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Abstract. A fully integrated development tool for computer vision sys-
tems has been built in the framework of this paper.

There are many applications that help the user in the design of such
systems, using graphical interfaces and function libraries. Even in some
cases, the final source code can be generated by these applications.
This paper goes a step beyond; it allows the development of computer
vision systems from a distributed environment. Besides, and as a distinc-
tive characteristic with regard to other similar utilities, the system is able
to automatically optimize task scheduling and assignment, depending on
the available hardware.

1 Introduction

The proposed tool establishes a mechanism for the development of general com-
puter vision applications from the posing stage until codification, scheduling
and the necessary hardware selection to its execution. This process is complex,
and usually causes time charges in the scheduling problem resolution and in the
debugging of a specific codification for each equipment.

The exposed system integrates all the tasks and automates great part of the
work that must be carried out by the programmer, who in this way can think in
the problem analysis and the solution exposition. The debugging and scheduling
tasks are analyzed depending on the accumulated experience in the applications
design for specific hardware environments, being implemented in well-defined
and robust modules.

The application structure establishes two main modules that are the visual
workspace and the processing task scheduler. A database works as a link between
both modules collecting the necessary information about the nature of the tasks
designed by the programmer.

Standard systems as Khoros (Khoral Research) have been considered prior
to this development. Khoros with his visual environment Cantata is highly mod-
ular and extensible with distributed processing capabilities. Other systems as
Gargoyle (Univ. Chicago) are focused on active vision applications. Our system
adds capability of distributed development (not jus distributed execution) and
interface with scheduling algorithms.



1.1 Scheme of the Application

In the Fig. 1 the basic system architecture is schematically shown. The two
main modules can be observed: the visual workspace (together with its associ-
ated database) and the scheduling module. Also, the interrelations between the
different elements and the information flow are exposed.

Aswailable
Hardware
Allocated and
Visual Scheme- boduled
Problem  |»f it I Graph Scheduler |, schedule
to solve e tasks
m——— /
operations,

Fig. 1. Scheme of the application

In short, the objectives of the principal components of the application can
be deduced from its input and output data (Table 1, Table 2).

Table 1. Data flow of Visual Workspace

Input data Ouput data Database contents

Ploblem to be solved Scheme Blocks description

Table 2. Data flow of Scheduler

Input data Ouput data

Task graph (from a sheme) Allocated and scheduled task
Blocks description
Available hardware

The first section of the article explains what the visual workspace consists of
and which are its main functionalities. It makes a special point of the different
characteristics in relation to other similar environments.

Next, the interface module is described in detail. All the required operations
to obtain a task graph (required input in the scheduler) from a scheme (visual
workspace output) are specified.



Finally, the third section focuses on the scheduler subsystem, describing all
the offered possibilities and the different output information that can be ob-
tained.

An example is added in order to offer a general view of the system, and
to show the integration level obtained. A reconstruction process from images
acquired by a pair of stereoscopic cameras has been chosen for this purpose.

2 The Visual Workspace of EVA!

2.1 What Does the Visual Workspace Consist of?

The visual workspace allows to specify the algorithm or application to be devel-
oped as a diagram formed by a sequence of graphic objects (which will be called
IPOs — Image Processing Objects), which represent the different operations to be
executed. The data (or images) interchange and the execution flow are indicated
through the present connections between different IPOs. The visual workspace
provides tools to create a scheme, that is to say, to draw IPOs that represent the
operations and to interconnect them, as well as the tools to be able to execute
the program.

The environment by itself does not execute a scheme, but it works as an
interface or front-end application between the user and the processing software
modules?. The way to operate is to convert the graphic representation into a
scheme of commands for the software modules interpreter to refresh the state of
the scheme in the screen.

In addition to a communication to the software modules interpreter, the
visual workspace can reach remote applications like image servers or viewers.
Actually it is not the application which connects to the viewer, but an special
kind of TPO, viewer IPO, which is able to ask the interpreter for an image and
to send its data to a server.

The EVA application is designed in a distributed way. It consists of different
applications: an interpreter of the software modules server, a visual workspace
for computer vision systems, and a viewer. Whichever of these applications can
be executed several times and in several machines, provided that a TCP-IP
connection between them is established.

