Accepted Manuscript

Farming-up coastal fish assemblages through a massive aquaculture escape event

Kilian Toledo-Guedes, Pablo Sanchez-Jerez, María E. Benjumea, Alberto Brito

PII: S0141-1136(14)00058-0
DOI: 10.1016/j.marenvres.2014.03.009
Reference: MERE 3869

To appear in: Marine Environmental Research

Received Date: 24 September 2013
Revised Date: 12 March 2014
Accepted Date: 17 March 2014

Please cite this article as: Toledo-Guedes, K., Sanchez-Jerez, P., Benjumea, M.E., Brito, A., Farming-up coastal fish assemblages through a massive aquaculture escape event, Marine Environmental Research (2014), doi: 10.1016/j.marenvres.2014.03.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Farming-up coastal fish assemblages through a massive aquaculture escape event.

Kilian Toledo-Guedes ${ }^{\text {a, },{ }^{, 1}}$, Pablo Sanchez-Jerez ${ }^{\text {b }}$, María E. Benjumea ${ }^{\text {a }}$ and Alberto Brito ${ }^{\text {a }}$
${ }^{\text {a }}$ BIOECOMAC. Universidad de La Laguna. Dpto. de Biología Animal. Ciencias Marinas. Facultad de Biología. Av. Astrofísico Francisco Sánchez s/n. CP 38206. San Cristóbal de La Laguna. Santa Cruz de Tenerife. Canary Islands, Spain. Phone: +34 922318387.
${ }^{\mathrm{b}}$ Department of Marine Sciences and Applied Biology. University of Alicante. Ap.C. 99. CP 03080. Alicante, Spain.

* ktoledo@ua.es

[^0]7

Abstract

We investigated the changes on the mean trophic level of fish assemblages across different spatiotemporal scales, before and after a massive escape event occurred off La Palma (Canary Islands), which resulted in the release of 1.5 million fish (mostly Dicentrarchus labrax) into the wild. The presence of escaped fish altered significantly the mean trophic level of fish assemblages in shallow coastal waters. This alteration was exacerbated by the massive escape. A nearby marine protected area buffered the changes in mean trophic level but exhibited the same temporal patterns as highly fished areas. Moreover, escaped fish exploited natural resources according to their total length and possibly, time since escapement. New concerns arise as a "farming up" process is detected in shallow coastal fish assemblages where marine aquaculture is established.

Keywords: escaped fish, aquaculture, trophic level, diet, Dicentrarchus labrax, Sparus aurata.

1. Introduction

Aquaculture of high-trophic-level (HTL) fish species is growing, especially in developed countries, as a result of a rising demand on these products and the highest profit obtained from carnivorous species (Deutsch et al., 2007). This process has been named "farming-up" (Pauly et al., 2001; Stergiou et al., 2008), and one of its major concerns is the exploitation of wild fish stocks to fed high trophic level species, called "tigers of the sea" by Naylor and Burke (2005). In addition, culturing non-native or locally absent fish species is already a frequent practice (Casal, 2006; Arismendi et al., 2009; Liao et al., 2010) that is predicted to grow in the next years (Shelton and Rothbard, 2006). Thus, as a result of both mentioned trends, in some areas, HTL species that were absent or with low abundances in natural habitats are being released into the wild through escape events. Technical failures and sea storms provoke both recurrentsmall or punctual-massive escapes across the coasts where open-net cage aquaculture is established (Jensen et al., 2010). This process could be comparable to continuous restocking actions with non-indigenous or locally absent species (Lorenzen et al., 2012), which benefits have been pointed by some authors (Briggs, 2008; Schlaepfer et al., 2010) but are, in general, not recommended due to the unpredictable negative effects they could have (Courtenay et al., 2009; Ricciardi and Simberloff, 2009).

Many studies have pointed out potential and detected consequences due to the release of fish (exotic or not): genetic hybridisation (McGinnity et al., 2003); predation on native species (Albins, 2013; Green et al., 2012); competition for trophic resources (Declerck et al., 2002); introduction of parasites and diseases (Arechavala-Lopez et al., 2013); changes in fisheries dynamics (Dimitriou et al., 2007), among others. Recently, it has been demonstrated that marine ecosystems are much more susceptible to large-scale invasion pressures than previously thought (Edelist et al., 2013). But even if escaped fish do not establish self-reproducing populations, they may produce persistent impacts due to the repeated supply of propagules through new escape events (Arismendi et al., 2009; Jensen et al., 2010). Given the mobility of escapees (González-Lorenzo et al., 2005; Arechavala-Lopez et al, 2011, 2012), they could affect particularly important areas such as marine protected areas (MPAs). However, it has been suggested that MPAs could show some resilience (sensu Holling, 1973, "the amount of disturbance that an ecosystem could withstand without changing self-organized processes and
structures", but see Gunderson, 2000 for a review of the concept) to the effects caused by different impacts, including species introduction, as assemblages within them are expected to have a better conservation state (Stachowicz et al., 1999).

In the Canaries, where finfish production in open-net cages during 2009 was 7,910 tons (APROMAR, 2012), European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) have been introduced in some of the islands where no natural populations of these species existed (Brito et al., 2002; Toledo-Guedes et al., 2009). That is the case of La Palma Island, where a massive escape event occurred between December 2009 and January 2010. Repeated northwest sea storms generating waves up to 6 meters height resulted in both lack of maintenance operations and increased mechanical stress for aquaculture facilities (Ramírez et al., 2011; Puertos del Estado, 2012). As a result, around 1.5 million fish (90% sea bass and 10% sea bream) were released into the wild during that period (Ramírez et al., 2011). A previous study revealed that escaped fish entered a nearby ($\sim 15 \mathrm{~km}$) MPA and their abundances within were similar to those found in other areas of the island (Toledo-Guedes et al., 2014). As far as we know, this is the largest sea bass escape event documented to date worldwide.

We capitalize on this event to examine the potentiality of escaped fish to alter the mean trophic level (mTrL) of fish assemblages in shallow coastal waters and discuss the potential consequences of these changes. In particular we studied i) if fish assemblages mTrL was affected by the massive escape of HTL fish, ii) if the magnitude in mTrL alteration was related to the presence of a MPA and iii) the trophic role of escaped sea bass in coastal waters. For that we analyse the spatiotemporal variation of mTrL before and after the massive escape event, using the estimation of fish abundances and size by visual census in shallow coastal waters, and additionally we studied the diet of fugitive sea bass, in relation to size, through stomach content analysis.

2. Material and Methods

2.1. Study site and sampling effort

Our study was carried out in La Palma (Fig. 1), one of the westernmost islands of the Canarian archipelago, situated in the north-eastern part of the Central Atlantic ($28^{\circ} 40^{\prime} \mathrm{N}$,
$17^{\circ} 52^{\prime} \mathrm{W}$). Aquaculture facilities are in a single location off the western coast. A marine protected area (MPA) is situated 15 kilometres to the south from fish farms.

