x)>0}
)3 1
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Moreover, by considering that T(x) is a K-convex set, we can
ensure that for every v, € 'x) , 1 € Jix) and any point p of
'(x), the path which joins them will be contained in T(x). So,
assuming the existence of these arcs, the construction of the

selection by composing them is presented now.

a. Construction of the continuous selection f.

From the finite partition of unity, we can define the

following family of functions,

0] if llli(x) =0
t (%)=
' ¥ (x)
n‘ if y(x)#0
lelj(X)
— j=i

If we take h = y , then both h and y belong to I(x)
n-1 n n-1 n-1 )
(whenever ¥ (x>0, 1] 1(x)>0 )s therefore the path
n n-

K(hn-1’yn-1’[o’11) joining these points ( which we call gn_l) is
contained in T'(x) since it is a K-convex set.

If we compute g ) in t 1(x), we will have

n- n-

h =g (t 1(x))=K( hn_, vy ,t (x))

n-2 n-1 n- 1 n-1 n-1
and by construction h , € ['(x). By reasoning in this way but with
-

the path which joins h and y (which we will call g _) and
n-2 n-2 n-2

computing it in t 2(X), we obtain,
n-

hn_3 =g . (tn_z(x)) = K( hn—z’ Vo tn_zﬂx))
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In the same way we repeat this reasoning until we obtain the
element ho which will be linked to yo bv means of a path go.
Finally this continuous function will be computed in to(x) = l/lo(X)

and we will obtain the selection image in x, that is

go( wo(x)) = K( ho’ . to(x)) = f(x)

f(x)=K [K {K [K(yn,yn_l,tn_l(x)),yn_z,tn_z(x)] _._vn_3,tn_3(x)}. . ]

By the way of defining f it is proved immediately that
f(x) € I'(x), Vx € X, since the "relevant” paths are contained in
'(x). Note that if tlli(x) = 0 for any i, then we have that
ti(x) = 0, so

K(h, y,t(x)) =K(h,y, 0 =h
i i i i i 4

and y_ will not appear in the construction of function f. Hence to
1

construct selection f we only need points y which have l,bi:tz.
1
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b. Continuity of selection f.
Selection f can be rewritten as the following composition

f(x) =K (9 ( ¥x) )

where

K: [0,1]" — 5 X

T (2) 2
1

[
.
=
H
o
)
1
L

T(¥(x)) = (to(x),tl(x),...,t {(x))

n-1

f(x)

K(F (¥x))) = Rt ().t (%)t (x)) =

=K [ K [K [yn,yn_l,tn_l(x)] ’yn—z’tn-Z(X)] ,..] ,yo,to(x)]

In order to prove the continuity of f = K (7 (¥) at any point

X, firstly we are going to prove that K o J : A —>s X
n

is

a

continuous function. If this is true then the continuity of f

would be inmediately obtained ‘(since f is a composition

continuous functions : KoJ and ¥).
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To analvze the continuity of function K <« J at any point zeA
n
it is important to note that if z >0 then
n

Z.
7 (2)= :

n

j=i
is a continuous function, since it is a quotient of continuous
function whose denominator is not null.

In other case, 3i(z) could not be continuous (when its
denominator is zero, that is when zk are zero for all
k =1, ... ,n-1).

In the first case, the continuity in not problem: since KoJ
is a composition of continuous functions and therefore continuous.

In the second case, we define

j=max {i : z. > O}
1

then
z =0, ,2=20
j+l n
hence’»\
g (22=0, ... , 9z =0 and T(z)=1
j*1 n J
z. z
because T (z) = J = J -
) Z+ Z +...42Z Z
J j+1 n J

Futhermore J (a=0,...,j) are continuous functions at =z
a
because their denominators are non nuls, (zj>0 and zkz 0 Vv k=#j,
n i

therefore ¥ z, > 0, Vk=0,...,]j)
K=a
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By the way in which function K has been defined, it is

verified that

K(T (2),...9 (2),...9 (z)=
0 j 1

and since K{a,b,1) = b, V a € X, then the part of the function

K[..K[K [yn,yn_l,ﬂn_l(z)] ,yn_z,Jn_z(z)] ,..yj,l} =y

J

and it is independent of the values of & 1(2), T 2(2), e T 1(z)
n- n- I+
that is,
K["K[K[yn’yn—l’An—l]’yn—Z’An-Z]’”yJ’ 1) - yJ
YA , ..., A eloll
n-1 j+1
\
so,
KT (2),..,9(2),..,.9 (2)) = R(T (2),..,1,0,..,0) =
0 j n-1 [0}
= KT (2),..,1, A, ..., A )
0 j*l n-1
YA , ..., A  €l0,1]
n-1 j*
To simplify, we call T=(3’O(z),..,l) and A = (Aj+1,...,An_l),
thus K(J (2),..,LA ,..,A ) = K(T, A)  ¥ael0,1]™ (m=n-j-1).
0] j+1 n-1
106

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 1994



Abstract convexity. Fixed points and applications. Juan Vicente Llinares Ciscar

Chapter 3. Fixed point results.

In order to show that function Ko7 is continuous we are

going to prove that
Vze A, YW e N ReT(2) , 3V € N(2) : KoT(V') € W

By applying that KoJ(z)=K(T,A) Vael0,1]" and that K is a

continuous function, we have that

VW e NR(T, A)), BV)T‘ x V., & N(T.A): K(\*i V)W

Moreover, since the family of neighborhoods VA when

A € [0,11™ is a covering of [0,1]™, which is a compact subset, we

known that there exists a finite recovering which will be denoted

as follows

0,11M= u v, ¢ i=L...p}
1

Ad
T

Hence, if we take A% , Vi=l,..,p, and we consider

Ad .
VT_— n {VT : Yi=l,..,p},

then VT is a neighborhood of T. But by considering that

T=(J (2),..,7  (2),1)
0 j-1

we can rewrite

VM = th X VAl where VM e NI (z2)),
T TO j Tk k
hence V_ = V_ x...xV where
T TO Tj
Al _
VTk— N A{ V_rk i=l,..,p+ k =0, 2
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Hence, VTk is a neighborhood of 7k(z) since it has been

defined as a finite intersection of neighborhoods of E’Tk(z).

Moreover, these functions i’Tk are continuous at z VYk=0,...,j

>

there exists neighborhoods Uk of z such that
f'Tk(Uk) S
Finally, on the one hand, if we denote
Vo= n(Uk tk=0,...,j

then V’ is a neighborhood of z, and it is verified that

YweV’, (T (w),.., T(w)) e V. x..x V. = V_ ¢ VM vi=l,..,p
0 j TO Tj T T

On the other hand, for the rest of indexes (k=j+l,...,n)

is verified that

T W, ., T (w) e lo™ =U (v, :i=l..p)

I+

so there exists an index i0 such that

A}

(ffjﬂ(w), s STn_l(w)) € V?no’ i€ {1,...,p}
Thus we can ensure that
AiO
(30(‘”)""ffj(W)’ng(W)""gnq(W)) € VT X vAio c VT X V?uo

50,

it

and since we had obtained, (1), that IZ(V)T\ <« V.) S W vAel0,1]™, we

A

" can conclude that for any w € V’ it is verified that

KT (w),.., T (w),T (w),...T (w)) cW
0 j j*l ‘

n-1
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c. Fixed point existence.
Selection f can be written as the following composition

f(x) =K (T ((¥x))) =& ( ¥x))

where & = K o T

¥: X— A U(x) = (Y (x),¥ (x),....¥ (X))
n 0 1 n

Consider now the function g =¥ o & A ——— A . Since ¥ and
n n
¢ are continuous, it is a continuous function from a convex

compact set into itself, so Brouwer’s Theorem can be applied and

we have
Ix edh : glx)=x
[o] n [o] o

Therefore, ~®( g(x) ) = é(x ) and, thus f(&((x)) = &(x),
so if we call x* = <I>(x°) we have obtained that
f(x*) = x*,
that is, f has a fixed point which is also a fixed point to the

correspondence.

Note that in the last theorem, the way of defining the
selection f could have been done in the case of considering a

paracompact space.
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The next result shows the existence of a continuous
approxXimation to an upper semicontinuous correspondence with
nonempty K-convex compact values. In this case, the way of
constructing the approximation is similar to the one used in
Theorem 3.13. although the context is less general since it is

stated in locally K-convex continuous structures.

Theorem 3.14.
Let X be a compact locally K‘-convex space , and let
N X— - X

be an upper semicontinuous correspondence with nonempty K-convex
compact values. Then

. ve>o0, 3 fs: : X— X continuous such that

Gr(fe) € B(Gr(I'), €)

2. T has a fixed point.
Proof.

By applying Lemma 3.1., we have that for every fixed &>0,
there exists a finite partition of wunity subordinate to
(B(Xi, 61/4)} and

-3 e J(x): Vi € J(x), X € B(xi, 5}/2)
T(x) ¢ B (T(x), )
If we take y, € I‘(xi) for-any i = O,...,n, then

y, € I'(x) < B( F(xj), €/2) whenever i € J(x)
1
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a. Construction of the approximation f.

Since X is a K-convex continuous structure and [(x) is a
K-convex set, we have that Ve > 0, B(I'(x),e) is also a K-convex
set. Then for any pair of points a,b in B(T(x), €) the path
K(a,b,[0,1]) joins them and is contained in that ball. By
reasoning in the same way as in Theorem 3.13. we can define the

following function

fe(x)=K [ K [K [K(yn,yn_l,tn_l(x)),y,n_z,tn_z(x)} ,yn_3,tn_3(x)] ]

It is easy to verify that fe(X) € B(F(xj),e/z), ¥x € X, since
all of the paths are contained in B(I'(x),e/2). So,
i

dy’ e F(xj) tal que d(fg(x), V') < g/2
thus

di(x, f (x)), (x, ) =dlx, x)+dl f(x), y)<e
4 J j g
and therefore (x, fe(X)) e B(Gr(I), ).
The continuity of the approximation is proved as in

Theorem 3.13.

b. Fixed point existence.