Figure 2 represents a situation with four machines. Two of them, 3 and 4,
work as servers. The other two, 1 and 2, have the visual workspace and the
viewers, and are specifically assigned to users.

2.2 Visual Workspace Appearance

Hereafter, the components of the visual workspace are detailed. Figure 3 shows
a scheme the way it is represented in the environment.

! EVA (Computer Vision Environment). This application belongs to a CICYT project
coordinated by different Spanish Universities.
2 In this paper the development of the software modules is not presented.
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The visual workspace is a MDI application. In each window a scheme can be
drawn and executed with IPOs and interconnections between them.[1].

3 The Image Processing Objects (IPOs)

In the visual workspace the algorithms are expressed as graphic schemes, which
can be designed easily by the user with drawings composed of some basic graphic
objects. These objects are the IPOs (Image Processing Objects) and the con-
nections between them.

3.1 What is an IPO?

An TPO is a graphic element that represents an operation to be executed in a
scheme. It has several inputs, each one receiving data from other IPOs (mainly
they work with data representing images). In the same way, the IPOs have several
outputs through which they give back the results data after the execution of the
operation they represent.

Each TPO have some characteristics or own properties, which can be divided
in two groups. In one hand the general properties, which represent values that
have all the IPOs, such as the number of inputs or outputs, etc.; and on the
other hand the particular properties, which depend on the kind of operations
the TPO performs. An example of particular property can be the selection of a
certain operation or function that the IPO must execute between all the possible
operations of a type.

In the Fig. 4 an arithmetic operation IPO, which computes the add function
of two inputs, is shown:
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Fig. 4. IPO parts

In the figure the different parts of an IPO can be observed:

e IPO name. This name depends on the operation the IPO represents, although
it can be modified by the user.

e IPO icon. It’s a small drawing that helps to easily identify the operation the
IPO represents.



e Execution button. The user can switch on or off the button. When the button
is on, the TPO starts its execution, and the operation will be carried out
provided all its inputs are available. When the button is off, the IPO resets.

e Execution indicator. It is the small indicator that is on top of the IPO, and
points out whether its associated operation has been executed.

e Input and output connections. They are the square points that are on the
sides of the IPO. On the left side there are the input connections, and on
the right side there are the output ones. The number of inputs or outputs
connections can be chosen depending on the IPO kind. There are IPOs that,
because of its nature, have no input or output, IPOs that necessarily have a
certain number of inputs or outputs, IPOs that have maximum and minimum
limits in the inputs or outputs, etc.

3.2 Considerations of IPO Execution

The execution of each IPO of a scheme can be controlled manually through the
execution button each IPO has. To execute an IPO and to operate input data, the
execution button must be activated. This operation can be performed manually
by the user, switching on the IPO button with the mouse, or automatically when
the automatic execution mode is activated. Besides, before executing an IPO,
the previous IPOs should have been correctly executed, so that their outputs
are available.

When the execution of an IPO is achieved, this activates its execution indica-
tor, operates input data according to specific properties, and, if the execution is
correct, generates output data, that is sent to other IPOs which are connected.
There are also IPOs as the viewer one or the disk writer (from the kind of IPO
disk access) which don’t produce any output data to other IPOs, and that only
represent graphically or save the results. This kind of IPOs can be considered as
outputs schemes, where the data flow ends.

The TPOs pass its data through some objects called connections.

3.3 IPOs connections

The connections are the way in which the dependence between input data of
an IPO and output data generated by other IPOs is represented. A connection
is represented in a scheme as a pipe that starts in an output IPO and stops,
through possible ramifications, in the inputs of another IPOs.

When a IPO has not yet been executed (either it has been added recently
to the scheme, or it has been reseted), the connections that start from this one
are drawn as broken pipes to indicate that new data have not yet reached its
destination. On the contrary, when an IPO is correctly executed and sends the
data to its destination IPOs, the output connections appear as continuous pipes,
without any cut, so representing circulation of the data to destination IPOs. This
can be observed in the scheme of Fig. 5, where the XOR, IPO has not yet been
executed, and that’s why the pipe to the AND IPO is broken. The same happens
with the pipe between AND and the Disk Writer IPO.
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Fig.5. A scheme example

4 Results Viewer: Viewer IPO

4.1 Viewer IPO Performance

A viewer IPO is not able to create by itself a window where to show the image
received by the input connection. Instead, if it knows how to communicate to a
server.