A total of 6 localities (Fig. 1), and three sites ($\mathrm{n}=6$) in each locality, were sampled by means of visual census (see next section), at different distances from release point (0.8 to 30 km). Three of the localities were situated in La Palma MPA, the other three, outside the MPA, were considered as highly fished areas (HFA) following Sangil et al., 2013a. Each locality was sampled four times: March 2009, October 2009, March 2010 and October 2010. A total of 432 visual censuses were carried out through the study.

2.2. Visual censuses

Based on previous methodology (Toledo-Guedes et al., 2009), snorkelling visual censuses of escapees were performed in transects of $100 \times 5 \mathrm{~m}$, between 1 and 5 m depth. In the initial 25 m , all the fish species abundances and sizes were recorded, while across the rest of the survey only escaped fish were counted. A second pass of the same transects served to establish habitat heterogeneity and complexity, measuring the cover \% of different habitats and habitat features; sandy bottom, rocky platform, cliff and boulders classified by the size of their major length (ML): small boulders-SB (ML ≤ 50 cm), medium boulders-MB ($50 \mathrm{~cm}<\mathrm{ML} \leq 1 \mathrm{~m}$), and large boulders-LB ($\mathrm{ML}>1 \mathrm{~m}$) (García-Charton et al., 2004).

2.3. Mean trophic level calculation

Length estimates of fish from surveys were converted to weight by using the allometric length-weight conversion:
$\mathrm{W}=\mathrm{aTL}{ }^{\mathrm{b}}$,
where W is weight in grams (i.e. biomass), parameters a and b are constants obtained from the literature (Froese and Pauly, 2012), and TL is total length in cm . When values for a and b were unavailable, the parameters from a congeneric species with similar shape and maximum total length were used.

Mean trophic level of the fish assemblage in each transect $\left(\mathrm{mTrL}_{\mathrm{t}}\right)$ was then calculated as follows:
$m \operatorname{TrL}_{\mathrm{t}}=\sum_{\mathrm{t}}\left(\operatorname{TrL}_{\mathrm{i}-\mathrm{n}} \cdot \mathrm{W}_{\mathrm{i}-\mathrm{n}}\right) / \sum_{\mathrm{t}} \mathrm{W}_{\mathrm{i}-\mathrm{n}}($ Pauly, 1998; CIESM, 2000), where the summation of trophic level of each species $\left(\operatorname{Tr} \mathrm{L}_{\mathrm{in}}\right)$ recorded in the transect, multiplied by their weight $\left(\mathrm{W}_{\mathrm{i}-\mathrm{n}}\right)$, is divided by the total weight amounted in the same transect. Trophic levels for each species were recorded from FishBase (Froese and Pauly, 2012).

2.4 Statistical analysis

2.4.1. Overall analysis

Possible relations (i.e. direct trophic interactions) between the presence of escaped fish and the abundance of other species were explored through Spearman's correlation index.

To ascertain whether the mTrL of shallow coastal fish assemblages is altered by the presence of escaped fish, we compared untransformed mTrL of transects with no presence of escaped fish against those transects with presence of escapees across the study. Due to the unbalanced nature of the analysis, a PERMANOVA (Anderson, 2001) test was carried out over Euclidean distance matrix and 4999 permutations, using distance to fish farm and arcsinx +1 transformed environmental variables as covariates. The latter allowed detecting differences in mTrL irrespective of the proven environmental influence on fish assemblages (García-Charton et al., 2004).

Kolmogorov-Smirnov test was used to compare size frequency of both sea bass and sea bream visual counts before and after the massive escape, aiming to test previous hypothesis on the possible alteration of size frequency of escapees in the wild due to punctual massive escape events (Toledo-Guedes et al., 2009).

2.4.2. Spatiotemporal analysis

Univariate PERMANOVA (Anderson, 2001) tests were performed over untransformed $m \operatorname{TrL}$ to detect spatiotemporal patterns of change. Euclidean distances matrix and 4999 permutations were used. A five-factor design was constructed as follows:

Year - Ye - Fixed, two levels (2009, 2010). Test de influence of the massive escape event over the analysed variables.

Season - Se - Fixed, two levels (March, October). Test possible cold versus warm seasonal changes due to a higher winter release of farmed fish (Toledo-Guedes et al. 2014).

Protection - Pr - Fixed, two levels (marine protected area -MPA-, highly fished area -HFA-). Test for differences in mTrL between MPA and HFA.

Locality - Lo - Random, nested in Protection (three levels).
Site - Si - Random, nested in Locality (three levels).

Again, environmental variables (arcsin+1 transformed), and distance to release point in km , were added as covariates to remove their possible effect over mTrL. As the random factor Locality remained not significant (p -value $=0.657$) in the first analysis, it was pooled to gain power of analysis (Underwood, 1997). For the interpretation of the results, significant interaction terms with random factors involved were not taken into consideration, as the higher level fixed factor effect remains relevant regardless of the outcome of the interaction with a random factor (Quinn and Keough, 2002).

2.4.3. Escapees vs. wild assemblages analysis

To assess the importance of escaped fish in the study area, their biomass ($\mathrm{g} 100 \mathrm{~m}^{-2}$) was compared with that of other species with similar trophic level. Biomass of escaped sea bass (trophic level 3.8 ± 0.6; Froese and Pauly, 2012) was compared with the biomass of species whose trophic level is higher than 3.5 (i.e. medium-top predators). This group of species was composed of potential sea bass predators and competitors: Seriola spp., Pomatomus saltatrix, Mycteroperca fusca, Sphyraena viridensis, Aulostomus strigosus, Scorpaena maderensis, Belone belone, Pseudocaranx dentex, Mustelus mustelus, Pomadasys incisus, Epinephelus marginatus and Trachinotus ovatus. This was also done for sea bream (trophic level 3.3 ± 0.5; Froese and Pauly, 2012); in this case, we compared against species with a trophic level between 3 and 3.5. This group was composed of sparids: Diplodus cervinus, Diplodus sargus, Oblada melanura and Lithognathus mormyrus and other species whose diet is composed mainly of small crustaceans: Thalassoma pavo, Canthigaster capistrata, Sphoeroides marmoratus and Symphodus trutta. Pair-wise comparisons were made for each area (MPA and HFA) and
time period; U-Mann Whitney test served to assess differences in the mean biomass of the groups as normality was not met.

2.5. Stomach content analysis

Individuals of D. labrax (n=144) were caught by spearfishing. A total of 112 escaped fish were captured during surveys in Tenerife and La Palma in 2008 and 2009. These were not associated to any known massive escape event; therefore, this group of fish was assigned to recurrent leaking escapees (leak group). On the other hand, 32 fish were caught in June 2010 in La Palma Marine Protected Area and, thus, due to the recent massive escape and their schooling behaviour, were assigned to that event (massive group).