Let {ei}, €> 0O Vi € N, be a decreasing sequence of real
numbers which converges to 0. Let (f_l) be the corresponding
sequence of approximations to ' which are obtained by reasoning as

above for every £. Then
1
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(x, fi(x)) € B(Gr(l),e )

From the last theorem we know that f has a fixed point
1
f (x*) = x*
1 1 1

Since

(x’;E s f‘i(x*:)) € B(Gr (T, )

1
from this sequence (x*;}, and by considering that X is a compact
set, there exists a subsequence which converges to some point x.

Hence,

1 1

d((x, x), Gr(I)) = Lim d [(x’f‘ , £ (x*), Gr(D)| = 0
1

Since Gr(l') is a closed set, then
(x, X) € GrT

that is
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3.4. Fixed point theorems in mc-spaces.

The following result presents the existence of fixed
points and selection of correspondences with open inverse images

in the context of mc-spaces.

Theorem 3.15.

Let X be a compact topological mc-space and It X —3 X a
correspondence with open inverse 'images and nonempty mc-set
values. Then I' has a continuous selection and a fixed point.
Proof.

In the same way as in Theorem 3.12. it is possible to ensure
that there exists a finite partition of unity subordinate to this
covering ‘

!

(y)%2,
Let J(x) be the following set
J(x)={i:x/1i(x)>0)
so if i e J(x) then vy, € r(x).
If we take A = {yo,yl,...,yn}; since X is an mc-space, there
éxist functions
PY: X x [0, 1l— X
such that

Pé(x,O) = x and P?(x,l) = bi
1
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in such a way that GA:[O,l]n——> X defined as

A A A A
R N S CRIT P Y

is a continuous function.

a. Construction of the selection.

From the partition of unity, we can define

0 if y(x) =0
ti(X)=_ v i=0,l,...,n1
Y (x)
n‘ if y(x) =0
Yy (x)
so, function f is defined as follows
fix) =G (t (x), ... ,t (xh =
A O n-1
PA[..PA [PA {PA(y 1)t (x)},t (x)],...,t (x)]
\ 0 n-2{ n-1{ n"n n-1 n-2 ) 0

Note that if n/;n(x) = 0, and wn«l(X) > 0, then tn_l(x) =1,

therefore

P* (b,t (x) =P
n~1 n n-1

(b,1}) =b
n-1 n

n-1

that is, b is not in the path defined by GA. By applying the same
n

reasoning repeatedly, if

l/ln(xo) = wn_l(xo) = 0 and wn_z(xo) >0
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then we have that t (x) =0y t (x) =1, so
n-1 0 n-2 0

(b,t (X))t ) =P (b,l)=b

n-2 n-1 n’ n-1 n-2 n-2 n n-2

Therefore to construct the approximation f we only need
points bi such that y, € I'(x). Moreover since f(x) is contained in
the mc-convex hull of the points v, such that ielJ(x) (that is,
yieI“(x)) and since TI'(x) is an mc-set, we obtain that I'(x) contains
that mc-convex hull. In particular we have

f(x) e T'(x)

The way of proving the continuity of the selection is similar

to that of the K-convex case (Theorem 3.13.).

b. Fixed point existence.

In the same way as in the last theorems, function f can be

written as the following composition
EX——A, T4 [0, 1" G0, 11" X
n n

Let g be the following function
It is a continuous function and is defined from-a compact
convex set into itself. By applying Brouwer’s Theorem we have that

there exists a point X, such that

g(xo) =%,
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So, if we call x* = [GA o THglx )) = G (F(x)) we have

Therefore f has a fixed point which is also a fixed point to

the correspondence.

As an immediate consequence of this theorem, some of the
results previously presented can now be obtained. That is the case
of Fan’s and Browder’s results (Theorem 3.6.) or Horvath’s result
(Theorem 3.9.) in the context of c-spaces. Moreover, and since
every K-convex structure defines an mc-structure, Theorem 3.13. is
also obtained as a consequence of it as well as Yannelis and

Prabhakar’s results (1983).

The next result corresponds to the extension of
Kakutani’s Theorem to the context of mc-spaces. That is, it
proves the existence of a continuous approximation to upper
semicontinuous correspondences and the existence of a fixed point.
In the same line as last approximation theorems, it is stated in

the context of locally mc-spaces.
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Theorem 3.16.

Let X be a compact locally mc-space and T: X —- X an
upper semicontinuous correspondence with nonempty compact mc-set
values. Then

1. Ye>0, st: : X — X continuous such that
Gr(fe) < BI(Gr(I), )
2. T has a fixed point.
Proof.
a. Construction of the approximation.
From Lemma 3.1. for every £>0 there exists a finite partition

of unity W’.).no subordinate to the covering (B(x',éi/z&)}?
1 1= I

’

verifying that if

) =4{i:¢¥(x) >0},

1

then

F(x) ¢ B (T(x), =) with  ieJ(x)
1
where j is in such a way that | 8 = max (51: ieJ{x)}, (8j<€/2).
j

If we choose y € I'(x}, for any i=0,..,n , and we consider
1 1

A= { Yoo Yy e o yn>

we have

y, € I'(x )c B( I‘(xj), e/2) 1 e Jx)
1
and we can define fe in the following way

f (x) =G (t(x), t(x), ..., t (x))
€ A0 1
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where GA is the continuous function defined bv means of the
mc-structure on X, and t  are functions defined from the partition
1

of unity V i=0,1,...,n-1

0 if l,[li(X) =0
t (x)=
' ¥ (%)
- if y(x) =0
n 1
X:ﬂj(x)

— j=i

So, ti(x) = 0 if and only if ¥ (x) = 0. Furthemore if
1
Y (x) > O, then
)3

y, € I"(xi)c B( I‘(X)_), €/2)

and since TI(x) is an mc-set, then B(I'(x), &/2) is also an
J j
mc-set because of its being in a locally mc-space. Hence

f (x) = G (t (x),t(x),....t (%)) e B(I'(x),e/2)
€ A 0O 1 n-1 j

Therefore, there exists y e T'ix) such that
i
d(fe(x),y’) < /2
and from the proof of Lemma 3.1., it is verified that

d(x,xj) < Sj < £/2, then
dl(x, f (x)), {x, ¥) =dlx, x)+dlf(x), y)<¢e
€ J j £

that is (X,fe(x)) e B(Gr(T),e), and fe(X) is an approximation
to the correspondence.
The continuity of function fe can be proved in a similar way

as Theorem 3.13.

»
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b. Fixed point existence.
The fixed point existence can be proved in the same way as

Theorem 3.14. by substituting function K for function GA.

Some of the results presented in the last sections can be
stated now as immediate consequences of Theorem 3.16. That is the
case of Kakutani’s Theorem (Theorem 3.5.), as well as fixed point
and approximation results obtainea in the context of ' c-spaces

(Theorem 3.10) and K-convex continuous structures (Theorem 3.13.).

Next, the well known Knaster-Kuratowski-Mazurkiewicz
result (KKM) (which is equivalent in the usual convexity to the

existence of fixed point) is presented.

Theorem 3.17. [Knaster-Kuratowski-Mazurkiewicz, see Border, 1985]
Let X ¢ R", if we associate a closed set F(x)cR™ for every
xeX which verifies the following conditions,
1. For any finite set {xl,...,xn} < X we have
n
C[{x,...,x }] c U Fx)
1 n . ]
. _]21
2. F(x) is compact for some xeX.

Then  F(x) is nonempty and compact.
x€X '
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Where C . is the me-convex hull,
m

Theorem 3.18.

n{r(a):aeB}xz.
Proof,

By contradiction, assume that

X=X\ Ar) =

U(x \ I'(a))
a€R

aEB
is a Compact set we
there exists a finite family

{a ,a »--»@ } such that
1" 2 n
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X =U X\ I“(ai))
i=1

Since {X\I‘(ai))iil is a finite subcovering of X, we know that
there exists a finite partition of wunity {wi}‘zx subordinate to
it.

Thus,
Vli(x) > 0 if and only if x € X\l"(a_l).

But since I' is a KKM correqundence, in particular

Cmc((a_l)) < I“(ai) vi=l,..,n.

So, if we take A = {al,az,..,an}, since X is an mc-space,

there exists a continuous function
G, (01]" —— X
From the way of defining GA and the partition of unity,

G (t (x),....,t (x)) eC (a:iellx)) (1)
A O n-1 mc i

where functions t_ are defined in the same way as in Theorem 3.13.
1

On the other hand, since T is a generalized KKM
correspondence, we have

C (a:ielx))ec U I'a)
mc 1 1
i€J (%)

Moreover, the following composition
f =G oJ oV
A

¥ g . ' G
- X—-—-)Al-————>[0,1]n-——A—~>X
o
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is continuous (since GAofT is continuous'® as well as ¥). So if we
consider g = GA o J, function ¥ o g: An_1 ————y An_1 is also a
continuous one and it is defined from a compact convex set into
itself. Therefore, we can apply Brouwer’s Theorem and conclude

that there exists a fixed point

and if we call x* = g(y) we obtain
f(x*) = x*

By (1) we have

X¥* =G [ J(¥x*)) e C (a: iellx*) ¢ U I'a )
A me ! 1€J (x*) '

Furthermore, if ieJ(x*) then x* € X\I'(a ), hence
1

* =
X 1er}(xi‘i)X\l"(ai_) X\

which is a contradiction.

The last result can be extended by considering weaker
continuity conditions, in particular conditions similar to those
considered by Tarafdar (1991, 1992). The generalization is as

follows,

16’By reasoning as in the proof of Theorem 3.13. but replacing K
for GA, it would be obtained that GA° J is a continuous function.
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Theorem 3.19.

