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We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of
General Relativity (GR) formulated à la Palatini. We obtain exact analytical solutions that extend the
charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale.
Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the
electric field. We discuss the relevance of our findings in relation to the quantum foam structure of
space–time and the meaning of curvature divergences in this theory.
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1. Introduction

An outstanding question in quantum gravitational physics is
whether large metric fluctuations at the Planck scale may induce
a change in topology. In fact, as suggested by Wheeler, at scales
below the Planck length, the highly nonlinear and strongly inter-
acting metric fluctuations may endow space–time with a foam-like
structure [1]. Thus, this hints that the geometry, and the topol-
ogy, may be constantly fluctuating, so that space–time may take
on all manners of nontrivial topological structures, such as worm-
holes [2]. However, one does encounter a certain amount of crit-
icism to Wheeler’s notion of space–time foam, for instance, in
that stability considerations may place constraints on the nature or
even on the existence of Planck-scale foam-like structures [3]. Nev-
ertheless, the notion of space–time foam is generally accepted, in
that this picture leads to topology-changing quantum amplitudes
and to interference effects between different space–time topolo-
gies [4], although these possibilities have met with some disagree-
ment [5].

* Corresponding author.
E-mail addresses: flobo@cii.fc.ul.pt (F.S.N. Lobo), jesusmartinez@ua.es

(J. Martinez-Asencio), gonzalo.olmo@csic.es (G.J. Olmo), drubiera@fisica.ufpb.br
(D. Rubiera-Garcia).
http://dx.doi.org/10.1016/j.physletb.2014.02.038
0370-2693/© 2014 Published by Elsevier B.V. This is an open access article under the CC
Due to the multiply-connected nature of wormholes, their re-
spective creation/generation inevitably involves the problematic is-
sue of topology change [6,7]. The possibility that inflation might
provide a natural mechanism for the enlargement of Planck-size
wormholes to macroscopic size has been explored [8]. In fact, the
construction of general relativistic traversable wormholes, with the
idealization of impulsive phantom radiation, has been considered
extensively in the literature [9–11]. Another problematic aspect
in wormhole physics is that these geometries violate the point-
wise energy conditions [12]. However, this issue may be avoided
in modified gravity, where the normal matter threading the worm-
holes may in principle be imposed to satisfy the energy conditions,
and it is the higher order curvature terms that sustain these ge-
ometries [13]. In fact, the general approach to wormhole physics
is to run the gravitational field equations in the reverse direc-
tion, namely, consider first an interesting space–time metric and
then through the field equations, the distribution of the stress-
energy tensor components is deduced. However, one may rightly
argue that this approach in solving the field equations lacks phys-
ical justification, and that a more physical motivation would be to
consider a plausible distribution of matter-energy.

In this work we follow the latter route and find that in a
quadratic extension of GR formulated in the Palatini formalism
wormholes can be generated dynamically. This result follows by
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probing Minkowski space–time with a charged null fluid, thus pro-
ducing a Vaidya-type configuration. Now, switching off the flux,
the metric settles down into a static configuration where the ex-
istence of a wormhole geometry becomes manifest. The topologi-
cally nontrivial character of the wormhole allows us to define the
electric charge in terms of lines of electric field trapped in the
topology. The size of the wormhole changes in such a way that the
density of lines of force at the throat is given by a universal quan-
tity. These facts allow to consistently interpret these solutions as
geons in Wheeler’s sense [1] and have important consequences for
the issue of the foam-like structure of space–time [2].

2. Dynamical charged fluid in Ricci-squared Palatini theories

Consider a theory defined by the action [14]

S[g,Γ,ψm] = 1

2κ2

∫
d4x

√−g f (R, Q ) + Sm[g,ψm], (1)

where LG = f (R, Q )/(2κ2) represents the gravity Lagrangian, κ2

is a constant with suitable dimensions (in GR, κ2 ≡ 8πG/c3),
gμν is the space–time metric, R = gμν Rμν , Q = gμα gνβ Rμν Rαβ ,
Rμν = Rρ

μρν , Rα
βμν = ∂μΓ α

νβ − ∂νΓ α
μβ + Γ α

μλΓ
λ
νβ − Γ α

νλΓ
λ
μβ is the

Riemann tensor of the connection Γ λ
μν , and Sm[g,ψm] represents

the matter action (with ψm the matter fields). We work in the
Palatini formalism, where gμν and Γ λ

μν are regarded as indepen-
dent fields. Setting the torsion to zero for simplicity, the field equa-
tions imply that Γ λ

μν can be written as the Levi-Civita connection
of a metric hμν defined as [15]

hμν = gμαΣα
ν√

det Σ̂
, hμν = (

√
det Σ̂)Σ−1

μ
α gαν. (2)

We have defined the matrices Σ̂ and P̂ , whose components are
Σα

ν ≡ ( f Rδν
α + 2 f Q Pα

ν) and Pμ
ν ≡ Rμα gαν , with f X ≡ df /dX .