All fish were measured (total length TL) to the nearest mm and weighted (accuracy of $0.01 \mathrm{~g})$. The stomach intestine was separated from the body and its contents removed. Prey items were counted by number, fresh weighted and identified to the lowest possible taxonomical level. Thus, for each prey, percentage by number ($\mathrm{N} \%$) and weight ($\mathrm{W} \%$), frequency of occurrence ($\mathrm{O} \%$) and the alimentary coefficient $(\mathrm{Q}=\mathrm{N} \% \mathrm{x}$ W\%) were calculated (Hureau, 1970). The importance of prey groups was assessed using the following categories (based on values of Q and $\mathrm{O} \%$; Rosecchi and Nouaze, 1987): main preferred prey ($\mathrm{Q}>100, \mathrm{O} \%>30 \%$); main occasional prey ($\mathrm{Q}>100$, $\mathrm{O} \%<30 \%$); secondary common prey ($10<\mathrm{Q}<100, \mathrm{O} \%>10 \%$); secondary additional prey ($10<\mathrm{Q}<100, \mathrm{O} \%<10 \%$); accidental prey ($\mathrm{Q}<10$). The index of relative importance (IRI) (Pinkas et al., 1971) was also estimated, IRI $=(\mathrm{N} \%+\mathrm{W} \%) \times \mathrm{O} \%$. Trophic level of both groups of escaped sea bass were calculated as the mean weighted trophic level of the food items plus one (Froese and Pauly, 2012).

With the aim of detecting possible differences in the diet of recent escapees, non-metric Multidimensional Scaling (MDS) was performed over Bray Curtis similarity matrix of the weights of the three main prey groups found in stomach contents (i.e. insects, crustaceans and fish). Moreover, PERMANOVA test was carried out comparing the diet of the two groups using total length (TL) as a covariate, given that the diet of sea bass changes during its life cycle in the wild (Kelley, 1987; Rogdakis et al., 2010). For the statistical analyses, SPSS 15.0 and PRIMER6 \& PERMANOVA+ were used.

3. Results

3.1. Overall results

None of the pair-wise Spearman's correlations between abundances of escapees and the rest of wild fish species resulted significant.

Mean trophic level of shallow coastal fish assemblages was significantly increased ($\mathrm{p}<0.001$) in those surveys where the presence of escaped fish was recorded ($\mathrm{mTrL} \pm \mathrm{SE}=3.16 \pm 0.55$) in comparison to those transects with no escaped fish (m TrL $\pm \mathrm{SE}=2.78 \pm 0.41$; Table 1 and Fig. 2).

Size frequency distributions in visual counts showed significant differences for sea bass ($\mathrm{Z}=15.110 ; \mathrm{p}<0.001$) and sea bream ($\mathrm{Z}=6.948 ; \mathrm{p}<0.001$) before and after the massive escape event. Mean TL of escaped sea bass ($28.01 \pm 5.51 \mathrm{~cm}$) and sea bream (28.39 ± 8.08 cm) were clearly increased after the massive escape: sea bass and sea bream mean TL was $40.35 \pm 9.3 \mathrm{~cm}$ and $43.73 \pm 3.52 \mathrm{~cm}$, respectively (Fig 3a and b).

3.2. Spatiotemporal patterns

As the random factor Locality remained not significant (p -value $=0.657$), it was pooled to gain power of analysis. In this way, PERMANOVA detected spatiotemporal patterns of $m T r L$, these patterns consisted in higher mTrL in 2010, during March and at HFA localities when they are compared to 2009, October and MPA localities respectively (Table 2; Fig. 4).

3.3. Escapees vs. wild assemblages

Pair-wise comparisons showed that biomass of escaped sea bass at the two sampled areas was equal or higher than the sum of the other medium-high trophic level species for all the sampled periods with the exception of October 2010 (Fig. 5a). Conversely, biomass of escaped sea bream resulted always significantly lower than the biomass of other species with similar trophic level (Fig. 5b).

3.4. Use of trophic resources

Table 3 shows the diet composition and importance of each prey for the two groups of sea bass analysed. For the leak group (Table 3a), fish was the main prey group, followed by crustaceans, being the rest of the prey groups classified as accidental. It is remarkable that only one individual was found with pellets in the stomach. Lower prey diversity is observed in sea bass associated with massive escape (Table 3b). In this case, the main prey group was crustaceans; the most preferred being the decapod Percnon gibessi. Regarding the vacuity index, leak group had a 33.9% of empty stomachs, while the massive group showed a 12.5%. Trophic level of the massive escape group was lower (3.2) than that of the leaking group (4.2).

MDS indicated that sea bass associated with massive escape in La Palma had a different diet in comparison to the leak group (Fig. 6a.). The ordination responds to the importance of the three prey groups in the diet of each individual (Fig 6bcd). The group denoted as massive is situated in the area where crustaceans are the main item by weight in the stomachs. PERMANOVA test confirms that sea bass of the leak and massive groups had differing diets ($\mathrm{p}<0.001$), irrespective of their sizes (TL), but size resulted in an important variable when explaining the diet of escaped sea bass ($\mathrm{p}<0.001$; Table 4).

4. Discussion

The input of HTL fish by aquaculture through escapes events generates a "farming up" process over shallow wild fish assemblages, rising their mTrL. This alteration was exacerbated by the massive escape that also changed the size frequency distribution of escaped individuals in the wild. Although temporal patterns of $m T r L$ were the same in both HFA and MPA, the latter showed certain degree of resilience to alterations on $m T r L$. Moreover, escaped fish exploited natural resources according to their total length and, possibly, depending on the time at liberty.

A clear increase in mTrL is observed due to the escaped fish. However, these alterations seem to be related to the direct presence of escapees. The cultured (and escaped) species have a TrL well above the mTrL of native fish assemblages found in shallow coastal
waters in the area, thus, the presence of escapees in the wild inevitably provokes a rise in this indicator. Consistent temporal trends revealed that mTrL was higher in 2010, after the massive escape event, but also in March sampling period when compared to October in both years. This is in concordance with previous studies that found the same temporal trends for the abundance of escaped sea bass in the wild (Toledo-Guedes et al., 2014). This would correspond to a higher release of farmed fish during winter storms, reflected in March sampling (Toledo-Guedes et al., 2014). Our results show that, although mTrL inside the MPA is altered, the magnitude of this alteration is not as large as in HFA. In other words, MPA seems to exhibit certain resilience to changes in mTrL if compared to HFA. The ability of MPA to buffer the rise in mTrL could be based on a higher abundance of herbivorous (i.e. low trophic level) species. Owing to the protection against fishing, an increment of predators of the barren-ground founder sea urchin Diadema africana (Rodríguez et al., 2013) have been observed; subsequent depletion of the latter and further recovery of erect algae together with herbivorous fish species represents an already well-studied trophic cascade effect (Sangil et al., 2012). Thus herbivorous biomass 'pulls down' the mTrL maintaining it at relative low levels despite the MPA is equally affected by the presence of escaped fish (Toledo-Guedes et al., 2014).

Although this study failed at detecting negative or positive correlations between number of escapees and abundance of other fish species, direct or indirect effects (e.g. trophic cascades) cannot be discarded in the mid and long term. Other studies have revealed that the input of predators in a semi-closed systems can cause an alteration of trophic interactions and cascade effects (Ojaveer et al., 2004; Casini et al., 2012). The same scenario of relative isolation occurs in La Palma island as the absence of coastal shelf (Acosta et al., 2003) promotes the concentration of shallow bentho-demersal fish assemblages (including escapees) near the coast, limiting connectivity and dilution of potential impacts among the islands (Sangil et al., 2013b).