Let X be a compact mc-space and [: X——> X a generalized
KKM correspondence such that ¥x € X the set X \ I'(x) contains an

open subset O which verifies UO = X.
X X
x€X

Then
n rx = e
x€X

Proof.
By contradiction, if we assume that the result fails we have

X=X\r(x)= UXN\Tx)

XE€X XEX
On the other hand, since X = U O and X is a compact set,
X
x€X

there exists a finite subcovering and a finite partition of unity
subordinate to it,

X=U o )
X i i=0
i=0 i

such that if l,lli(X) > 0 then X € 0x < X\ F(xi).

1

If we take A = (xo,xl,...,x }, since X is an mc-space we
n

can ensure that there exists a continuous function

\

G,: [0,11" — X
such that a parallel way of reasoning to the one used iﬁ
Theorem 3.15 can be applied to obtain the existence of a fixed
point. From this point, and by reasoning now as in the last part

of the previous Theorem, we obtain a contradiction with

N f(x) = @.
xeX
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CHAPTER 4

APPLICATIONS OF FIXED POINT THEOREMS.

4.0. INTRODUCTION.

4.1. EXISTENCE OF MAXIMAL ELEMENTS IN BINARY
RELATIONS IN ABSTRACT CONVEXITIES,

4.2. EXISTENCE OF EQUILIBRIUM IN ABSTRACT
ECONOMIES.

4.3. EXISTENCE OF NASH’S EQUILIBRIUM.
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4.0. INTRODUCTION.

In this chapter, applications to different topics in the
economic analysis of selection, approximation and fixed point

results obtained in the last chapter are presented.

Firstly, some generalizations of the classical results
in the area of the existence of rhaximal elements are presented.
These generalizations extend many of the theorems in this area
including those based on convexity conditions such as Fan (1961),
Sonnenschein (1971), Borglin and Keiding (1976), Yannelis and
Prabhakar (1983}, Border (1985), Tian (1993), etc. as well as
results which consider acyclic binary relations such as

Bergstrom (1975), Walker (1977), etc.

In Section 2, the existence of equilibrium f or abstract
economies with general assumptions is proved: in contexts with
non-convex and non-compact infinite dimensional strategy spaces
{K-convex sets, mc-sets...) where a countable infinite number of
agents without convex preferences is considered. Thus our result
generalizes many of the theorems on the existence of equilibrium
in abstract economies, including those of Arrow and Debreu (1954),

Shafer and Sonnenschein (1975), Border (1985), Tulcea (1988}, etc.
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Finally, in Section 3, Nash equilibria in
non-cooperative games in the context of abstract convexities is
obtained. In this case, infinite dimensional strategy spaces are
considered, with a non-finite quantity of agents, thus, Nash’s
result (1951) and the theorems of Martinez-Legaz and Marchi (1991)

are generalized.
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4.1. EXISTENCE OF MAXIMAL ELEMENTS IN BINARY RELATIONS

ON SPACES WITH AN ABSTRACT CONVEXITY

The notion of preference relation or utility function is
a fundamental concept in economics, in particular in consumer
theory. Then, when a ‘consumer is faced with the problem of
choosing a bundle of products, in the end, he will look for the
bundle which maximizes his preference relation from those which he
can afford.

The problem of looking for sufficient conditions which
ensure the existence-of maximal elements of a binary relation has
been studied by several authors (Fan, 1961; Sonnenschein, 1971;
Walker, 1977, Yannelis y Prabhakar, 1983; Tian, 1993; etc.).
Continuity or convexity conditions of the set of more (less)

prefered elements
U(x) = {yeX| yPx} U'x) = {yeX| xPy}

or transitivity conditions of the preference relation are usually
required. Some of them, have been criticized as being strongly
unrealistic, especially the transitivity condition (Luce, 1956;

Starr, 1969).

127

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 1994



Abstract convexity. Fixed points and applications. Juan Vicente Llinares Ciscar

Chapter 4. Applications.

The purpose of avoiding the transitivity condition
(especially the transitivity of the indiference) has carried the
problem of existence of maximal elements two different and
independent ways, on the one hand, relaxing the transitivity
condition and on the other hand by considering convexity

conditions on the upper contour sets U(x).

If the transitivity condition is relaxed, it could be
considered acyclic binary relations. In this sense, it must be
considered that a binary relation is acyclic if and only if any
finite subset has a maximal element. In this area, there are
several results that give us sufficient conditions to obtain

maximal elements as in Walker’s or Bersgtrom’s results,

Theorem 4.1. [Bergstrom, 1975; Walker, 1977]

Let X be a topological space, and let P be a binary relation
on X, such that it verifies: -
1. Ux) are open sets V x € X.

2. P is an acyclic binary relation.

Then every compact subset of X has a P-maximal element.
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In the second approach the results are mainly based on
convexity conditions on the set and on the upper contour sets
(U(x)). To obtain the existence of maximal elements in this case,
most of results apply classical results of fixed points (Brouwer,
Browder, ...) or nonempty intersection results (KKM), therefore
convexity conditions are required on the mapping and on the set
where it is defined. In this context, an element x* is a maximal
element for a binary relation P if the following condition is

verified
Ulx*) = &

In the approach based on convexity conditions, a first

- result is Fan’s theorem (1961)

Theorem 4.2. [Fan, 1961; see Border, 1985]
Let X be a compact convex subset of R® and let P be a binary
relation defined on X, such that:
1. Gr(U) = {(x,y)| yPx} is an open set.
2. vxeX, x ¢ U(x) and U(x) is a convex set.
Then the set of maximal elements, {x*: U(x*)=@}, is nonempty

and compact.
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There are some situations which are not covered by this
result as lexicographic order (Gr(U) is not open). Sonnenschein
presents a first extension of Fan’s result, by considering

conditions weaker than those of Fan.

Theorem 4.3. [Sonnenschein, 1971]
Let X be a compact convex subset of R" and let P be a binary
relation defined on X, such that:
1. ¥x e X X ¢ C({xo,...,xp}), ineU(x), Yi=l,..,p, p=n+l.
2. If y e Ulx), then there exists some x‘ € X such that
y € int U (x).
Then the set of maximal elements, {x*: U(x*)=@}, is nonempty

and compact.

In this line, but considering infinite dimensional
spaces and a similar continuity  condition, Yannelis  and

Prabhakar (1983) prove the existence of maximal elements.

Theorem 4.4. [Yannelis and Prabhakar, 1983]
Let X be a compact convex subset of a linear topological
space and let U: X——>> X be a correspondence which

verifies:
1. VxeX x ¢ C({xo,...,xp}), . Y;ieU(x), peN, i<p, peN.
2. ¥xeX UMx) is an open set in X.

Then the set of maximal elements, {x*: U(x*)=@}, is nonempty.
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Next, an existence result of maximal elements in binary
relations, which constitutes the wunion point of the two focuses
commented previously is presented. So, this result generalizes the
previous one which considers acyclic binary relations, as well as,
those which consider usual convexity conditions.

This general result is stated in a similar way to
Sonnenschein’s but by considering rric—spaces and mc-sets rather
than usual convex sets.

The method used to prove this result is based on a fixed
point result obtained in Chapter 3. In this way, it is remarked on
as the fixed point technique includes these two different ways of

. 7 . .
analyzing the pr‘oblem1 of the existence of maximal elements.

The continuity condition which 1is considered is that
“used by Sonnenschein, but it could be argued in an analogous way,
by considering Tarafdar’s condition (1992)*® (which in this context

is equivalent) and obtains the same conclusion.

" In this line, Tian (1993) presents a result which ‘considers the

case of acyclic relations, but only in the context of convex sets
and topological vector spaces. This result is also a consequence
of that which will be presented as follows.

18 VxeX, U—l(x) contains an open subset Ox which fulfills the

condition that vuo =X.
x€X x
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Theorem 4.5.
Let X be a compact mc-set and let P be a binary relation
defined on X, such that:
1. VxeX and YV AcX, A finite, ANU(x) = & it is

verified x ¢ (fo,11™)

G
Alux)
2. If yve U-l(x), then there exists some x‘ € X such
that y € int U '(x‘).
Then the set of maximal elements, {x*: U(x*)=g}, is nonempty

and compact.

Proof.

Suppose U(x) # @, for each x € X, then for each x there is

y € U(x) and so x € U \(y).

Thus, {UNy):ye X} covers X. By 2. Y intU(y): yeX }
is an open cover of X.

Since X is a compact set, then there exists a finite subcover

{int U'(y) : i=0, ..,n }
and a partition of the unity subordinate to this finite subcover.
)" o Yx)>0 — x e intU_l(yi)
1 1= 1 -
Let A = {yo, .-~ » ¥} . Hence X is an mc-space then we can
n

consider this continuous function f:X —X as follows
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flx}) =G (t (x), ... ,t (x))=
A0 n-1

Po [ .Pn_2 [Pn_l(Pn(yn,1),tn_l(x)),tn_2(x)] ,...,to(x)]

where the functions t.1 are defined as in the fixed point results
(Theorem 3.13.), and the proof of the continuity is the same as
the continuity of the selection in Theorem 3.13, in the same way
there exists a fixed point of f.
Let x* = f(x*) and consider the set

Jx*) ={1i: l/!i(x*‘) >0}

it is verified that
x* € int U—l(yi), ie J(x*)

hence

v, € U(x*), i EFJ(X*)

" Moreover, as a result of the way used to define functions ti,

it is verified that if I/li(X*)=0, then ti(x*)=0, in which case,
function P?(z,ti(x*)) = P?(Z,O) = z, (that is, identity function),

so, the composition
f(x*) = GA(to(x*), cee tn_l(x*)) =
P [..P [P (P (y ,1),t (x*)),t (x*)],...,t (x*)]
0 n-2{ n-1 n"n n-1 n-2 o}

only the P functions which correspond to those index i € J(x*)
1

will appear, hence

F(x*) = G,(t (x*), ..., t _(x*) = G (q ., )
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where the coordinates q are those non null of t (x*). Then
i 3
* - * n
x f(x*) e GA{U(x*)([O’H )

which contradicts 1.
Therefore, the set ({x: U(x) = o} is nonempty, that is, there
exist maximal elements. Furthermore, this is a closed set because

its complement is open. This is proved as follows

if we {x: Ux) = @&} then Ulw) # o,
therefore, there exists

y € X:ye Uw), That is w e U (y)

and by 2. there exists y’ € X such that
el -1,
w € intU (y') c U ("),

thus if z e intU_l(y’) then y’eU(z), that is, U(z)#*@ thus

intU(y’) ¢ X\{x: U(x)=g}
Consequently it is obtained that (x: U(x) = @} is a closed

\.

set then compact.