From the metric variation, one finds

2 f Q P̂ 2 + f R P̂ − f

2
Î = κ2 T̂ , (3)

which represents a quadratic algebraic equation for Pμ
ν as a func-

tion of [T̂ ]μν ≡ Tμα gαν . This implies that R = [ P̂ ]μμ , Q = [ P̂ 2]μμ ,
and Σα

ν are just functions of the matter sources. With elementary
algebraic manipulations, Eq. (3) can be cast as

Rμ
ν(h) = κ2√

det Σ̂

(
LGδν

μ + Tμ
ν
)
. (4)

This representation of the metric field equations implies that hμν

satisfies a set of GR-like second-order field equations, with the
right-hand side being determined by T̂ . Since hμν and gμν are
algebraically related, it follows that gμν also verifies second-order
equations. We note that whenever Tμ

ν = 0, Eq. (4) recovers the
vacuum Einstein equations [15,16] (with possibly a cosmological
constant, depending on the form of LG ) which, similarly as in
other Palatini theories [18,17,19], guarantees the absence of ghost-
like instabilities.

Let us consider the matter sector as described by a spherically
symmetric flux of ingoing charged matter with a stress-energy ten-
sor given by

T flux
μν = ρinkμkν, (5)

where kμ is a null vector, satisfying kμkμ = 0, and ρin is the
energy density of the flux. The electric field generated by this
flux contributes to the total stress-energy by means of T em
μν =

1
4π [Fμα Fν

α − 1
4 Fαβ F αβ gμν ]. If we consider a line element of the

form

ds2 = −A(x, v)e2ψ(x,v) dv2 + 2eψ(x,v) dv dx

+ r2(v, x)dΩ2, (6)

then Maxwell’s equations, ∇μ F μν = 4π Jν , where Jν ≡ Ω(v)kν is
the current of the ingoing flux, lead to r2eψ(x,v) F xv = q(v), where
q(v) is an integration function. These equations also imply that
Ω(v) ≡ qv/4πr2.

To proceed further, we focus on a simple quadratic extension of
GR,

f (R, Q ) = R + l2P
(
aR2 + Q

)
, (7)

where lP ≡ √
h̄G/c3 is the Planck length and a is a free pa-

rameter. We note that the renormalizability of quantum fields in
curved space–times requires [20] a high-energy completion of the
Einstein–Hilbert Lagrangian including quadratic curvature terms
such as those appearing in (7). Moreover, these higher-order curva-
ture corrections typically appear in approaches to quantum gravity
such as those based on string theory [21], and also when GR is re-
garded as an effective theory of quantum gravity [22]. The Palatini
formulation has been particularly successful in the construction of
an effective Lagrangian [23] that captures the Hamiltonian dynam-
ics of loop quantum cosmology [24]. This theory cures the big bang
singularity producing a cosmic bounce at the Planck density. The
effective Palatini Lagrangian admits a power series expansion with
quadratic and higher-order curvature corrections. The Lagrangian
(7) is also able to replace the big bang singularity by a cosmic
bounce in both isotropic and anisotropic cosmologies [25]. As a
working hypothesis, we assume that the action (7) is able to cap-
ture the main effects of the quantum gravitational degrees of free-
dom in the form of an effective geometry, i.e., we assume that the
geometrical nature of gravitation is not spoiled by the quantum
gravitational effects. The model (7) is thus regarded as an effec-
tive model useful to describe dynamical processes and obtain some
hints on the topology change issue, but in a purely classical con-
tinuum scenario with the quantum effects encoded in l2P .