In this way, to be able to see images that arrive at the viewer IPOs, the viewer
can reside in the same machine than the visual workspace, or in a machine which
can be accessed through a network from the machine where the visual workspace
is being executed.

4.2 Communication with IP Sockets

The connection between the visual workspace application and the server can be
achieved through sockets, some objects to communicate between applications of
a same machine or machines that coexist in a TCP-IP based network. A server
will have assigned an IP address (the machine address where it is being executed
in a network) and a port number that identifies it.

5 Visual Workspace / Scheduler Interface

It constitutes one of the main contributions of the present project. Its mission
is to serve as an union link between the two applications.

The visual workspace that is described in the previous sections offers as a
result a scheme of operations to be executed. As it has already been explained,
these schemes are composed of elementary blocks (the so-called IPOs) intercon-
nected between them.

Therefore, the elements that will be served as inputs for the interface are:



e Used IPOs.
e Connections between IPOs.
e Environment database.

The database contains detailed information about each one of the IPOs that
can take part in the scheme. This information will be essential to convert the
input data (scheme of operations) to a task graph (set of tasks, precedence
relations and computation times required by the scheduling subsystem).

More in detail, the output interface must contain the following elements:

List of elementary subtasks that take part in the process (generally, an ITPO
will be composed by several tasks of lower level).

Data relative to the computation time for the subtasks.

Precedence and exclusion relations (they will be described later).
Information about preemptive and non preemptive tasks.

Communication requirements and their associated costs.

5.1 Information about IPOs

We will study in depth which are the contents of the IPOs database required by
the interface.

Subtasks Each IPO in the environment constitutes an artificial vision opera-
tion. It’s possible, therefore, to split it in elementary blocks at many different
levels. A high level division would represent a small number of operations and a
high complexity degree; while a low level division would require more operations
each one showing less complexity.

A multilevel representation has been used for the environment, so the user
can work with elementary operations or, if he wish, he can use higher level
operators. This way, he does not need to know the internal performance of each
one of the algorithms he uses. For example, he can add in the system a block that
carries out a certain morphological filter, instead of adding blocks for each one of
the elementary operations of erosion and dilation. It’s always possible, as it has
been mentioned before, to use elementary blocks for very specific algorithms.

On the contrary, the task scheduler requires a representation at the lowest
possible level, to be able to get an efficient implementation. Whichever algorithm
is capable to be executed faster if we use the maximum parallelism of the system;
if we use at the same time different processors to execute each subtask. On the
other hand, the fact of executing in a certain order each one of the steps in an
algorithm can also produce a speed improvement. But to achieve that point,
it’s necessary to know in detail the process. And the first data to be known are
the subtasks in which a task can be divided. Besides, the more detailed this
subdivision, the better the results.



Processor First of all, each one of the subtasks mentioned before must be
characterized by the kind of function or kind of processors that can execute it.

First, in an artificial vision system there will be mainly two kinds of processor:
CPUs and image processing boards (IAPBs). Most tasks will be carried out using
whichever of these two elements. But there will be operations (for example image
acquisition) that will be only executed by the processing board. In the same way,
there will be complex algorithms that will be only implementable using CPUs.

This way, it’s necessary to specify the kind or kinds of processors able to
execute each subtask. This information will be used as a restriction in order to
get a feasible scheduling.

Execution Time This value must also be specified for each subtask. A standard
measure is used: the number of operations required. This way it will be possible
to consider the different processor speeds in task assignment and scheduling.

Depending on the processors, there will be fixed or variable execution times.
In the latter case, times will be represented by a formula according to the input
image size and depth, or in general, according to whichever variable related to
the block.

Possible Parameters Finally, the blocks also admits the possibility to be
characterized according to:

e Different possibilities to perform the same operation.
e Image kind and size.
e Etc.

Most information is used at present by the scheduling system. The remaining
data has been added anticipating possible new scheduler features.

5.2 Interface process

As it has been mentioned before, the output that must produce this interface is
a task group. The information contained in this graph is organized in two lists:

e Task and associated data list
Each task is described in terms of:
¢ Execution time.
e Preemption.
e Communication requirements.
e Precedence relations list
Considers task pairs in a fixed order:
e Source task.
e Destination task.