=

Let wus notice that condition 1. in Theorem 4.5. is
hipothesis 1. in Theorem 4.3 when the functions P? which define
function GA are defined as segments joining pairs of points, that
s, P‘:‘(x,t) = (I-t)x + tai , Wwhere A={ao,...,an} in which case it

is verified that
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ph [PA [PA(x,l),t ],t ]=
n-2{ n-1 n n-1 n-2

t a _+(l-t )(t a +(1-t )a]
n-2 n-2 n-2 n-1 n-1 n-1 n

in general
G((t,....t) =
A O n
P [ P [P {a ,l],t ],t ], ],t] =
0 n-1 n{ n n—lr n-2 0]
n j-1 n
1;0a0 + Z ajtj{ﬂ (l—ti)] = }_jalocl
j=1 i=0 1=0

The next Lemma shows how  from an acyclic relation

defined on a topological space, it is possible to define an

mc-structure on X such that the upper contour sets verify the

irreflexivity condition (1.) in Theorem 4.5., then Theorem 4.1.

(Walker, 1977) will be a particular case of Theorem 4.5.

Lemma 4.1.

Let X be a topological space, and P an acyclic
relation defined on X. Then there exists an mc-structure
such that ' -

vxeX and V AcX, A finite, AnU(x) # it is

verified x ¢ G ((0,11™
Alutx)
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Proof.

As P is an acyclic binary relation, then it is verified that
every finite subset A = (xo, xl,...,xn} < X, has a maximal
element, that is, there is an element in A, x0 such that,
U(xo) NnA=g.

It is possible to define the following mc-structure

i=0,1,...,n P Xx[0,1] — X
1
PY(x,0) = x
1
A
P (x,t) = x te(0,1]
i 0

where Xo is one of the maximal elements of the set A. Then,
composition GA will be as

GA:[O,lln————eX
[;.p“ [PA Px ,0,t )t ]t]
n-2 n-1 n n n-1 n-2 0

as" PA(xn,l) = X, in the end composition GA will be -a constant
n

function equal to X

G((t,.,t )=x t,...,t e [0,1]
A O n-1 0 0] n-1

Let us see that this mc-structure verifies

VxeX and V AcX, A finite, AnU(x) # @ it is

verified x ¢ G [0,11™)

Al U(x)(
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If it is supossed that it is not true, then there is a finite

nonempty subset A of X such that AnU(x) # @ and which verifies
m
X € GA[U(X)([O,II )
therefore, by the construction of function GA X has to be a
maximal element on A, that is, AnU(x) = @ which is a contradiction

because  AnU(x) # @. Hence, if P is an acyclic binary relation,

then condition 1. in Theorem 4.5. is verified.

It is important to remark that Theorem 4.5. yields an
unified treatment to analyse the existence problem of maximal
elements in preference relations when either acyclic binary
relations or convexity conditions are considered. Thus, this
result allows most of the results obtained until now by means of
these two different ways to be generalized and extended. As
immediate consequences of this theorem the results ~of Walker
(Theorem 4.5.), Fan (Theorzm 4.2.), Sonnenschein (Theorem 4.3.)

9

and Tian" (1993) among others are obtained. Furthermore, the

results which are presented below and which correspond to the

“Theorem 4.5. can be rewritten as a characterization in a similar
way te that of Tian’s result (1993) in the usual convexity, since
it is immediate that if there exists a maximal element then the
set is an mc-space (by defining GA(to,..,tn) = xX*, where x* is the

maximal).
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existence of maximal elements in c-spaces, K-convex continuous

structures and simplicial convexities are also obtained.

Corollary 4.1.
Let X be a compact c-space and let P be a binary relation
defined on X, such that:
I. VxeX x ¢ CF(U(X)).
2. If ye U_l(x), then there exists some x‘ € X such
that y e int U '(x").
Then the set of maximal elements, {x*: U(x*)=g}, is nonempty

and compact.

Corollary 4.2.

Let X be a compact topological space with a K-convex
continuous structure and let P be a binary relation defined on X,
such that:

1. vxeX x ¢ CK(U(X))'
2. If ye U_l(x), then there exists some x‘ € X such

that y e int UM (x").

Then the set of maximal elements, {x*: U(x*)=@}, is nonempty

and compact.
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Corollary 4.3.
Let X be a compact topological space with a simplicial
convexity. Let P be a binary relation defined on X, such that:
l. vxeX x ¢ CC(U(X)).
2. If ye U’I(X), then there exists some x‘ € X such
that y e int U '(x).
Then the set of maximal elements, {x*: U(x*)=g}, is nonempty

and compact.

The following example is based on the euclidean distance
and shows a simple situation of nonconvex preferences in which
Sonnenschein’s result {1971} cannot be applied. However this

example is covered by some of the previous generalizations

(Corollary 4.2.) *
Example 4.1.

Let X =A (x,y)e(RZ: I(x,y) = b, y=0 }.
where |l -1l denotes the euclidean norm in [RZ.

The binary relation P is defined as follows:

(xl,xz) P (yl,yz) = Il(xl,xz)ll > II(yl,yz)II.
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Notice that this example is not covered by Sonnenschein’s
result because vxeX x € C(U(x)) = X
However this case is covered by Theorem 4.5. (in particular
by Corollary 4.2.) since it is possible to define a K-convex
continuous structure, in which the upper contour sets (U(x)) are
(semicircular rings in this case) K-convex sets. This structure is
defined in the following way
Ki X x X x [0,]] —— 5 X

K(x,y’t) = [(1_t)px + tpy]ei[(l—t)ax + tay]

considering the complex representation of the points in R

Furthermore, if y € U (x) then x U(y) < lixll > liyll, so

UMx) is an open set = VYxeX, then it is possible to apply

Corollary 4.2.
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In fact, this relation is continuous and acyclic. Then it is
possible to apply Walker’s result (Theorem 4.1.) which will ensure
the existence of maximal elements. However, this relation can be
modified by considering another which is not acyclic, hence

Walker’s Theorem cannot be applied.

Example 4.2.
Let X be the following subset of RZ,
X = { (x,y)eR%: Ix,y)I =1, y=0 }
Let us consider the following subsets of X.

A

]

{ (x,y)e!RZ: I(x,y)Il = 1, x<0, y>0 }.

1, x=0, y=0 }.

B = { (x,y)eR%: I(x,y)I

I

The preference relation (P) is defined on X as follows:

Vb € B, ¥x € X\B b P x

Ya € A, x € X\AtlBu{y*} aPx

x*=(-1/2,0), y*=(-1,0) x* P y*

Vx,y € X\ AUBU{x* y*} x Py & x> lyl
x € {X* y*}, Vz € X\{x* y*} X Pz e x> lzl
x € {x*,y*}, ¥z € X\{x* y*} zPx < Iz > Hixl

This is in fact a non acyclic relation because there is a
cycle

y* P (-3/4,0} P x* P y*
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However, this preference relation verifies every condition in

Corollary 4.2. as is shown immediately after.

From the structure defined in example 4.1., X has a K-convex
continuous structure. We are going to verify the continuity

condition of the preference relation, that is,
y e Ux) = IX': y e int UTH(x")

in this case the problematic point is y*

y* e U (x*) ¢3Ix’: y* e int UHx’)?
but in this case it is verified
v* e UNz) = X \ B Yz € B
moreover, since X\B is an open set, then
y* e int U \(z) if zeB

Finally, as for the irreflexivity condition we must prove

that
X ¢ CK(U(X)) vxeX.

In this case, the problematic point is x*, because, in any
other case this condition is verified 'obviously from the
definition of the preference relation P, but x* also verifies _‘this
condition because

Ulx*) = { xeX: Ixll > x*1 } \ {y*}

is a K-convex set due to the fact that y* is an extreme point,
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that is, y* does not belong to any path joining pairs of points in
U(x*) (except if y* is one of the extremes of the path), then if
we pick up the point y* from the set { xeX: lxll > lx*ll } then its
K-convexity will not be broken and the set U(x*) will be a
K-convex set, so it is verified
x* ¢ U(x*) = CK(U(X*))

Also it is verified that y* ¢ CK(U(y*)), because

U(y"“) = B v {x*} and the K-convex hull of this set does not

contain the point y*, just as is shown in the following graph

Then all the conditions of Corollary 4.2. are verified and it

can be concluded that there exist maximal elements.
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In the context of wusual convexity, there are some
results which give sufficient conditions to ensure the existence
of maximal elements weakening the compacity of the set X. With
this kind of results a boundary condition must be introduced. In
the next result due to Border (1985), the compacity condition is

replaced by the o*—cornpacityzo.

Theorem 4.6. [Border, 1985]
Let XcR" be convex and c-compact and let P be a binary
relation on X satisfying:
1. ¥xeX x ¢ C(U(x)).
2. U'(x) is open (in X) for all x in X.
3. Let DcX be compact and satisfy
VxeX\D there exists zeD with z € U(x).
Then the set of maximal elements, {x*: U(x*)=@), is nonempty

and a compact subset of D.

The following result is an extension of Theorem 4.6. in

the context of an n-stable K-convex centinuous structure.

20 A set CcR", is called o-compact if there is a sequence <{C } of
n

C.

compact subsets of C satisfying: C = v
nEN n
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Theorem 4.7.