Sea bass have become the most abundant predator in shallow coastal waters (between 1 and 5 m depth) in La Palma (this study) and probably in those islands where sea bass is cultured (pers. obs.). Even in areas such as the MPA, where fish assemblages are supposed to be best preserved and abundances of top predators reach maximum (Newman et al., 2006), escaped sea bass outnumbers in biomass the rest of medium-
high trophic level species. Actually, similar results have been indicated in other areas where top predators have been introduced; as Cephalopholis argus and Lutjanus kasmira in Hawaii (Friedlander et al., 2002; Dierking, 2007) or the red lionfish (Pterois spp.) that is now established and in rapid expansion in the western North Atlantic (Whitfield et al., 2002; Schofield, 2009). Nonetheless, the success of these invaders is based upon their ability to close their life-cycle in natural habitats, while populations of escaped fish are strongly dependant on new escapees in the Canaries (Toledo-Guedes et al., 2009, 2012). It is necessary to remark that our results are valid in the depth strata we have studied (i. e. very shallow coastal waters), where a big proportion of escaped fish are found (Toledo-Guedes et al., 2009) and top predators are uncommon. In the case of escaped sea bream, their abundances in the surveyed areas are not as high, and fish species of their "trophic surroundings" are well represented by several species, mainly sparids.

Functional diversity (sensu lato) has been proven to be an indicator of ecosystem health and function (Clemente et al., 2010). It has been also suggested that it could prevent the insertion of non-indigenous species in recipient ecosystems (Stachowicz et al., 1999). Thus, the lack of top predators in the surveyed areas could favour escaped sea bass (avoiding competition and predation), while abundance of sparids could avert the success of escaped sea bream in the wild. Nonetheless, other reasons for a lower prevalence of the latter seems to be the result of lower intensity of release, together with a naive behaviour that could increase natural and fishing mortality in comparison to sea bass (Arechavala-Lopez et al., 2012; Toledo-Guedes et al., 2014).

Our data on the diet of escaped sea bass supplement those previously published (Toledo-Guedes et al., 2009). The results obtained for the individuals not associated to any known massive escape (leak group) are in line with the mentioned study. On the other hand, the diet of sea bass associated with the massive escape markedly differs to the leak group in several aspects (e.g. lower percentage of vacuity, lower prey diversity and lower trophic level). Even though the number of studied stomachs is limited, vacuity percentage was very low for the massive group. This indicates that six months after the massive escape event, surviving escapees were able to actively exploit available resources in natural habitats as the MPA. Many studies have pointed to the ontogenetic changes in diet suffered by sea bass in their natural range of distribution
(Kelley, 1987; Rogdakis et al., 2010 and references therein). In extensive cases, we can say that trophic level of wild sea bass is positively related with the size (Rogdakis et al., 2010). Our results support the importance of fish's total length in its diet, and highlight that trophic interactions posed by escaped sea bass could largely depend on the size of the fish that escape. Nonetheless, time at liberty seems to be another factor explaining the observed diet, actually a "hunting learning" period has been already suggested for escaped sea bream in the Mediterranean (Arechavala-Lopez et al., 2012). This adaptation period would also account for the lower trophic level showed by recent escapees (i.e. massive group), as they predated mainly over crustaceans that are less mobile and thus, easier to catch than fish.

4.1. Conclusions and final recommendations

With this study we propose a further dimension of the concept 'farming up' related not only to a rise in the trophic level of cultured species (as presented by Stergiou et al., 2009) but also a rise of mTrL of wild fish assemblages in the coasts where aquaculture facilities are present, due to the release of those farmed fish. If we scale up the issue, the need for studies at wider spatial scales (e.g. Mediterranean) arises.

Taking into account the high mobility of the escapees, remediation through regular eradication actions with highly selective fishing techniques (e.g. spearfishing) seems unaffordable in terms of costs. However, as natural and fishing mortality apparently control abundances of escaped fish (Toledo-Guedes et al., 2014), eradication efforts should be centred in valuable areas where fishing pressure is low or absent as MPAs. Adaptive management of these areas would prevent potential negative effects caused by escaped fish. In any case, this would not be applicable to other regions (e.g. Mediterranean), where wild counterparts cohabit with escapees because in most of the cases, wild and escaped fish can only be differentiated after being caught (ArechavalaLopez et al., 2012).

A likely grow in aquaculture production worldwide, together with a concentration on a few proven species (several of which would be exotic or locally absent; Shelton and Rothbard, 2006) could lead to ethical and environmental issues. Thus, for a correct development of aquaculture industry, the necessity of risk assessment plans grounded
on empirical data is clear. The implementation of mitigation, contingency and restoration plans, has special relevance when aquaculture facilities are situated near sensible areas (e.g. MPAs) and/or imply species introductions.
5. Acknowledgments: We are in debt with Carlos Sangil and Laura Martín from La Palma World Biosphere Reserve and Tomás Sentís from Cabildo de La Palma. Roberto Cáceres and Ricardo García from Cueva Bonita Diving Center, together with Dominique Girard from University of La Laguna provided field support. Tamia Brito, manager of La Palma MPA, and the rest of the staff facilitated the work in the marine reserve. Jacinto Barquín, Michael J. Seanley and Jose M. Landeira from University of La Laguna helped during stomach content identification. Aitor Forcada and Just Bayle from University of Alicante provided useful comments on statistics and ecological framework of the study.

6. References

Acosta J, Uchupi E, Muñoz A, Herranz P, Palomo C, Ballesteros M, Working Group ZEE (2003) Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma and El Hierro. Mar Geophys Res 24:1-40.

Albins MA (2013) Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol Invasions 15:29-43.

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32-46.

APROMAR (2012) La Acuicultura Marina En España. Asociación Empresarial de Productores de Cultivos Marinos, Cádiz, Spain.

Arechavala-Lopez P, Uglem I, Fernandez-Jover D, Bayle-Sempere JT, Sanchez-Jerez P (2011) Immediate post-escape behaviour of farmed seabass (Dicentrarchus labrax L.) in the Mediterranean Sea. J Appl Ichthyol 27:1375-1378.

Arechavala-Lopez P, Uglem I, Fernandez-Jover D, Bayle-Sempere JT, Sanchez-Jerez P (2012) Post-escape dispersion of farmed seabream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea. Fish Res 121-122:126-135.

Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere JT, Uglem I, Mladineo I (2013) Reared fish, farmed escapees and wild fish stocks-a triangle of pathogen transmission of concern to Mediterranean aquaculture management. Aquacult Environ Interact 3:153-161.

Arismendi I, Soto D, Penaluna B, Jara C, Leal C, León-Muñoz J (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in Northern Patagonian lakes. Freshwater Biol 54:1135-1147.

Briggs JC (2008) The North Atlantic Ocean: need for proactive management. Fisheries 33:180-185.

Brito A, Pascual JM, Falcón A, Sancho A, González G (2002) Peces de las islas Canarias. Catálogo comentado e ilustrado. Francisco Lemus, Santa Cruz de Tenerife.