To obtain these lists a top-down procedure, which starts from a rough general
description to refine it step by step, has been designed.
The necessary stages in this process are specified:



e Obtaining the initial graph
A first graph is created assigning one task to each IPO. In this way, a tasks
list and precedence list is generated. The precedence list is generated accord-
ing to the present connections in the scheme.
e Exploding the initial graph
Sequentially, each task (so far representing only one IPO) is exploded in its
elemental components. This operation requires the following modifications
in the lists:
o Elimination of the task corresponding to the IPO and creation of as
many new tasks as components it has.
e Creation of new elements in the precedence relation list, binding each
one of the IPO components.
The final result of this process is a completely defined graph, to the detail
specified in the visual workspace database.

6 Task Scheduler

It constitutes the last stage in the resolution of vision problems. Depending on
the available hardware, an optimized space-time scheduling is calculated.

The system is generic and realistic: a static scheduler has been designed that,
on one hand, considers subtasks interruption and, besides, takes into account
precedence relations. In this way, we can assure that the offered solution is a
feasible solution and therefore can be implemented in practice.

6.1 Characteristics of a static scheduling

In static scheduling the processor assignment, as well as start execution times
for each subtask, are calculated before its real execution.

One of the main objectives of this scheduler is to reduce the final execution
time of a subtasks group, as well as to obtain information about the possibility of
executing it within certain time limits. [2] [3] [4] [5]. The algorithms that perform
static scheduling can be classified in two groups: first of all, those that give an
heuristic solution. This solution is usually based according to a cost weighted by
the subtasks to be executed or another important information, so an exhaustive
search of solutions is performed, and it tries to calculate the better possible one.
On the other hand we have the algorithms that search an approximated solution,
and they will stop in the moment that the achieved solution is acceptable. These
algorithms are usually based on a solution and refine it in following iterations.

The major advantage of a static scheduling is that the required calculation
time to perform the scheduling is spent in the subtasks compilation, what results
to be more efficient at the execution time than the dynamic scheduling.

We must also have in mind that these systems do not always give an optimal
solution because its calculation, practically in all cases, is a NP-hard problem [6].
An NP-hard ploblem is a seemingly intractable decision ploblem for which the
only known solutions are exponential funcions of the ploblem size. Furthermore,



there is not tolerance to treat with extern events that could appear during the
system execution.

For the application, we have adopted static scheduling methods because they
perfectly fit in the system nature: either the tasks to be executed or the available
hardware are known a priori, what means that unexpected events will never
appear. Moreover, the user needs to know in a reliable way the execution time
associated to a certain scheme. Systems using dynamic scheduling are not able
to offer such data.

6.2 Relations between Subtasks

Two kinds of relationship between subtasks can been established, one according
to their creation instant and the other according to the capacity of being or not
being able to be blocked between them [7][8].

Def. Precedence relations: a subtask i precedes another, j if and only if j can
not start execution until the i subtask has been finished. The precedence relations
can be expressed with a guided graph where the nodes are the subtasks to be
executed and the edges represent the actual precedence relations. Independent
subtasks can be executed concurrently.

Def. Ezclusion relations: a subtask i excludes another j, when the i subtask
is being executed the j subtask can not be executed. This condition serves to
guarantee the access to shared resources, as input/output ports or printers.

6.3 Kinds of Subtasks

To perform the system scheduling we need to know the subtasks graph in which
this system is divided. The interface module generates this information from the
scheme coming from the artificial vision system editor.

The subtasks of this graph can be divided in three groups:

CPU This kind of subtask is to be executed only in a processor of CPU kind,
and having in mind the characteristics of it, they will be able to be preemptive.
The main purpose in vision systems will be to execute high level operations
not available in hardware; as well as synchronizing execution with the rest of
processors when necessary.

IAPB Low level subtasks that are only executed in a TAPB processor, as for
example the image acquisition, filtering, etc. They will be able to be preemptive.
To execute such a task in a certain IAPB, a CPU processor should have sent pre-
viously the proper order. These orders can be sent in packets, so making a better
use of the available broadband. Therefore, before executing a TAPB subtask, a
CPU task and a communication one called CPU/IAPB will be required.