Having specified the matter sources and the gravity Lagrangian,
one finds R = 0, Q = κ2q4/4πr8, and

Σμ
ν =

⎛
⎜⎝

σ− σin 0 0
0 σ− 0 0
0 0 σ+ 0
0 0 0 σ+

⎞
⎟⎠ , (8)

where σ± = 1 ± κ2l2P q2(v)

4πr4 and σin = 2κ2l2P ρin

1−2κ2l2P q2(v)/4πr4 . The field

equations (4) can thus be written as

Rμ
ν(h) =

⎛
⎜⎜⎜⎜⎜⎝

− κ2q2(v)

8πr4σ+
e−ψκ2ρin

σ+σ− 0 0

0 − κ2q2(v)

8πr4σ+
0 0

0 0 κ2q2(v)

8πr4σ−
0

0 0 0 κ2q2(v)

8πr4σ−

⎞
⎟⎟⎟⎟⎟⎠

. (9)

The strategy now is to solve for hμν first and then use (2) and
(8) to obtain gμν . For this purpose, we define a line element for
hμν of the form

ds̃2 = −F (v, x)e2ξ(v,x) dv2 + 2eξ(v,x) dv dx

+ r̃2(v, x)dΩ2. (10)
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The field equations then imply that we can take r̃(v, x) = x,
eξ(v,x) = 1, and F (x, v) = 1 − 2M(x, v)/x, with M(x, v) satisfying

Mx = κ2q2

16πr2
, Mv = κ2ρinr2

2
, (11)

where the relation (2) establishes that

r2(x, v) =
x2 +

√
x4 + l2P κ2q2(v)/π

2
. (12)

By direct integration of Mx , we find

M(x, v) = M0 + γ (v) + κ̃2q2(v)

4

∫
dx

r2

∣∣∣∣
v=const

, (13)

where M0 is a constant and γ (v) an integration function. Comput-
ing Mv and comparing with Eq. (11), one finds

ρinr2 = 2

κ2

[
γv + κ2qqv

8π

∫
dx

r2σ+

]
, (14)

which is fully consistent with ∇μ(T μν
flux + T μν

em ) = 0.
We have thus found a complete solution to the Palatini theory

(7) coupled to a stream of charged null radiation. In this solution,
qv ≡ ∂vq(v) and γv ≡ ∂vγ (v) are free functions. Given the struc-
ture of the mass function in Eq. (13) and to make contact with
previous results on static configurations [14] of the same model
(7), we find it useful to write it as

M(x, v) = M0 + γ (v) + rq(v)2

4rc(v)

(∫
dz Gz

)∣∣∣∣
z=r/rc

, (15)

where r2
q (v) ≡ κ2q2/4π , rc(v) ≡ √

rq(v)lP , z(x, v) ≡ r(x, v)/rc(v)

and

Gz ≡ dG

dz
= z4 + 1

z4
√

z4 − 1
, (16)

where we have used the relation dr/dx = σ
1/2
− /σ+ (at constant v).

From Eq. (16) the function G(z) can be written as an infinite power
series and its form was given in [14]. Using the compact notation

M(x, v) = M(v)
[
1 + δ1(v)G(z)

]
, (17)

where M(v) = M0 + γ (v) ≡ rS(v)/2 and δ1(v) = 1
2rS (v)

√
rq(v)3

lP
, the

line element (6) becomes

ds2 = −
[

1

σ+

(
1 − 1 + δ1(v)G(z)

δ2(v)zσ 1/2
−

)
− 2l2P κ2ρin

σ−(1 − 2r4
c

r4 )

]
dv2

+ 2

σ+
dv dx + r2(x, v)dΩ2, (18)

where δ2(v) ≡ rc(v)
rS (v)

. Eq. (18) constitutes the main result of this
Letter.

3. Dynamic generation of wormholes

Consider now that the initial state is flat Minkowski space and
assume that a charged perturbation of compact support propagates
within the interval [vi, v f ]. Given the relation (12), which can be

written as r2(x, v) = x2+
√

x4+4r4
c (v)

2 , it follows that for v < vi we
have r2(x, v) = x2, which extends from zero to infinity. Entering
the v � vi region, this radial function, which measures the area
of the 2-spheres of constant x and v , never becomes smaller than
Fig. 1. The minimum of z(x) implies the existence of a wormhole extension of the
geometry, with x covering the whole real axis −∞ < x < +∞. Note the smoothness
of dG/dx at x = 0. In this plot, rc = 1.