Casal CMV (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions 8:3-11.

Casini M, Blenckner T, Möllmann C, Gårdmark A, Lindegren M, Llope M, Kornilovs G, Plikshs M, Stenseth NC (2012) Predator transitory spillover induces trophic cascades in ecological sinks. Proc Natl Acad Sci USA 109:8185-9.

CIESM (2000) Fishing down the Mediterranean Food Webs. July 26-30 2000 Kerkyra, Greece. CIESM Workshop Series, Monaco.

Clemente S, Hernández JC, Rodríguez A, Brito A (2010) Identifying keystone predators and the importance of preserving functional diversity in sublittoral rocky-bottom areas. Mar Ecol Prog Ser 413:55-67.

Courtenay WR, Raton B, Collette BB, Orr JW, Pauly D, Randall J, Smith-vaniz WF (2009) Risks of Introductions of Marine Fishes: Reply to Briggs. Fisheries 34:181-186.

Declerck S, Louette G, de Bie T, de Meester L (2002) Patterns of diet overlap between populations of non-indigenous and native fishes in shallow ponds. J Fish Biol 61:11821197.

Deutsch, L, Gräslund S, Folke C, Troell M, Huitric M, Kautsky N, Lebel L (2007) Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Glob Environ Chang 17:238-249.

Dierking J (2007) Effects of the Introduced Predatory Fish Cephalopholis Argus on Native Reef Fish Populations in Hawaii. PhD dissertation, Department of Zoology, University of Hawaii at Manoa, Honolulu, USA.

Dimitriou E, Katselis G, Moutopoulos DK, Akovitiotis C, Koutsikopoulos C (2007) Possible influence of reared gilthead sea bream (Sparus aurata, L.) on wild stocks in the area of the Messolonghi lagoon (Ionian Sea, Greece). Aquacult Res 38:398-408.

Edelist D, Rilov G, Golani D, Carlton JT, Spanier E. (2013) Restructuring the Sea: profound shifts in the world's most invaded marine ecosystem. Diversity and Distributions 19(1):69-77.

Friedlander M, Parrish JD, DeFelice RC (2002) Ecology of the introduced snapper Lutjanus kasmiva (Forsskal) in the reef fish assemblage of a Hawaiian bay. J Fish Biol 60:28-48.

Froese, R. \& Pauly, D. (2012) FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2012).

García-Charton JA, Pérez-Ruzafa A, Sánchez-Jerez P, Bayle-Sempere JT, Reñones O, Moreno D (2004) Multiscale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar Biol 144: 161-182.

González JA (1995) Crustáceos decápodos de las Islas Canarias. Publicaciones Turquesa, Santa Cruz de Tenerife.

González-Lorenzo G, Brito A, Barquín J (2005) Impactos provocados por los escapes de peces de las jaulas de cultivos marinos en Canarias. Vieraea 33:449-454.

Green S, Akins J, Maljkovic A, Côté I (2012) Invasive lionfish drive Atlantic coral reef fish declines. Plos One 7:1-3.

Gunderson LH (2000) Ecological resilience-in theory and application. Annu Rev Ecol Syst 31:425-439.

Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 44:1-23.

Hureau, J.C. (1970) Biologie comparée de quelques Poissons antarctiques (Nototheniidae). Bulletin Institut Oceanographique Monaco, 68 (1391):1-244.

Jensen Ø, Dempster T, Thorstad E, Uglem I, Fredheim A (2010) Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult Environ Interact 1:71-83.

Katavic I, Jug-Dujakovic J, Glamuzina B (1989) Cannibalism as a Factor Affecting the Survival of Intensively Cultured Sea Bass (Dicentrarchus labrax) Fingerlings. Aquaculture 77:135-143.

Kelley DF (1987) Food of bass in UK waters. J Mar Biol Assoc UK 67:275-286.

Liao YC, Chen LS, Shao KT (2010) The predatory Atlantic red drum, Sciaenops ocellatus, has invaded the western Taiwanese coast in the Indo-West Pacific. Biol Invasions 12:1961-1965.

Lorenzen K, Beveridge MCM, Mangel M (2012) Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biol rev Camb Philos Soc 87:639-660.

McGinnity P, Prodöhl P, Ferguson A, Hynes R, Maoiléidigh NO, Baker N, Cotter D, O'Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond (Biol) 270:2443-50.

Naylor R, Burke M (2005) Aquaculture and ocean resources: raising Tigers of the Sea. Annu Rev Env Resour 30:185-218.

Newman MJH, Paredes GA, Sala E, Jackson JBC (2006) Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol Lett 9:1216-27.

Ojaveer H, Simm M, Lankov A (2004) Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522:261-269.

Pauly D, Christensen V, Dalsgaard J, Froese R, Torres JF (1998) Fishing down marine food webs. Science 279:860-863. Cons Biol Pract 2(4):25.

Pauly D, Tyedmers P, Froese R, Liu LY (2001) Fishing down and farming up the food web.

Pinkas L, Oliphant MS, Iverson, Ingrid LK (1971) Food habits of albacore, bluefin tuna and bonito in California waters. The California Department of Fish and Game's Fish Bulletin 152.

Puertos del Estado (2012) World Wide Web electronic publication. www.puertos.es, version (10/2012).

Quinn GP, Keough J (2002) Experimental design and data analyisis for biologists. Cambridge University Press, New York.

Ramírez B, Ortega-Borges L, Cárdenes Y, Haroun R (2011) Evaluación de las interacciones de lubinas escapadas desde jaulas de acuicultura en la Isla de La Palma En El Año 2010. Universidad de Las Palmas de Gran Canaria.

Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evolut 24:248-53.

Rodríguez A, Hernández JC, Clemente S, Coppard SE (2013) A new species of Diadema (Echinodermata: Echinoidea: Diadematidae) from the eastern Atlantic Ocean and a neotype designation of Diadema antillarum (Philippi, 1845). Zootaxa 3636(1): 144-170.

Rogdakis Y, Ramfos A, Koukou K, Dimitriou E, Katselis G (2010) Feeding habits and trophic level of sea bass (Dicentrarchus labrax) in the Messolonghi-Etoliko lagoons complex (Western Greece). J Biol Res-Thessalon 13:13-26.

Rosecchi E, Nouaze Y (1987) Comparaison de cinq indices alimentaires utilisés dans l'analyse des contenus stomacaiux. Revue des Travaux de l'Institut des Peches Maritimes 49:111-123.

Sangil C, Clemente S, Martín-García L, Hernández JC (2012) No-take areas as an effective tool to restore urchin barrens on subtropical rocky reefs. Estuar Coast Shelf S 112:207-215.

Sangil C, Martín-García L, Clemente S (2013a) Assessing the impact of fishing in shallow rocky reefs: A multivariate approach to ecosystem management. Mar Pollut Bull 76:203-213.

Sangil C, Martín-García L, Hernández JC, Concepción L, Fernández R, Clemente S (2013) Impacts of fishing and environmental factors driving changes on littoral fish assemblages in a subtropical oceanic island. Etuar Coast Shelf S 128:22-32.