Let X be a o-compact topological space with a K-convex
continuous structure n-stable and let P be a binary relation on X
satisfying:

1. VxeX x ¢ CK(U(X)).
2. If ye U—I(x), then there exists some x‘ € X such
that y e int U ' (x).

3. Let DcX be compact and satisfy
Vx € X\D dz € D: z € U(x)

Then the set of maximal elements, {x*: U(x*)=@}, is nonempty
and a compact subset of D.
Proof.

Since X is o-compact, there is a sequence (Xn) of compact
subsets of X satisfying v Xn = X.

Set

T =¢C [ U X v D]

n Ky j=1 ]

then, by applying proposition 2.8., {Tn) is an increasing sequence

of compact K-convex sets each containing D with X = v T ; moreover

n

by Corollary 4.2. it follows from 1. and 2. that each Tn has a

P-maximal element x, that is, Ulx)nT =@ Since D c T
n n n n

condition 3. implies that x e D. Since D is compact, we "can

n
extract a convergent subsequence {x‘n}——> x*.

Suppose that x* is not a maximal element, that is, U(x*) = @.

Let z € U{x*), by 2. there is a z’ (x* e int U_l(z’)) and a
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neighborhood W of x* contained in U‘l(z’). For a large enough n,
X €W and zZ € T, thus 2 e U(xn)nTn, contradicting the
maximality of X . Thus U(x*) = o.

Hypothesis 3. implies that any P-maximal element must belong
to D, and 2. implies that the P-maximal set is closed. Thus the

P-maximal set is a compact subset of D.

Theorem 4.5. can be extended by considering a more
general family of correspondences than the one utilized in that
Theorem. The idea is to see that if for each x it is verified that

A(x) < B(x) Vx.eX
then B(x) = @ implies that A(x) = @. This technique was
introduced by Borglin and Keiding (1976) to extend results on
the existence of maximal elements. In order to do this, they
introduce the notion of KF and KF locally majorized

correspondences as follows:

Definition 4.1. [Borglin y Keiding, 1976]
A correspondence P: X——3» X defined <;n a convex subset X of
a topological vector space, is said to be KF-ma jorized if there is
another correspondence $: X——» X such that verifies
1. VxeX P(x)c®(x).”
2. Gr ¢ is an open set.

3. ¥xeX x ¢ ®(x) and ®(x) is convex.
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Any correspondence which satisfies conditions 2. and 3. is
called a KF correspondence. Moreover, a correspondence I defined
on X is locally KF-majorized at x, T{xX) = @ , if there is a
neighborhood Wx of x and a KF-correspondence <I>x: X——> X such

that

Vz € W Iz) ¢ & (z2)
X X

This notion will be extended to the context of abstract

convexity, in particular to the context of mc-spaces.

Definition 4.2.
Let X be an mc-space. A correspondence I': X ——>» X is called

KF* correspondence if it is satisfied:

1. VyeX I My) is open.
2. ¥xeX '(x) is an mc-set.
3. ¥xeX x ¢ T(x).

A correspondence P: X———» X is called KF*-majorized if
there is a correspondence KF*, TI: X-——>> X, such that VxeX it is

verified that P(x) < T(x).
It can be seen that a KF* correspondence satisfies the
conditions of Theorem 4.5., thus an immediate consequence would be

the following result.
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Corollary 4.4.
Let X be a compact mc-space and r'» X— - X a
KF*-correspondence. Then the set of maximal elements {x*: I'(x*)=2)

is nonempty and compact.

In some situations it is possible to work with the local

version of KF* correspondence which is defined as follows:

Definition 4.3.

Let X be an mc-space. A correspondence I': X—>» X is called
locally KF*-majorized if ¥x € X such that T'(x) # @, there exists
an open neighborhood Vx of x and a KF* correspondence (I)x: X—» X
such that

Vz € Vx r'(z) € <I>x(z)

A
The following result shows that a locally KF*-ma jorized
correspondence has some point with empty images {which is .
equivalent to the existence of maximal elements in contexts of

preference relations).
Proposition 4.1.
Let X be a compact topological mc-space. If T: X——» X is a
. locally KF*-majorized correspondence, then set {x*: T'(x*)=g} is

nonempty.
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The way of proving this result is similar to that of
usual convexity, but by substituting convex sets for mc-sets or
mc-spaces and KF correspondences for KF* ones (a proof of this

result in usual convexity can be found in Schenkel (1993).
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4.2. EXISTENCE OF EQUILIBRIUM IN ABSTRACT ECONOMIES.

In the last Section the problem of existence of maximal
elements in the choice of only one agent over the factible set is
presented. In this section the problem of an economy with n-agents
in which the decisions of anyone affect the preferences or
feasible set of the other agents is raised. Then a compatibility
problem (or equilibrium) appears afnong the maximizers decision of

individual agents.

In this context some of the most notable results about
the existence of equilibrium in abstract econiomies are analyzed.
In the classical model of Arrow-Debreu (1954), an

abstract economy & = (X, s!li, ui);1 . is defined as follows:
i =

\
N = {1,2,..,n} is the set of agents.

X is the set of choices under agent i’s control;
1

X =X

i

4 : X— X, is the feasibility or_ constraint
1 1 .

correspondence of agent i.

u: X—> R is the utility function of agent i.
1 .
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For an abstract economy &, an equilibrium is a strategy

vector x*eX such that Vi = 1,2,...,n,
1. x*; € sdi(x*).
2. ui(xfi, x’;) = ui(xfi, zi) Vziesdi(x*). 4
The following result was proved by Arrow and
Debreu (1954), and shows sufficient conditions to ensure ‘the

existence of equilibrium of an abstract economy.

Theorem 4.8. [Arrow and Debreu, 1954]

Let & = (X, 4, u)" . be an abstract economy such that for
1 1 1 1=

each i, it is verified i=l,..,n:

—

X < R is a nonempty compact and convex set.
1
. . 22
2. u(x ,x) is quasiconcave  on x for each x .
1 -1 1 1 -1
3. 4 is a continuous and closed graph correspondence.
1

4. ¥V x € X, 4(x} is a nonempty and convex set.
1

Then there is an equilibrium of &.

An extension of this result is obtained when the agents

do have not in general transitive or complete preference relation,

~ 21

x _ denotes the vector in which i’s coordinate is omitted.
1

»

#2p real function f:X ——R is said quasiconcave if for any oeR the
sets Xa = {xeX| f(x) = o} are convex sets.
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so in this case, preferences are not representable by utility
functions. In this line, Gale and Mas-Colell’s work (1975) has to
be mentioned and Shafer and Sonnenschein’s work (1975), which
analyzes the problem of the existence of equilibrium in abstract
economies & = (Xi, sdi, Pi)]?=1 in which wutility functions are
replaced by best response correspondences.

Pi: X— X. defined by
1
P(x) = {zeX | (x ,z) p x}
1 L 1 -1 1 1

where p_is the preference relation of agent i.
1

In this context, the equilibrium notion is introduced in

the following way:

x* is an equilibrium of the economy & if it is satisfied:
L. x* € 4 (x*).
1 1

2. sdi(x*) NP(x*)=o Yi=1,2,..n.
1
This kind of formulation allows preference relations
which cannot be represented by utility functions to be considered.

By using this point of view, Shafer and Sonnenschein (1975) prove

the following equilibrium result:
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Theorem 4.9. [Shafer and Sonnenschein, 1975].
Let & = (Xi, séli, F’i)?=1 be an abstract economy such that for

each i:

1. XiS R is a nonempty compact and convex.

2. sdi is a continuous correspondence such that VxeX, sdi(x)

is a nonempty convex and closed set.
3. Pi is an open graph correspondence.
4. VxeX X ¢ C(Pi(x)).

Then there is an equilibrium.

There are many results in literature which analyze the
existence of equilibrium in abstract economies, either by
considering  conditions different to those of Shafer and
Sonnenschein or by extending that result. On the one hand, among
the results which consider different continuity conditions in the
correspondences we have to mention the works by
Border (1985, p.p.93) and Tarafdar (1992) who also consider choice
sets as c-spaces. On the other hand, among those which generalize,
Yannelis and Prabhakar’s work (1983) can be mentioned in which an
infinite number of goods and a countable infinite number of agents
are considered; or Yannelis’ work (1987) who considers a measure
space of agents and infinitely many commodities or Tulcea’s
work (1988) who replaces the contimmity condition of the

constraint correspondences by its semicontinuity.
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In general, one of the conditions which is maintained in
most of the results on the existence of equilibrium, is the
convexity of the choice sets as well as the values of the
constraint or best response correspondences. This is due to the
fact that the proof of these results is based principally on the
existence of fixed points. So, if it is necessary to apply
Brouwer’s or Kakutani’s results, then the convexity condition will
be required. In the rest of the section these results are extended

to the context of mc-spaces.

The existence problem of equilibrium in abstract
economies is reduced to the existence problém of equilibria in a
unipersonal economy (following the method of Borglin and
Keiding, 1976). Therefore, first the existénce result of
equilibrium in an abstract economy with only one agent is.
presented and then this case is generalized to infinite agents.

Some previous lemmas which are required to prove this result

are now shown.
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Lemma 4.2.
Let X be a compact mc-space and let
1. &:X—> X be a correspondence such that:
1.1. VxeX 47M(x) is an open set.
1.2. ¥xeX 4(x) is a nonempty mc-set.
2. P:X—>> X is a locally KF* majorized correspondence.
Then there is x* € X such that
x* e 4(x*) and A(x*) n P(x*) = o
Proof.
The correspondence ¢: X——> X is defined as follows:

A(x) if x & 4(x)

¢(x) = P(x) n 4d(x) if x € d(x)

If ¢(x) is locally KF*-majorized, then by applying
Proposition 4.1. we have

Ix* e X such that d(x*} = o.

As d(x*) # o then it is obtained P(x*) n A(x*) = ¢(x*) = o

and x* € 4(x*).

It only remains to prove that the correspondence ¢

locally KF*-majorized. In order to do this, let .xe€X such that

o{x) 2 @.