r2
c (v), where this minimum is reached at x = 0. If we now con-

sider the region v > v f , in which ρin is again zero, the result is
a static geometry. One can verify [14] that in this static geometry
curvature scalars generically diverge at x = 0 except if the charge-
to-mass ratio δ

f
1 ≡ δ1(v � v f ) takes the value δ

f
1 = δ∗

1 � 0.572.
This δ∗

1 is a constant that appears in the series expansion of

G(z) ≈ −1/δ∗
1 + 2

√
z − 1 + · · · (19)

as z → 1. The smoothness of the geometry when δ
f

1 = δ∗
1 , to-

gether with the fact that r(x) reaches a minimum at x = 0, allow
to naturally extend the coordinate x to the negative real axis, thus
showing that the radial function r2(x) bounces off to infinity as
x → −∞ (see Fig. 1). This puts forward the existence of a worm-
hole structure with its throat located at x = 0.

It is important to note that the flux Φ = ∫
S ∗F , where ∗F is the

2-form dual to the Faraday tensor, through any closed 2-surface
S enclosing x = 0 is non-zero and can be used to define the
charge inside S , Φ = 4πq(v), on a purely topological basis [2],
i.e., without the need to introduce a metric or an affine connec-
tion. One thus finds that the density of lines of force at x = 0,
given by Φ/4πr2

c (v) = √
c7/2h̄G2, is constant and independent of

the particular values of the charge and mass of the solution. This
shows that the (topological) wormhole structure exists even when
δ1(v) 
= δ∗

1 and, therefore, is insensitive to the existence of local
curvature divergences.

We also note that for x � rc(v), the line element (18) quickly
recovers the expected GR prediction in both the dynamic and the
static case. Event horizons are thus expected in general, though
there exist nonsingular naked configurations with δ

f
1 = δ∗

1 [16,14].

4. Discussion and summary

The generation of wormholes outlined above shows that a
dynamical change in the space–time topology is possible when
charged fluids interact with a manifold governed by a quadratic
Palatini theory. This process differs radically in nature relative to
the construction of general relativistic traversable wormholes, with
the idealization of impulsive phantom radiation considered in the
literature [9–11]. More specifically, in the latter it was shown that
the adequate synchronization of the energies and the emission
timing of two opposing streams of phantom radiation may sup-
port a static traversable wormhole [10]. The theory presented here
generates static wormholes by means of a finite pulse of elec-
trically charged radiation, without the need to keep two exotic-
energy streams active continuously or to synchronize them across
the wormhole.
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Regarding the size of the wormholes, we note that if instead
of using l2P = h̄G/c3 to characterize the curvature corrections one
considers a different length scale, say l2ε , then their area would

be given by AW H = ( lε
lP

)
2Nq

Nc
q

A P , where A P = 4π l2P , Nq = |q/e| is

the number of charges, and Nc
q ≈ 16.55. Though this could allow

to reach sizes orders of magnitude larger than the Planck scale, it
does not seem very likely that macroscopic wormholes could arise
from any viable theory of this form, though the effects of other
matter/energy sources might be nontrivial.

The meaning and implications of classical singularities have
been a subject of intense debate in the literature for years. Their
existence in GR is generally interpreted as a signal of the limits of
the theory, where the quantum effects of gravity should become
relevant and an improved theory would be necessary. This is, in
fact, the reason that motivates our study of quadratic corrections
beyond GR.

It is thus remarkable that for a certain value of the charge-to-
mass ratio all curvature scalars of the theory become finite. The
absence of divergences in this particular case has allowed us to un-
veil a nontrivial topological structure, which turns out to be com-
mon to all the solutions of the theory, even to those with δ1 
= δ∗

1 .
This conclusion follows from the fact that the electric charge can
be defined purely on topological grounds as the flux of a two-form
through a closed 2-surface, i.e., without the need to introduce nei-
ther a metric nor a connection for this purpose. The independence
of this flux on the particular value of the mass of the solutions,
and the existence of a conserved density of lines of force at the
surface x = 0 (r = rc) confirms that all the solutions possess simi-
lar topological properties. The existence of geometric singularities
when δ1 
= δ∗

1 could thus be seen similarly as the situation that
arises, for instance, when a sphere and a cube are compared: both
have the same topology, but the geometry is ill-defined along the
edges and at the vertices of the cube.