Schlaepfer MA, Sax DF, Olden JD (2010) The potential conservation value of nonnative species. Conserv Biol 25:428-37.

Schofield PJ (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquatic Invasions 4:473-479.

Serra-Llinares RM, Nilsen R, Uglem I, Arechavala-Lopez PA, Noble C (2013) Postescape dispersal of juvenile Atlantic cod Gadus morhua from Norwegian fish farms and their potential for recapture. Aquacult Environ Interact 3:107-116.

Shelton WL, Rothbard S (2006) Exotic species in global aquaculture-A review. Isr J Aquacult-Bamid 58:3-28.

Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species Diversity and Invasion Resistance in a Marine Ecosystem. Science 286:1577-1579.

Stergiou KI, Tsikliras AC, Pauly D (2008) Farming up Mediterranean food webs. Cons Biol 23:230-2.

Toledo-Guedes K, Sánchez-Jerez P, González-Lorenzo G, Brito-Hernández A (2009) Detecting the degree of establishment of a non-indigenous species in coastal ecosystems: sea bass Dicentrarchus labrax escapes from sea cages in Canary Islands (Northeastern Central Atlantic). Hydrobiologia 623:203-212.

Toledo-Guedes K, Sanchez-Jerez P, Mora-Vidal J, Girard D, Brito A (2012) Escaped introduced sea bass (Dicentrarchus labrax) infected by Sphaerospora testicularis (Myxozoa) reach maturity in coastal habitats off Canary Islands. Mar Ecol 33:26-31.

Toledo-Guedes K, Sanchez-Jerez P, Brito A (2014) Effects of a massive aquaculture escape event on artisanal fisheries. Fish Manag Ecol 21:113-121.

ACCEPTED MANUSCRIPT

 12 3 6 618 619 624 625 626 627 629 630Tuya F, Boyra A, Sanchez-Jerez P, Haroun RJ (2005) Multivariate analysis of the bentho-demersal ichthyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms beneath sea-cage fish farms. Mar Biol 147:1229-1237.

Whitfield PE, Gardner T, Vives SP, Gilligan MR, Jr WRC, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289-297.

Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, UK.

Captions

Figure 1. Study area. Black circle: aquaculture facilities / release point. White circles: localities sampled outside La Palma MPA. White triangles: localities sampled at MPA. Black line: limits of La Palma MPA.

Figure 2. Box plot comparing mean trophic level of visual censuses with absence (grey) and presence (black) of escaped fish.

Figure 3. Size frequency of escaped sea bass (a) and sea bream (b), before (grey) and after (black) the massive escape event.

Figure 4. 3-dimensional plot of $m \operatorname{TrL}_{0}, \Delta \operatorname{Troph}$ and mTrL at locality level through sampling periods.

Figure 5. Mean biomass (\pm SE) of both escaped (a)sea bass and (b) sea bream (black bars) and other fish species with similar trophic level (grey bars) at MPA and HFA through sampling periods: n.s.: not significant, *: $\mathrm{p}<0.05,{ }^{* *}$: $\mathrm{p}<0.01,{ }^{* * *}$: $\mathrm{p}<0.001$. Note the logarithmic scale in " y " axis.

Figure 6. MDS plot showing the ordination of sea bass individuals by diet according to their (a) origin, and by weight of each group of preys: (b) insects, (c) crustaceans and (d) fish.

Appendix. Mean biomass (grams $100 \mathrm{~m}^{-2} \pm \mathrm{SE}$) for each species recorded in the studied localities. Localities are numbered from North to South.

Species	March 2009						October 2009					
	1	2	3	4	5	6	1	2	3	4	5	6
Dicentrarchus labrax	289.8 ± 247.7	421.1 ± 403.3	42.9 ± 27.8	9.3 ± 8.9	1 ± 1.7	95.4 ± 78.2	88.4 ± 158.8	$215,273.3 \pm 152,105.3$	5,483 $\pm 4,239.3$	$3,117.3 \pm 3,166.8$	$4,716 \pm 3,040$	721 ± 502.7
Sparus aurata	9.3 ± 9.6	-	-	268.1 ± 319.6	1.3 ± 2.3	41.8 ± 60.6	32.1 ± 105.5	$5,808.2 \pm 10,060.1$	-	-	489.4 ± 796.7	10.6 ± 18.3
Abudefduf luridus	58 ± 44.7	101.9 ± 89.3	192.4 ± 129.6	24 ± 14	189.4 ± 103.2	177.4 ± 74.1	167.4 ± 93.8	68.1 ± 78.5	104.7 ± 65.3	109.8 ± 83.9	7.6 ± 7.8	93.4 ± 71.2
Atherina presbyter	0.4 ± 0.3	0.1 ± 0.1	0.6 ± 0.7	0.1 ± 0.1	0.1 ± 0.2	-	0.5 ± 1.4	96.3 ± 166.9	5.1 ± 8.3	1.5 ± 2.5	-	1.4 ± 2.5
Aulostomus strigosus	-	-	-	-	-	-	3 ± 12.2	-	-	-	-	-
Belone belone	-	-	-	-	-	-	0.4 ± 2.1	-	-	-	-	-
Boops boops	-	-	-	-	-	-	-	\ldots	-	-	-	-
Canthigaster capistrata	-	0.4 ± 0.7	-	-	-	-	0.1 ± 0.4		-	-	-	-
Diplodus cervinus	-	-	-	1.8 ± 3.1	-	-	0.2 ± 1	-	-	-	77.8 ± 119.5	-
Diplodus puntazzo	-	-	-	-	-	-	-		-	-	96.8 ± 167.7	-
Diplodus sargus	$1,024.5 \pm 741.7$	236.4 ± 314.4	$1,875.7 \pm 1,470.5$	527.4 ± 279	384.2 ± 598	55.4 ± 51	556.5 ± 613.1	906.2 ± 497.1	$5,848.4 \pm 9,242.1$	619.9 ± 342	$2,401.6 \pm 1,667.7$	529.3 ± 546.7
Epinephelus marginatus	-	-	-	-	-	-		-	-	-	100.4 ± 130.7	-
Gymnothorax unicolor	-	-	-	-	-	-		-	-	-	-	-
Kyphosus saltatrix	-	-	-	11.4 ± 19.7	-	-	15.3 ± 36.3	4 ± 7	34.2 ± 59.2	11.4 ± 19.7	23.3 ± 36.8	164.7 ± 285.2
Liza aurata	$723.3 \pm 1,120.6$	-	600.4 ± 997	$2,878.5 \pm 2,350.1$	2,304.8 $\pm 3,598.1$	-	$841.1 \pm 1.571 .9$	7,052 $\pm 7,421.3$	-	2,544.4 $\pm 4,407.1$	$4,316.1 \pm 4,104.9$	3,757.5 \pm 3,989.4
Lythognathus mormyrus	-	-	-	-	-	-	-	-	-	-	-	-
Mugil cephalus	-	-	-	-	-		Y-	-	-	-	-	-
Mustelus mustelus	-	-	-	-	-	-	-	-	-	-	-	-
Mycteroperca fusca	-	-	-	-	-	-	-	-	-	-	28.7 ± 49.6	-
Oblada melanura	1.4 ± 2.4	-	7.2 ± 8.6	-	-		1.3 ± 3.5	92.1 ± 159.5	-	-	6.9 ± 11.9	-
Ophioblennius atlanticus	240.7 ± 135.1	122 ± 79.4	275.5 ± 95.1	49.8 ± 42.1	201.1 ± 101.9	101.7 ± 42.3	321 ± 202.8	124.4 ± 105.8	123.1 ± 99.6	329.9 ± 162.2	23.5 ± 19.1	289.2 ± 181.1
Pomadasys incisus	-	-	-	-	,	-	32.6 ± 178.8	-	-	-	-	-
Pomatomus saltatrix	-	-	-	-	-	-	-	-	-	-	-	-
Pseudocaranx dentex	-	2.6 ± 4.5	3 ± 5.2	-		-	1.1 ± 3.6	-	28.8 ± 49.9	-	-	-
Sardinella aurita	-	-	-	-		-	-	-	-	-	-	-
Sardinella maderensis	-	-	-	-	-	-	-	-	-	-	-	-
Sarpa salpa	$13,944 \pm 5,692.6$	7,695.2 $\pm 3,141.6$	13,269.6 $\pm 5,417.3$	$17,968.9 \pm 7,335.8$	$2,247.8 \pm 917.7$	-	$10,438.1 \pm 4,261.3$	$3,765.2 \pm 1,537.1$	$1,624.9 \pm 663.4$	$11,221.3 \pm 4,581.1$	9,295.8 $\pm 3,795$	$16,404.2 \pm 6,697$
Scorpaena maderensis	-	-	-	-	-	-	-	-	-	-	-	-
Seriola spp.	-	-	-		-	-	-	-	-	-	-	-
Sparisoma cretense	29.6 ± 51.4	16.4 ± 25.9	403 ± 266.8	$3,781.9 \pm 1,946.1$	178.9 ± 101.1	176.3 ± 127.6	525.3 ± 761.1	138.9 ± 110.9	48.1 ± 48.8	311.5 ± 195.1	$3,900.9 \pm 2,143.9$	857.8 ± 736.7
Sphoeroides marmoratus	-	-	-	>-	-	-	-	-	-	-	-	-
Sphyraena viridensis	-	0.6 ± 1	-	-	0.3 ± 0.5	-	2.1 ± 7.2	46.8 ± 81.1	-	-	0.1 ± 0.1	-
Symphodus truta	-	-	-	-	-	-	-	-	-	-	1.2 ± 2	-
Thalassoma pavo	72 ± 19.7	92.5 ± 56.5	107.8 ± 35.3	281.8 ± 122.2	224.6 ± 97	227.1 ± 99.6	214.6 ± 104.2	14.3 ± 13.2	324.7 ± 230.9	293.9 ± 127.1	155.8 ± 88.9	552.1 ± 495
Trachinotus ovatus	0.5 ± 0.9	-	59.6 ± 103.2	12.3 ± 21.3	-	-	10.6 ± 34.5	4 ± 6.9	11.4 ± 19.7	55.9 ± 72.7	83.3 ± 131	-
Unidentified larvae	-	1 ± 1.6	1.3 ± 1.7	-	-	-	0.5 ± 1	-	0.4 ± 0.4	0.3 ± 0.5	0.1 ± 0.2	0.1 ± 0.2