Case 1: x ¢ A(x).

In this case it is possible to prove that there exists an

open neighborhood of x, V_such that ¥y e V. y ¢ A(y). Then the
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following correspondence is defined:

A(y) yeV

X

%] yeVv

X

So, if y e V. as y¢ A(y) we have that y ¢ ¢ (y), which

implies that ¢x ma jorize locally to ¢.

Case 2: x € 4d(x).

In this case as correspondence P is locally KF*-majorized, if
P(x) # @ then there is an open neighborhood of X, Vx, and a KF*
correspondence QXZX—H—)o X such that Vy e Vx, P(y) < Qx(y).

Let’s consider the following correspondence

Aly) it y
Q (yInd(y) if vy

X

¢X(y) =

Therefore ¢x is a correspondence which ma jorizes to ¢. To see
that qu is KF¥, first of all it will be proved that it has open

inverse images, that is, ¢:(y) is an open set (VyeX).

A(z) z ¢ 4(z)
Q (z)nd(z) z €

X

z € ¢>;1(y) = ye ¢x(z) =

If z ¢ 4(z), then there is a neighborhood V of z such that:
4
Yw € Vz w ¢ d{w)

Therefore, as « has open inverse images and as z € 34—1(y), ‘

then there is a neighborhood V’ of z such that
z
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Vo< d Ny
z
By taking W =V n V' we have that Yw e W
z z z z
w e 4\y) and w ¢ d(w)
then ¢x(w) = 4(w), hence it will be had that W ¢ ¢"1(y)
z X

On the other hand, if

z € A(z) then ¢x(z) = Qx(z) n d(z)

so, if y e ¢X(z) = Qx(z) n d(z) then

z € Q;l(y) n 47 (y)
and as it is an open set, it can be concluded that there is a
neighborhood

W c(Q n)y)

4 X

then y € dlw) , y € Qx(w) n Alw),

d(w)

hence if w € WZ w ¢ d(w) gbx(w)

w e 4(w) ¢X(W) Qx ( wind(w)

therefore Wz c ¢;1(y), so ¢ has open inverse images.
X

We can conclude that ¢x has mc-set values since it is defined
from the intersection of mc-set valued correspondences. Moreover,
¢x dc;es not have a fixed point, since if it had a fixed point
there would exist an element z such that z € ¢x(z), which would
imply that . .

z € A(z) with z ¢ d(z)

which is impossible, or
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z e 4(z) n Q (2)
X
but correspondence Q (z) is KF*, which is also a contradiction.
X
Finally, correspondence ¢ has open inverse images, so it can be
X

concluded that it majorizes locally to ¢.

Note that the previous lemma, apart from providing the

. . el . 3 .
existence of quas1equ111br1um2, covers two results which are of a
different nature: the existence of maximal elements and the

existence of fixed points.

That is, if we consider #(x) = X for every X € X, then
the hypothesis of Lemma 4.1. is verified and we obtain

Ix*e X :Px*) =g

Therefore, this result generalizes and covers the

existence of maximal elements in binary relations (Theorem 4.5.).

On the other hand, if we consider the correspondence
P: X——»> X with empty images, then the hypotheses of the lemma

are verified too and it is obtained

23

Let é§‘=(Xi,sél_,F'.)_E be an abstract economy, then x*eX is a
1 11

I

quasiequilibrium iff x’: € sd.(X*)' and 4 (x*)nP (x*) = @.
1 1 1

158

Tesis doctoral de la Universidad de Alicante. Tesi doctoral de la Universitat d'Alacant. 1994



Abstract convexity. Fixed points and applications. Juan Vicente Llinares Ciscar

Chapter 4. Applications.

Ix*e X : x*e d(x*)
That is, the existence of fixed points in the clousure

correspondence.

Lema 4.3.%

Let X be a subset of a paracompact topological space and Y a
locally mc-space. If TI': X—-»> Y 1is an upper semicontinuous
correspondence with mc-set values, then Ve>0 there exists a
correspondence Hez X —>> Y such that

1. Hs has an open graph.
2. Hg has mc-set images.

3. Gr{I") ¢ Gr(He) < B(Gr(T),e).

Theorem 4.10.
If X is a compact locally mc-space, and it is verified that
1. &:X——> X is a correspondence with a closed graph and .
such that #(x) are nonempty mc-sets.
2. P:X——» X is a locally KF*-majorized correspondence.
3. The set {x € X / P(x) n 4(x) = 2 } is closed in X.
Then there exists x* € X such that

x* e d(x*) and Ax*) n P(x*) = o

2% The way to prove this result is similar to that of the usual

convex case (Schenkel, 1993) by substituting usual convexity for
mc-spaces and convex sets for mc-sets.
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Proof.
From Lemma 4.3., we have
Ye>0 3 H_ such that Gr(4) c Gr(Hs) < B(Gr(4), €)
where Hs: is an open graph correspondence whose values are mc-sets.
If we consider (X, Hs’ P) and by applying Lemma 4.1. we can ensure

that there exists an element X such that
x € H (x ) and Hx)nPx)=02
€ e e ee €
Let {¢ } be a sequence which -converges to O and reasoning as
n

above we obtain another sequence {x8 } such that
n/ neN

e ) )] <) orf)] -

and since it is in a compact set due to

X e{xeX | Ax)nPx) =g}

n

then there exists a convergent subsequence to a point x*, which
will be an element of the set since it is a closed set.
x*e {xeX/ dx)nPlx) =0}
We have to prove now that x* is a fixed point of A.

Vn € N we have

n

[x , X ] € Gr(H_) <« B(Gr(d), )
Sn sn sn

and since A is a compact set then

[x x ] s (x*, x*) € Grld)
£ £

n n R
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Next a result which ensures the existence of equilibrium
in an abstract economy with an countable number of agents is

presented.

Theorem 4.11.

Let & = (X,4,P) be an abstract economy such that
1 I 1

i

1. Xi is a compact locally mc-space, X = mX.
1

i€l

2. 4 is a closed graph correspondence such that
1

4 (x} is a nonempty mc-set VxeX.
1

3. P is locally KF*-~majorized.
1

o

The set {xeX| sdi(x) n P(x) = @} is closed in X.
1

Then, there exists an equilibrium for the abstract

economy.
Proof.

Consider the correspondence &: X ——>— X as follows:

\ y € 4(x) < y, € 4 (x) Viel
1
that is d(x) = 1 4.(x).
1
i€l
Moreover, for each iel we define the following
correspondences:
a) P* X— X : y € P*X(x) < y, € P (x) i
1 1 1

that is, P*¥(x} = X x..x Pi(X) x..x X.
1

b).- P: X——> X in the following way:
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n  P*(x) if I(x) = @
P(x) = { ie1x)

] in any other case

where I{x) = {iel] Pi(x) N séli(x) % @},

First of all, it will be proved that under theorem conditions
it is verified that
1. P is locally KF*-majorized.
2. 4 is a closed gr‘aph correspondence with nonempty

mc-set values.

1. Consider xeX such that P(x) # @, then there exists ioeI(x)
such that

P (x) nd (x) 2 o,
) )

Since the set {xeX]| £(x) n P(x) # @} is an open set, there
1 1 .
\

exists a neighborhood V of x such that

VzeV Pi (z) n adi (z) = @

0 0
that is io e I(z), so
VzeV P(z) = n P*z) c P* (2)
i€l(z) ' l0
Moreover, since P - is a locally KF*-ma jorized

i
0

correspondence, P* is locally KF*-majorized and therefore there
1
0

exists a neighborhood W of x and a KF* correspondence

G: X—>—> X such that
X
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VyeW P’i" {y) c Gx(y)
[0}

Hence, G is a KF* correspondence which majorizes P in the
X

neighborhood WnV of x.

2. Immediate.

Finally, we show that the set (xeX| 4(x) n P(x) = @} is
closed.
VYiel we define the following correspondence:

Qi: X X

1

Q(x) = P (x) nd (x) if iel(x).
sdi(x) _ in any other case.
It is clear that
: T Q(x) if P(x)# o
P(x) n A(x) =4 ier
a in any other case

Correspondences Qi: X—» Xi have nonempty values, thﬁs
P(x) ndlx) =2 < P(x) =0 thatis I(x) = @.
Therefore we have
{xeX] P(x) n A(x) = o} = {xeX]| I(x) = 2} =
= n{xeXI Pi(x) n sai(x)= ] }
i€l .
Hence {xeX| P(x) n 4(x) = @} is closed because of its being

the intersection of the closed sets. So (X,4,P) verifies
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Theorem 4.10. hypothesis and we obtain that there exists an

element x*eX such that:
x*ed(x*) y P(x*) n 4(x*) = o@.
so I(x*) = & and finally

x* € 4 (x*) y P (x*) n 4 (x*) = @.

Shafer and Sonnenschein’s (1975), Border’s (1985,
p.p-93) and Tulcea’s (1988) results can be obtained as
consequences of the last theorem since the conditions they impose
on the correspondences imply the conditions of Theorem 4.11. First

of all we present Tulcea’s result which is an immediate

consequence.

Corollary 4.5. [Tulcea, 1988]
Let X be a locally convex topological linear space and
€ = (Xi,sdi,Pi)iEI be an abstract economy such that Viel:
1. Xi is a compact and convex subset of X.
2. sdi(x) is closed and convex VxeX.
3. sdi 1s upper semicontinuous.
4. Pi is lower semicontinuous and KF*-ma jorized.
5. The set G1 = {xeX| « gx) nP gx) = @} is closed.

Then there exists an equilibrium for the abstract economy &.
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Next, several lemmas in which it is explicitly presented
that the hypotheses of Shafer and Sonnenschein’s Theorem (1975)

and Border’s (1985) in the context of usual convexity imply those

of Theorem 4.11.