To the light of this example, the physical significance of cur-
vature singularities looses strength. In fact, as pointed out above
and shown in detail in [14], the curvature divergences for the
static wormhole solutions arising in quadratic Palatini gravity with
electrovacuum fields are much weaker than their counterparts in
GR (from ∼ 1/r8 in GR to ∼ (δ1 − δ∗

1)2/(r − rc)
3 in our model),

which signals a smoothing out of the geometry as compared to
GR as the minimal surface r = rc is approached. As a result of
the existence of this minimal surface, the function r2 never drops
below the scale r2

c and implies that the total energy stored in
the electric field is finite (see [19,16] for details), which clearly
contrasts with the infinite result that GR yields. Therefore, even
though curvature scalars may diverge, physical magnitudes such
as total mass, energy, and electric charge are insensitive to those
divergences, which puts forward the importance of the topol-
ogy to address physical questions associated to curvature diver-
gences.

In the dynamical case discussed here, transient curvature diver-
gences may also arise due to the ρin term in the gv v component
of the metric. A glance at (18) indicates that there might be di-
vergences at r = rc(v), where σ− vanishes, and at r4 = 2r4

c (v).
However, if one considers the case δ1(v) = δ∗

1 , which avoids the
divergences in the static case, a short algebra confirms that the
geometry is smooth at r = rc(v) also in the dynamical case, with
ρin → 0 there. Therefore, no large metric fluctuations occur at the
wormhole throat for this choice of δ1(v). At r = 21/4rc(v), a diver-
gence occurs, though it disappears when the infalling flux ceases.
The details of this transient will be discussed elsewhere [26].

We note that since in our theory the field equations outside
the matter sources recover those of vacuum GR, Birkhoff’s theo-
rem must hold in those regions. This means that for v < vi we
have Minkowski space, whereas for v > v f we have a Reissner–
Nordström-like geometry. The departure from Reissner–Nordström
is due to the Planck scale corrections of the Lagrangian, which
are excited by the presence of an electric field, and only affect
the microscopic structure, which is of order ∼ rc(v). Due to the
spherical symmetry and the second-order character of the field
equations, Birkhoff’s theorem guarantees the staticity of the solu-
tions for v > v f .

In concluding, we have found an exact analytical solution for
the dynamical process of collapse of a null fluid carrying energy
and electric charge in a quadratic extension of GR formulated à la
Palatini. This extends the well-known Vaidya–Bonnor solution of
GR [27] to a new scenario that allows to explore in detail new
physics at the Planck scale. Focusing on the initial and final static
configurations, we have shown that wormholes can be formed out
of Minkowski space by means of a pulse of charged radiation,
which contrasts with previous approaches in the literature requir-
ing artificial configurations and synchronization of two opposing
streams of phantom energy.

Though we have considered an idealized pressureless and ultra-
relativistic charged fluid in a highly symmetric scenario, we be-
lieve that our results support the view that space–time could have
a foam-like microstructure with wormholes generated by fluctu-
ations of the quantum vacuum involving the spontaneous cre-
ation/annihilation of very energetic charged particles. In fact, all
spherically symmetric charged solutions of our theory able to ex-
tend their electric field down to scales of order rc ∼ lP possess a
wormhole structure. We understand that pressure and other dis-
persion effects should act so as to prevent the effective concentra-
tion of charge and energy on scales of order ∼ lP , thus suppressing
wormhole production in low energy scenarios.

Let us finally stress that though the wormhole structures found
here may develop curvature divergences, they are characterized by
well-defined and finite electric charge and total energy [19,16].
The physical role that such divergences may play, if any, is thus
uncertain and requires a more in-depth analysis. To fully under-
stand these issues, our model should be improved to include
several important aspects, such as the presence of gauge fields
and/or fermionic degrees of freedom, or to consider the dynam-
ics of counter-streaming effects due to the presence of simulta-
neous ingoing and outgoing fluxes. The impact that higher-order
curvature corrections in the action could have on the wormhole
solutions found here is also a fundamental test to assess the ro-
bustness of our conclusions. In this sense, it has been recently
found [19] that a Born–Infeld-like gravity theory [17,18], which
contains higher than quadratic contributions in the Ricci tensor,
also leads to wormhole solutions of the type found here when for-
mulated à la Palatini. This supports the view that dynamical topol-
ogy change might be a robust feature of metric-affine (Palatini)
theories.
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