Appendix. Continued.

	March 2010						October 2010					
Species	1	2	3	4	5	6	1	2	3	4	5	6
Dicentrarchus labrax	$5,676.7 \pm 8,348.6$	$23,845 \pm 53,765.9$	$11,966.7 \pm 38,274.7$	95.9 ± 76.1	117.5 ± 122.6	34.5 ± 35.4	12.7 ± 21.9	34.2 ± 50.3	17.8 ± 19.8	47.9 ± 59.8	1,262.8 $\pm 1,987.7$	343.4 ± 390.2
Sparus aurata	-	$641.9 \pm 3,189.6$	$337 \pm 2,256.9$	7.7 ± 8	9 ± 11.7	-	-	-	-	3.3 ± 8.9	-	-
Abudefduf luridus	354.6 ± 104.8	141.3 ± 88.5	154.4 ± 91.2	95.2 ± 80.8	682.7 ± 388.4	786.5 ± 261.4	277.6 ± 120.3	253.3 ± 132.2	$1,225.9 \pm 417.4$	471 ± 270.8	131.9 ± 56.2	499.7 ± 301.4
Atherina presbyter	3.6 ± 4.3	10.8 ± 52.8	5.7 ± 37.4	-	4.5 ± 4.7	4 ± 6.7	1 ± 1.7	9.1 ± 10.3	6.3 ± 6.2	3.4 ± 5.2	5.3 ± 8.3	0.1 ± 0.2
Aulostomus strigosus	-	3 ± 12.2	3 ± 12.1	-	-	19.7 ± 34.1	4.7 ± 8.2	-		2.4 ± 11.1	267 ± 308.3	40.4 ± 54.1
Belone belone	3.9 ± 6.8	0.4 ± 2.1	0.4 ± 2.1	-	-	-	-	-	-	-	-	78.1 ± 135.2
Boops boops	-	-	-	-	-	78.6 ± 94.1	17.2 ± 29.8	-	-	9.6 ± 31.9	$987.2 \pm 1,581.2$	-
Canthigaster capistrata	-	0.1 ± 0.3	0.1 ± 0.3	-	2 ± 3.4	7 ± 11.3	-		-	1 ± 3.8	-	1.7 ± 2.3
Diplodus cervinus	-	7.8 ± 38	4 ± 26.9	0.9 ± 1.6	5.9 ± 7.4	-	2 ± 3.5	6.7 ± 11.6	-	1.6 ± 4.5	-	4.1 ± 4.8
Diplodus puntazzo	-	9.7 ± 53	4.8 ± 37.5	-	-	-	7.3 ± 12.6	24.1 ± 41.7	-	3.1 ± 13.8	-	-
Diplodus sargus	382 ± 235.2	1,180.6 $\pm 2,989.2$	$868.6 \pm 2,158.4$	941.9 ± 319.6	424.6 ± 252	428.5 ± 259.4	814.2 ± 603.3	217.7 ± 142.2	780 ± 589.2	682.2 ± 560.7	947.2 ± 720.7	315 ± 181.3
Epinephelus marginatus	-	10 ± 42.1	5 ± 29.8	-	-	-		-	-	-	-	-
Gymnothorax unicolor	-	-	-	-	-	-		-	-	-	-	-
Kyphosus saltatrix	48.3 ± 62.7	37.9 ± 98.9	26.6 ± 74.5	-	4.9 ± 7.1	17.2 ± 29.8	- . ${ }^{\text {a }}$	-	79.7 ± 138.1	15.9 ± 51.3	22 ± 38	4.1 ± 7
Liza aurata	1,169.8 $\pm 1,800.6$	$1,957.4 \pm 3,378.6$	$1,399.3 \pm 2,641.1$	-	3.6 ± 6.2	290.2 ± 441.4	307.8 ± 295.7	657.6 ± 637.8	835.4 ± 796.4	$1,000.1 \pm 2,036.3$	$4,509.8 \pm 7,202.8$	-
Lythognathus mormyrus	-	-	-	-	-	-	\bigcirc	-	-	-	-	-
Mugil cephalus	-	-	-	-	-	-	-	-	-	-	-	-
Mustelus mustelus	-	-	-	-	-	-	-	-	-	-	-	-
Mycteroperca fusca	-	2.9 ± 15.7	1.4 ± 11.1	-	-	-	-	-	-	2.2 ± 12.2	-	28.7 ± 49.6
Oblada melanura	-	10.4 ± 50.6	5.9 ± 35.8	6.9 ± 8	16 ± 19.1		4 ± 4.9	0.1 ± 0.2	-	9.2 ± 33.6	28.4 ± 48.5	40.3 ± 53.5
Ophioblennius atlanticus	394.1 ± 176.6	316.6 ± 213	318.8 ± 207.7	536 ± 223.9	448.2 ± 235.1	726.7 ± 179.1	550.9 ± 284.2	742.4 ± 311.7	472.8 ± 236	440.2 ± 214.8	213.4 ± 93.4	231.4 ± 153.9
Pomadasys incisus	-	32.6 ± 178.8	32.6 ± 178.6	-		-	97.9 ± 169.6	-	-	9.8 ± 53.6	-	-
Pomatomus saltatrix	-	-	-	525.2 ± 667.3		-	-	-	-	52.5 ± 215.5	168.7 ± 292.3	-
Pseudocaranx dentex	-	3.4 ± 16	2.2 ± 11.6	-	18.2 ± 31.3	-	-	-	5.5 ± 9.4	3.5 ± 11	1.5 ± 2.6	5.2 ± 9
Sardinella aurita	-	-	-	-		-	11.4 ± 19.7	-	-	1.1 ± 6.2	-	-
Sardinella maderensis	-	-	-	-	1.3 ± 2.3	-	-	-	-	6.5 ± 34.6	-	2.7 ± 4.6
Sarpa salpa	$8,208.3 \pm 3,351$	$10,310.9 \pm 4,209.4$	$10,366.6 \pm 4,232.1$	7,352.2 $\pm 3,001.5$	17274.8 ± 7052.4	$11,664.7 \pm 4,762.1$	$2,554.5 \pm 1,042.9$	$5,366.9 \pm 2,191$	$11,546.2 \pm 4,713.7$	$11,654.1 \pm 4,757.8$	$6,410.5 \pm 2,617.1$	$4,113.9 \pm 1,679.5$