Lemma 4.4.
Let X be a compact and convex set, the following conditions
1. sdi: X——> X is a continuous correspondence with
nonempty convex and closed values.
2. Pi: X ——> X is an open graph correspondence.
3. ¥xeX x ¢ C(Pi(x)).
imply

Pi: X — X is a locally KF-ma jorized correspondence.

Proof.

Since Pi has an open graph, then C(P_l) has open inverse
images. Next, it is shown that 1:’i is locally KF-majorized by
C(P).

i

Consider .x € (C(P))_l(y), that is, y € C(P(x)); then there
exist (xl, ,xn} c P(x) such that y e C(xl, ,xn) and’ since
X € P(x)} then x € P-l(xi) which are open sets. So, there exist
open neighborhoods of x Vi € B(x) such that Vi c P—l(xi) for each

i=l,...,n.
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If we take V = nV, vx'eV X € P_l(x_) then x € P(x’)
1 1 1

i=1,2,..n. Therefore C(Xl, ,xn) < C(P(x’)), hence
y € CP(x")) = x e CP Ly,

Thus, V < (CP) '(y), so (CP)"'(y) is an open set and P is
1

locally ma jorized by C(Pi)

Lemma 4.5.
Let X be a compact and convex set, the following conditions
1. sdi: X——> X is a continuous correspondence with
nonempty convex and closed values.

2. Pi: X ——>> X is an open graph correspondence.
3. ¥xeX x ¢ C(Pi(x)).

imply
A={xeX/ Pi(x) n sdi(x) = @ } is closed in X.

Proof.

Let x ¢ A, then 3z € Pi(x) n sdi(x), hence

a) z € 4(x) which implies x e £ (z).

b) z € Pi(x) , the pair (x, 2) e Gr‘(Pi) and since it is an
dpen set there exists a ‘neighborhood Vx X Vz of (x, z) such that
V. x V < Gr(P).

x z i
On the other hand, z € s!li(x) l, and z € Vz S0 VZ n ﬂ;’(x) * @,

and by applying the lower semicontinuity of correspondence .
1

(since it is continuous) we have
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JU e B(x) such that V nd(x’) #8 VX € U
X z 1 X
If we take W = Ux NV € B(x), we have Vx’ € W:
X
a) x> € V then{x'}) xV < Gr(P), soV c P(x’).
X z I z 1
b) x’ e U then V n 4(x’) = @.
X z 1
From a) and b) we obtain that Pi(x’) N sdi(x’) # @ , therefore

W < X\A, and A is a closed set.

As a consequence of Lemma 4.4 and Lemma 4.5.., it is obtained
that Shafer and Sonnenschein’s result {1975) (Theorema 4.9.) is a

consequence of Theorema 4.11.

Lemma 4.6.
Let X be a compact and convex set, the following conditions:
1. &: X——— X is an upper %emicontinuous correspondence
vwith nonepty compact and convex values which satisfies:
Ll Vx € X, 4(x) = Int 4(x).
1.2. x —int 4(x) has open graph.
2. P: X——» X is an open graph correspondence.
3. ¥xeX x ¢ C(P(x)).
imply,
a. P is a KF-majorized correspondence.
b. The set A = {xeX| 4(x) n P(x) # @} is open.
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Proof.
From hypotheses 1., 2. and 3., conclusion a. is obtained
inmediately since C(P) majorizes the correspondence. So we only

have to prove that b. is also verified.
x* € A o dx*)nPx*) £2 o 3z € 4(x*) n P(x*)
z € P(x*) & (x*2) € Gr(P)
Since it is assumed that Gr(P). is open, we have

3V, € B(x*), 3V_e B(z)] V., x V < Gr(P)
X YA 4

x*
in particular

V . x {z} ¢ Gr(P)

x*

hence z € P(x’) VX’ e V .
x*

On the other hand, z € A(x*) = intd(x*) . From now we can

distinguish two different cases:

Case 1: z € int 4(x*).
In this case, since the correspondence x —sint «(x) has an
open graph, by reasoning as above we have:
V', € B(x*}| z € int Ax’) Vx e v,
X . X

~ If we take V = V nVv we obtain that V € A, so A is an

3
x* x*

open set. '
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Case 2: z e A(x*) \ intd(x*).

In this case, we denote M(x) = int «(x),

hence «(x) = M(x).

Since z € M(x*) \M(x*), we know that for every U e B(z) we have
Z
Uz N M(x*) # @, in particular for U = V. Thus, if w € V n M(x*)
z z rA4
since w € M(x*)

and M has open graph, there exist W € B(w),

V', € B(x*) such that VI, x Wc GrM), so V' x {w} c Gr(M), thus
b'd b4 x*
w € M(x') VX € V”.
X

Since w € Vz we have that Vx* x {w} < Gr(P),

o)
w € P(x') vVx'e V
X*
If we take V =V n V'  we have:
x* x*
if x € V, then
x €V so w e P(x)
X*
x eV, so  w € M(x) = intd(x) < «(x)
X

A}

therefore - w € P(x) n 4(x), that is P(x) n 4(x) = & VxeV.

So, it has been proved that in this case V ¢ A and therefore

that A is an open set.

As a consequence of Lemma 4.6. and Theorem 4.11.,

Border’s result (1985) is obtained.
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Corollary 4.6. [Border, 1985]

Let & = (X, 4, P)" . be an abstract economy such that
1 1 11

1. XiS RP is nonempty, compact and convex.

2. sdi is an upper semicontinuous correspondence with
compact convex values such that
2.1. V x € X, séli(x) = int sdi(x).

2.2. The correspondence intséli: X—— X given by
1

intd (x) = int (sd (X)] has an open graph.
i . i
3. P is an open graph correspondence in X x X.
1 1
4. ¥V x € X, x ¢ C(P.(x)).
1 1

Then, there exists an equilibrium for the abstract economy &.

The next result shows the existence of equilibrium in
abstract economies when the compacity condition is relaxed. In the
same way as in the result of the existence of maximal elements, we
need to impose an additional boundary condition. Moreover the
result i§ presented in the context of n-stable K-convex continuous

structures.
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Theorem 4.12.
Let T = (Xi’sai’Pi)iEI be an abstract economy such that Viel:

L. Xi is a nonempty space with an n-stable locally
K-convex continuous structure.

2. gi_l is an upper semicontinuous correspondence: s!li(x)
is nonempty, K-convex and compact VxeX.

3. P is locally KF*-ma jorized.

4. The set {xeX]| séli(x), A Pi(x) =@} is closed in
X, Viel.

5. EJDi c Xi compact such that if Zi = Cx[Di v sdi(D)]

then it is verified that

sdi(x)nz,atg Vx e X x Z_.
1 -1 1

Vx, e X \D ,x e€eX  3FyedxXxInZ : ye P(x)
i i i -i i i i i i

-1

Then, there exists an element x* € X such that Viel

x* e 4(x*) and sdi(x*) N P(x*) = o
1 1 . 1
Proof.
Consider the following compact set D = igl Di.

Since séli is upper semicontinuous, sdi(D) is a compact set angl
by applying the n-stability condition of the K-convex continuous
structure, we have that the set Zi = CK[Di V) sdi(D)] is also a
compact K-~convex set.

If we take Z = 1. Z and consider the following'

correspondence:
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Hi 12— Zi: Hi(x) = sdi(x) N Zi
This correspondence Hi has nonempty compact and K-convex
values since it is given by the intersection of two compact
K-convex sets. Furthermore, it has a closed graph, so it would be
an upper semicontinuous correspondence.
From the last correspondence, we can define the following
one:
Li P L — Zi
4 (x) if x €D,
1 1 1

sdi(x) nZ in any other case
1

L,l has a closed graph, since if
(x,y) ¢ Gr(Li) 5> y¢ Li(x)
then the following situations can occur:
a) x. € D
i i

b) x ¢ D
1 1

a) If X € Di, then Li(x) = sdi(xJ, and since y ¢ Li(x) we
have that y ¢ s!li(x), that is, the pair (%, y) ¢ Gr(séli). Since _541
has a closed graph due to the fact that it is upper
semicontinuous, there exists a neighborhood W x V of (x,y) such
that

WxVnGrd) =09
1
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Therefore, it is verified

Vix',y’) e W x V y ¢ sdi(x’) > L(x)

hence

WanGr(Li)=@

b) If x ¢ D, then Li(x) = d4(x) n Zi, and
1

1
y ¢ Li(x) = sdi(x) n Zi it implies that
yessdi(x) or - y¢Z

1

In the case of y ¢ £4(x) , by reasoning as in a) it
1

obtained that

dW x V neighborhood of (x, y): W x V n Gr(sdi) =2

and thus,

ViX,v') e W x V ‘y’ 3 sdi(x’) > sdi(x’) r\'Zi = Li(x’)

hence
WanGr(Li)=z
In the case of y ¢ Zi, then since Zi is a closed set,
3V neighborhood of y: V n Zi =g
and so,v for any neighborhood W of X we have
WxVnZx Zi =9

as a result of

V(ix',y’)) e Wx V as y ¢ Z . we have (X',y') ¢ Z x Zi
1

therefore

WxVnGr(L) =2
- 1
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That is, correspondence L. has a closed graph.
1

Now the following subproblem can be considered:

€ =(Z, L, P |) It verifies all of the conditions
1 1 1
z

Theorem 4.11. and we only need to prove that
A’ = {x]| Li(x) n Pij {x) = &}
'z

is closed for every i e L

of

From hypot‘hesis S. we have that A’, the set of possible

solutions to the subproblem &’ is a subset of D. Moreover, since

Li(x) < Zi, then L(x) n P | (x) ¢ Z , thus
1 1 1

FA

L(x)n P,
1 1

(x) = Li(x) n Pi(x)

z

but

fsdi(x) NZ nPX =4 nP&INZ
L(x) n Pi(x) =
s!li(x) n Pi(x)

Since the possible solutions are those elements x such that

X € Di and by the definition of Z_, sdi(x) c Zi then
1

[sdi(x) n Pi(x)] N Zi = adi(x) N Pi(x)

that is . -

A = {x] Li(x) N Pi (x) = @) = {x| sdi(x) n Pi(x) = @)

Z

By 4. it is verified that A’ "is a closed set, so all of the

conditions from Theorem 4.11. are verified, therefore

Ix*e Z: x* € Li(x*) and L{x*) nP| (x*) =@
1 1 1
z
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Moreover, x* € D, since in other case, that is if x*gD
Jiel: x* € X\D.
1 1 1
and by applying hypothesis 5 we would have that
3yie sdi(x*) nZ such that y. € P(x*)
1 1 1

but it is a contradiction with (1), L(x*) n P.| (x*) = o since
1 1
z

Li(x*) I P_1 (x*) = s!li(x*) N Pi(x*) n Zi.

z

Therefore

x*“i € sdi(x*) and 4(x*) n Pi(x*) =g
1
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4.3. EXISTENCE OF NASH EQUILIBRIUM.