CPU/IAPB They permit to send data between CPU and IAPB processors.
This data can be, from single instructions to execute a certain process, to the
results achieved in a certain processing. These subtasks can not be stopped and
require the two implied processors to be available during the transmission; it’s
to say, we can consider that they are being executed in the two processors at the
same time.

6.4 Scheduling and Allocation

The exposed development allows multiple possibilities of task scheduling/assignment,
the user can choose among them according to the results he wishes to obtain:

1. Temporal scheduling using only one processor of each kind.

2. Temporal scheduling provided a previous spatial assignment has been per-
formed manually.

3. Spatial assignment based on a temporal scheduling previously calculated for
only one processor.

4. Simultaneous assignment and scheduling. These methods give the better
results because they consider the possible interrelations between spatial and
temporal distributions.

5. Information about the maximum number of processors of each kind necessary
for a minimum time execution.

For the algorithms of kind 2, 3 and 4, it’s necessary to know how many
processors of each kind are available. This is part of the information required by
the scheduler: the available hardware.

The scheduler gives, whichever the chosen algorithm, the following informa-
tion about the scheduling results:

1. Spatial and temporal distribution graph: shows graphically which subtasks
are executed in each processor and their start and finish times. Besides, a
color code allows to distinguish between subtasks types.

. Processor usage: indicates how busy each processor is (percentage of time
the processor is not idle).

[\)

. System usage: average time for all the available processors.
. System Execution time: time necessary to fully execute the scheme.
. Subtasks graph: graph used to obtain the scheduling.

. Information about the subtasks: it allows to view the information relative to
each subtask, displaying only those groups selected by the user.

S O = W

Finally, we must emphasize that once the initial simulation has been per-
formed, it’s possible to obtain another simulation with the same data using a
different algorithm or modifying the available hardware.



7 Example of the System Performance

To evaluate the functionality of the presented system, an example is outlined
below showing a stereo correspondence algorithm. The example algorithm cal-
culates the stereo correspondence between edge features obtained as the zero-
crossings of the convolution of each image with the V2G (Laplacian of Gaussian)
operator [9]. The algorithm implements the cross-channel coherence between fil-
ters tuned to different spatial frequencies [10].

Without deepening in the algorithm, whose details can be found in the previ-
ously indicated references, the images obtained from a stereo pair of parallel axis
[10] are filtered at three different spatial frequency channels. The correspondence
at each channel establishes a set of candidates based on the similarity constrains
of sign and direction, within a maximum disparity interval. The last module
establishes a coherence checkup between channels to accomplish a classification
of matching candidates.

The following figures show step by step how the system behaves. Figure 6
represents the first step where the algorithm is represented as a visual workspace
scheme. Figure 7 shows the task graph obtained from the scheme. Task proce-
dures computation times and other data are available at this level. Figure 8
outlines the automatic allocation and scheduling results provided there are 3
CPUs and 2 IAPBs in the system. Figure 9 shows an alternative schedule us-
ing manual assignment. Finally, Fig. 10 represents the automatic allocation and
scheduling provided there are no hardware restrictions.
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Fig. 6. Stereo algorithm scheme (Visual workspace view)
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8 Conclusions

The visual workspace becomes a powerful tool in the development of applications
in computer vision, with the added possibility of hierarchical design in complex
processes.

The application offers a huge amount of information to the user, as compared
to other similar tools. Particularly, hardware selection becomes an easy task once
the time requirements are fixed. And it is also possible to check for the feasibility
of a certain real time processing algorithm by just simulating the system with
no hardware restrictions.

The general algorithm (simultaneous assignment and scheduling) does not
always find the optimal solution. In fact, on complex systems like those we are
dealing with, it can not be assured that the optimal solution has been found
without checking all the possible schedules, which in most cases is an unafford-
able work (references on this point can be found on [6] and [11]). What the
system gives is a pseudo-optimal schedule based on a heuristic algorithm. The
performance evaluation of our algorithm in comparison with other scheduling
techniques is not easy as most of these techniques can not be applied to scenar-
ios as complex as those our algorithm deals with (preemption, etc.).

On the other side, the 'no hardware restrictions algorithm’ (hardware re-
quirements for optimal performance: figure 10) does give an optimal solution in
terms of execution time, as it uses as many processors as needed.
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Future improvements include the consideration of communication costs in
order to make the simulations even more realistic. New scheduling techniques
[12][13]are being investigated at present with promising results.
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