Scorpaena maderensis	-	-	-		-	-	-	-	-	-	-	-
Seriola spp.	-	-	-		-	-	-	-	-	-	-	-
Sparisoma cretense	158 ± 165.5	595 ± 846.1	560.1 ± 803.7	153.5 ± 126.6	123.1 ± 131.2	978.1 ± 440.1	198.3 ± 93	248.5 ± 315.4	499.9 ± 289.7	600.3 ± 610.3	142.1 ± 116.9	204.6 ± 165.5
Sphoeroides marmoratus	-	-	-		0.6 ± 1.1	-	-	-	-	0.5 ± 2.3	-	-
Sphyraena viridensis	18.6 ± 22.1	6.7 ± 26.6	4.4 ± 19.5	66.6 ± 75.1	-	142 ± 245.9	185.8 ± 321.8	-	8 ± 10.6	41 ± 129.8	-	-
Symphodus trutta	-	0.1 ± 0.7	0.1 ± 0.4	-	-	-	-	-	-	0.8 ± 3.9	-	-
Thalassoma pavo	243.3 ± 105.1	259.7 ± 199.9	237.1 ± 159.4	182.3 ± 74.1	298.3 ± 118.1	326.4 ± 112.7	339.1 ± 155.6	117.9 ± 49.5	249 ± 122	246.6 ± 106.9	132.9 ± 62.6	168.7 ± 77.5
Trachinotus ovatus	10.8 ± 10.9	20.8 ± 48.9	15.7 ± 42.3	-	32.2 ± 51	-	-	-	-	13.5 ± 37.4	0.5 ± 0.9	2.5 ± 2.1
Unidentified larvae	0.9 ± 1.5	0.3 ± 0.7	0.4 ± 0.9	-	-	-	-	-	-	0 ± 0.1	-	-

Table 1. Univariate PERMANOVA, comparing mean trophic level of fish assemblages with presence of escaped fish versus those with no escaped fish. In bold those pvalues <0.05.

Source	df	MS	Pseudo-F	P(perm)
Presence vs. Absence	1	8.8648	39.33	$\mathbf{0 . 0 0 0 2}$
Res	423	0.2254		
Total	431			

ACCEPTED MANUSCRIPT

Table 2. Univariate PERMANOVA, exploring spatiotemporal patterns of mTrL. In bold those p-values <0.05 for fixed factors and their relevant interactions. Ye: Year, Pe: Period, Pr: Protection, Si: Site.

Source	df	MS	Pseudo-F	P(perm)
Year	1	6.5392	14.131	$\mathbf{0 . 0 0 2}$
Period	1	3.6593	16.625	$<\mathbf{0 . 0 0 1}$
Protection	1	5.1611	13.981	$\mathbf{0 . 0 0 2}$
Site (Pr)	16	0.36111	2.0037	0.014
YexPe	1	0.81318	2.127	0.162
YexPr	1	1.1631	2.5015	0.132
PexPr	1	0.49561	2.2613	0.146
YexSi(Pr)	16	0.46161	2.5613	0.002
PexSi (Pr)	16	0.21772	1.2081	0.267
YexPexPr	1	$6.1848 \mathrm{E}-2$	0.16501	0.686
YexPexSi(Pr)	16	0.37805	2.0977	0.008
Res	353	0.18022		
Total	431			

Table 3. Diet composition of the "leak" and "massive" escaped Dicentrarchus labrax.

ACCEPTED MANUSCRIPT

Table 4. PERMANOVA results comparing the diet of sea bass escaped in leak and massive events, including total length as a covariable. In bold those p-values <0.05.

Source	df	MS	Pseudo-F	P(perm)
Total Length	1	16215	3.7611	$\mathbf{0 . 0 0 0 2}$
Leak vs. Massive	1	19094	4.429	$\mathbf{0 . 0 0 0 2}$
Total Length x Leak vs. Massive	1	6301.8	1.4618	0.0734
Res	94	4311.1		
Total	97			

Highlights:

- An aquaculture massive escape released 1.5 million fish into the wild in the Canaries.
- Mean trophic level of marine fish assemblages was investigated through visual census.
- Diet of escaped sea bass was studied regarding size and time in the wild.
- Mean trophic level was raised but a nearby marine protected area showed resilience.
- Escaped sea bass exploited natural resources according to size and time at liberty.

[^0]: ${ }^{1}$ Present address: Department of Marine Sciences and Applied Biology. University