In this Section, fixed point theorems analyzed in
Chapter 3 are applied in order to obtain the existence of Nash’s
equilibrium in non-cooperative games and solutions to minimax
inequalities when abstract convexities are considered. To do this,
a line similar to that of Marchi and Martinez-Legaz’s work, (1991)

is considered.

A game is a situation in which several players have
partial control and in general conflicting preferences regarding
the outcome. The set of possible actions under player i’s control
is denoted by Xi. Elements of Xi are called strategies and Xi is
the strategy set. Let N = {1,2,...n} denote the set of players,
and X =iI‘:INXi is the set of strategy vectors. Each strategy veé."cor
determines an outcome given by a function g (g:X —R") which will

be called the payoff function.
The idea of Nash equilibrium in a noncooperative game is
to choose a feasible point x*, for which each player maximizes his

own payoff with respect to his own strategy choice, given the

strategy choices of the other players.
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Definition 4.4.
Let § = (N, X, g) be a game, an element x* € X is called a
Nash equilibrium for that game if it is satisfied:

VieN g (x* ,x*) =z g(x*,y) Vy € X
1 =1 1 1 -1 1 1 1

The following result gives sufficient conditions to ensure

the existence of Nash’s equilibrium.

Theorem 4.13. [Nash, 1951]
Let & = (N, X, g} be a game of complete information that
satisfies:
1. Xi < R™ is compact and convex Vi € N.
2. g X ——> R is continuous Vx € X and Vi e~ N.
3. gi(x_i,-) is quasiconcave \/x_i € X__l and Vi € N.

Then § has at least one equilibrium point (of Nash).

This result has been generalized in many ways. On the
one hand, some authors have relaxed the convexity condition ;n
strategy sets and continuity or quasiconcavity conditions in the
payoff functions (Kostreva, 1989; Vives, 1990; Baye, Tian y
Zhou, 1993). On the other hand, .some authors have considered

infinite dimensional strategy spaces and an infinite quantity of

players ( Marchi and Martinez-Legaz ,1991). In our case, this
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section runs parallel to this 'work, relaxing the convexity
condition. In order to do this, the notion of quasiconcave
function to the context of mc-spaces is generalized in a natural

way.

Definition 4.5.

Let X be an mec-space and f: X——> R a real function. The
function f is mec-quasiconcave iff for every « € R the sets
X ={xeX:f(x)z2a)} are mc-sets.

24

Nash’s generalization is as follows:

Theorem 4.14.

Let 1 be any set of indices, let X be compact locally
1

MmCc-Spaces; for each iel let X =0X and let
i j

j#i

B: X —>—> X be a continuous correspondence with nonempty

1 -1 1

compact mc-set images and let .g_: X — R be a continuous
1

function such that g(v,-) is mc-quasiconcave for each v € X .
1 -1

Then there is x* € X such that

xX* € B.(x*), g(x*) = Max gl(x*_,y).
1 1 -1 1 )3 -1
. yE€EB (x*i)
i X2

Before proving this generalization, several results

which will be applied in his proof are introduced.
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Lemma 4.7. [Marchi y Martinez-Legaz, 1991]

Let X be a topological space, I any index set, Yi a compact
space and l"i: X—> Y_l an u.s.c. correspondence with nonempty
and compact values for each iel.

Then the correspondence TI':X ——— Y, where Y

It
=
oy

defined by TI'(x) = T I“i(x) is also u.s.c.

Lemma 4.8.

Let I be any set of indices and for each iel let Xi be a
compact locally mc-space, Qi: X —— Xi a continuous
correspondence with nonempty compact mc-sets where X = Tl Xi, and
fi : X x Xi———> R a continuous function such that ‘fi(x,-) is
mc—-quasiconcave for an); X in X

Then the correspondence Q: X—>—> X defined by
Qx) =1 Qi(x) has a fixed point, x* € Q( x* ), such that

fi(x*, x*i) = Max fi( x* vy ).
yEQi(x")
Proof.

[t is possible to prove that the topological product space

X =T X is also a compact locally mc-space. Moreover, for each

1

iel let F': X ———>-—> X be the correspondence defined by
1 1

Fx)={zeQx)/ f(x, z) = Max fix, y)}
! ! ! yEQ (x) '
1
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Since Qi(x) is a continuous correspondence and fi(x, z) is a
continuous function, then we have that I‘i has nonempty compact
values and 1is wu.s.c. by Berge’s result (Maximum Theorem,
Berge 1963, p.p.116 ), and since f_l(x,-) is mc-quasiconcave, then
I"i(x) is mc-set valued, due to if we consider

a = Max f(x, v
yEQi(x)

then

I‘i(x) = Qi(x) n{z/ fi(x,z) > «

By applying Lemma 4.7., the correspondence I : M——>— M
given by TI'(x)= T T (x), also has these properties. Therefore, by
1

Theorem 3.16, T has a fixed point x* € M, indeed
xX* e T(x*)
Clearly x* satisfies

fi(x*‘,x*; ) = Max f.(x*y)

vER (x*) !
1
|
Proof of Theorem 4.14.
By applying Lemma 4.8. to the correspondences
Qi: X— Xi, defined by Qi(S{) = @i(x__) and considering the
functions f  defined by
1
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fxy) =g,y - g

we obtain the existence of x* € X, such that x* € 8(x*) and
1 1 -1

f (x*,x*) = Max [ {x*,y) Viel
1 1 1
yE€B (x*)
1

the last condition yields the desired quality for the g , then we
1

obtain the expression of the existence of Nash’s equilibrium.

g(x*) = Max g (x*.y)
! veED (x*) ' '
3 1

The mc-quasiconcavity condition imposed on f(x,-)
1
functions in the previous theorem could have been weakened,

assuming a weaker hipothesis such as that of T (x) being mc-sets.
1

The next example shows a situation where Nash’s Theorem
cannot be applied because of the non convexity of the strategy

sets. However our result covers this situation.

Example.4.3.

Consider a game with two players, each one with the

following strategii space:

X={xeR:0<a=<lxll =b} i=1,2
1 -
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g X1 X X2—> R

g (x,y) = Ixll + lyl
1

It is obvious that Xi are compact and mc-sets because in
particular it is possible to define a structure by considering the
same function as in example 4.1

K: X x X x [0,1]] — X
K(x,y,t) - [(l—t)px +.tpy]ei[(l—t)ax + tayl

The functions Pi(x,t) = K(ai,x,t) are defined to construct
the mc-structure.

Sets Xoa are circular rings, so they are mc—setszs, then gi’s
function; will be continuous and mc-quasiconcave. fhus, the
existence of Nash’s equilibrium is ensured by applying

Theorem 4.14.

Notice that in this case the strategy sets are not
contractible, and the payoff functions are not quasiconcave, then

it is not possible to apply the classical results.

®In this case abstract convexity which is considered is that
given by circular rings only.
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The previous Theorem has been proved by applying the
extension of Kakutani’s fixed point result (Theorem 3.16). In a
similar way, as a consequence of the extension of Browder-Fan’s
Theorem (Theorem 3.15.) the existence of a solution to minimax
inequality in the context of mc-spaces, is obtained, generalizing

the analogous result of Marchi and Martinez-Legaz (1991).

Theorem 4.15.

For each i=l,...,n, let Xi be a nonempty compact mc-space
and let Qi:X —_ Xi be a continuous correspondence with
nonempty compact mc-set values, where X = i1"5[I Xi, and

. . . . 26
f : X x X —> R 1is a semicontinuous function™ such that f (x,-)
1 1 1

is mc-quasiconcave  for any X in X, and f(,y) is
1 1
continuous.
Then \

inf | max { max f(x,y) - f,(x,xi) } =0
x€QAUx) |i=1,..,n yGQi(x) ! !

where the correspondence Q : X ——» X is defined as

Qx) = T Q(x).

i

' 2 Let X be a topological space. A function f:X —R is called

upper semicontinuous if for each aeR the sets {xeX| f(x) z a} are
closed in X. )
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Proof.

Given € > 0, let

I x)={ze€Qx): max f(x,y) - f(x,2) < e}
i€ i i i
yEQi(x)

and denote by T 8:X—~-—H X the product correspondence

r (x)
1 i€

1

[{jfem -1

r (x) =
£

The mc-quasiconcavity of f and the continuity of Qi imply
bl i ‘
that l"e(x) are mc-sets. On the other hand, from the upper

semicontinuity of max £ (,y),

. it follows that the sets
y EQi (*) !

r’'lx) = A r''(x) are open sets in X.
34 i=1 i€

Moreover, FC(X) * @ V x € X, then from Theorem 3.15, the

correspondence Fc(x) has a fixed point X which satisfies

n
x €Qx) and x_eTl (x)= T T (x)
£ e £ 34 i=1 i€

then for i =1, ..., n

fi(xe,xie) > Max fi(xs,y) - &

veEQRQ (x )

i £

max { max f(x.,y) - filx ,x) } <eg
i € i £ £
i=1 ..,n vER (x)
1

since € can be made arbitrarily small, we obtain the desired

result.
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