The Need for an Integrated Computational/Experimental Approach in the Discovery and Design of New Drugs

Pérez-Sánchez H\(^1\), Cecilia JM\(^1\), Imbernón-Tudela B\(^1\), Pérez-Garrido A\(^1\), Soto J\(^1\), Timón-Pérez I\(^1\), García-Rodríguez J\(^2\), Cano G\(^2\), Bueno-Crespo A\(^1\) and Vegara-Meseguer J\(^1\)

\(^1\)Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain
\(^2\)Computing Technology Department, University of Alicante, Ap. 99. E03080, Alicante, Spain

Among all the main problems of haemostasis, we can cite the discovery of novel anticoagulants without side effects. Ever since the discovery of the anticoagulant properties of hirudin from the leech saliva, the increasing relevance of thromboembolic diseases has encouraged a continuous search for new compounds with anticoagulant activity, which has led to the development of the new commercially available anticoagulants [1]. One of the targets for prophylaxis and treatment of thromboembolic diseases is the plasma anticoagulant antithrombin. This protein circulates in blood in a metastable conformation, in which the reactive centre loop is partially inserted and is only activated by heparin and heparan sulfate glycosaminoglycans on the injured subendothelium [2]. Accordingly sulfated polysaccharide heparin chains with different size, from unfractionated to the essential pentasaccharide, have been used with more or less success in anticoagulant therapy and thromboprophylaxis [3]. In the last decades new molecules able to bind antithrombin have been identified. The strategies used in this search have been based mainly on the synthesis or chemical modification of existing drugs, or in the application of natural compounds with similar properties to those currently used [2]. Examples for such compounds are lignins and flavonoids [1,4], highly sulfated small organic ligands that seem to have similar properties to heparins.

Therefore, the discovery of novel or improved drugs for given diseases or special groups of patients, is a very slow and expensive process. Nevertheless, recent results demonstrate the discovery using Virtual Screening (VS) of a novel molecular scaffold [5], different to the previous ones based on heparin. Using this alternate approach, a large database of millions of chemical compounds is screened using high-performance computing power [3,6,7], VS is an appealing and cost-effective approach to tap into the wealth of available structural information [8,9]. Consequently, novel and enhanced VS methodologies, conveniently exploited in innovative drug discovery strategies can lead to significant and quantifiable developments.

An example of research group that performs drug design and discovery in this direction is the "Bioinformatics and High Performance Computing Research Group (BIO-HPC)", as stated on their website (http://bio-hpc.eu). This research group works in many different but completely related research areas such as:

a) High Performance computing: their research interest includes massively parallel architectures such as Graphics Processing Units, Intel Xeon Phi and Heterogenous processors, as well as bio-inspired algorithms such as Ant Colony Optimization [10], to evaluate the newest frontiers of computing. We are also working in applying these techniques to challenging problems in the fields of Science and Engineering [11,12].

b) Prediction studies of the biological activity of chemical substances by QSAR methods: their work is mainly focused on the search for structural alerts [13,14] for mutagenicity especially less studied for two trials (trials in mammalian cells and in vivo micronucleus studies) but also accepted by the OECD (Organization for Economic Cooperation and Development) for classification of mutagenicity of chemicals. They are also working with several universities to develop predictive QSAR models for different activities (study of antioxidant activity [15] and inhibition of human monoamine oxidase [16]). During this work they also make their contribution to the development of QSAR methodology [17].

c) Advanced Data Clustering Methods: Among the most relevant techniques used for pattern recognition, they develop and apply fuzzy clustering algorithms. These algorithms do not rely on assumptions common to conventional statistical methods, using the theory of fuzzy set. In the literature of fuzzy clustering, the fuzzy c-means (FCM) clustering algorithms defined by Dunn [18] and generated by Bezdek [19] are the well-known methods in cluster analysis. Recently Antonio et al. [20] and Soto et al. [21,22] showed modifications of FCM that improves productivity in a fuzzy clustering partition. Currently, they are developing their own algorithms for applications in drug discovery, and big data, using HPC.

d) Development and application of Computational Intelligence Methods: Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of scoring functions used in most VS methods they propose [23-25] a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, this information being exploited afterwards to improve VS predictions.

*Corresponding author: Pérez-Sánchez H, Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos s/n, 30107 Murcia, Spain; Tel: 3496827798; E-mail: hperez@ucam.edu

Received December 26, 2013; Accepted December 27, 2013; Published January 03, 2014


Copyright: © 2014 Pérez-Sánchez H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

We consider that in order to make efficient progress in drug discovery areas, a multidisciplinary research group, such as the one described in the previous paragraphs is necessary, and that research groups whose research line(s) are strictly focused on much concreted research areas cannot efficiently contribute to the development of the drug research field.

References

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore
- 21 days rapid review process
- Quality and quick editorial, review, and publication processing
- Indexing at PubMed(partial), Scopus, EI&CO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://omicsonline.org/submission/