
Simulation and Scheduling of Real�Time

Computer Vision Algorithms

F�Torres�� F�A�Candelas�� S�T�Puente�� L�M�Jim�enez�� C�Fern�andez�� and
R�J�Agull�o�

� Physics� Systems Engineering and Signal Theory Department� University of
Alicante� Spain

� Science and Technology Dept� System Engineering and Automation Div� University
Miguel Hern�andez� Spain

Abstract� A fully integrated development tool for computer vision sys�
tems has been built in the framework of this paper�
There are many applications that help the user in the design of such
systems� using graphical interfaces and function libraries� Even in some
cases� the �nal source code can be generated by these applications�
This paper goes a step beyond� it allows the development of computer
vision systems from a distributed environment� Besides� and as a distinc�
tive characteristic with regard to other similar utilities� the system is able
to automatically optimize task scheduling and assignment� depending on
the available hardware�

� Introduction

The proposed tool establishes a mechanism for the development of general com�
puter vision applications from the posing stage until codi�cation� scheduling
and the necessary hardware selection to its execution� This process is complex�
and usually causes time charges in the scheduling problem resolution and in the
debugging of a speci�c codi�cation for each equipment�

The exposed system integrates all the tasks and automates great part of the
work that must be carried out by the programmer� who in this way can think in
the problem analysis and the solution exposition� The debugging and scheduling
tasks are analyzed depending on the accumulated experience in the applications
design for speci�c hardware environments� being implemented in well�de�ned
and robust modules�

The application structure establishes two main modules that are the visual
workspace and the processing task scheduler� A database works as a link between
both modules collecting the necessary information about the nature of the tasks
designed by the programmer�

Standard systems as Khoros �Khoral Research� have been considered prior
to this development� Khoros with his visual environment Cantata is highly mod�
ular and extensible with distributed processing capabilities� Other systems as
Gargoyle �Univ� Chicago� are focused on active vision applications� Our system
adds capability of distributed development �not jus distributed execution� and
interface with scheduling algorithms�



��� Scheme of the Application

In the Fig� 	 the basic system architecture is schematically shown� The two
main modules can be observed
 the visual workspace �together with its associ�
ated database� and the scheduling module� Also� the interrelations between the
di�erent elements and the information �ow are exposed�

Fig� �� Scheme of the application

In short� the objectives of the principal components of the application can
be deduced from its input and output data �Table 	� Table 
��

Table �� Data �ow of Visual Workspace

Input data Ouput data Database contents

Ploblem to be solved Scheme Blocks description

Table �� Data �ow of Scheduler

Input data Ouput data

Task graph 	from a sheme
 Allocated and scheduled task
Blocks description
Available hardware

The �rst section of the article explains what the visual workspace consists of
and which are its main functionalities� It makes a special point of the di�erent
characteristics in relation to other similar environments�

Next� the interface module is described in detail� All the required operations
to obtain a task graph �required input in the scheduler� from a scheme �visual
workspace output� are speci�ed�



Finally� the third section focuses on the scheduler subsystem� describing all
the o�ered possibilities and the di�erent output information that can be ob�
tained�

An example is added in order to o�er a general view of the system� and
to show the integration level obtained� A reconstruction process from images
acquired by a pair of stereoscopic cameras has been chosen for this purpose�

� The Visual Workspace of EVA�

��� What Does the Visual Workspace Consist of�

The visual workspace allows to specify the algorithm or application to be devel�
oped as a diagram formed by a sequence of graphic objects �which will be called
IPOs � Image Processing Objects�� which represent the di�erent operations to be
executed� The data �or images� interchange and the execution �ow are indicated
through the present connections between di�erent IPOs� The visual workspace
provides tools to create a scheme� that is to say� to draw IPOs that represent the
operations and to interconnect them� as well as the tools to be able to execute
the program�

The environment by itself does not execute a scheme� but it works as an
interface or front�end application between the user and the processing software
modules�� The way to operate is to convert the graphic representation into a
scheme of commands for the software modules interpreter to refresh the state of
the scheme in the screen�

In addition to a communication to the software modules interpreter� the
visual workspace can reach remote applications like image servers or viewers�
Actually it is not the application which connects to the viewer� but an special
kind of IPO� viewer IPO� which is able to ask the interpreter for an image and
to send its data to a server�

The EVA application is designed in a distributed way� It consists of di�erent
applications
 an interpreter of the software modules server� a visual workspace
for computer vision systems� and a viewer� Whichever of these applications can
be executed several times and in several machines� provided that a TCP�IP
connection between them is established�

Figure 
 represents a situation with four machines� Two of them� � and ��
work as servers� The other two� 	 and 
� have the visual workspace and the
viewers� and are speci�cally assigned to users�

��� Visual Workspace Appearance

Hereafter� the components of the visual workspace are detailed� Figure � shows
a scheme the way it is represented in the environment�

� EVA 	Computer Vision Environment
� This application belongs to a CICYT project
coordinated by di�erent Spanish Universities�

� In this paper the development of the software modules is not presented�



Fig� �� EVA Architecture

Fig� �� Layout of the visual workspace



The visual workspace is a MDI application� In each window a scheme can be
drawn and executed with IPOs and interconnections between them��	��

� The Image Processing Objects �IPOs�

In the visual workspace the algorithms are expressed as graphic schemes� which
can be designed easily by the user with drawings composed of some basic graphic
objects� These objects are the IPOs �Image Processing Objects� and the con�
nections between them�

��� What is an IPO�

An IPO is a graphic element that represents an operation to be executed in a
scheme� It has several inputs� each one receiving data from other IPOs �mainly
they work with data representing images�� In the same way� the IPOs have several
outputs through which they give back the results data after the execution of the
operation they represent�

Each IPO have some characteristics or own properties� which can be divided
in two groups� In one hand the general properties� which represent values that
have all the IPOs� such as the number of inputs or outputs� etc�� and on the
other hand the particular properties� which depend on the kind of operations
the IPO performs� An example of particular property can be the selection of a
certain operation or function that the IPO must execute between all the possible
operations of a type�

In the Fig� � an arithmetic operation IPO� which computes the add function
of two inputs� is shown


Fig� �� IPO parts

In the �gure the di�erent parts of an IPO can be observed


� IPO name� This name depends on the operation the IPO represents� although
it can be modi�ed by the user�

� IPO icon� It�s a small drawing that helps to easily identify the operation the
IPO represents�



� Execution button� The user can switch on or o� the button� When the button
is on� the IPO starts its execution� and the operation will be carried out
provided all its inputs are available� When the button is o�� the IPO resets�

� Execution indicator� It is the small indicator that is on top of the IPO� and
points out whether its associated operation has been executed�

� Input and output connections� They are the square points that are on the
sides of the IPO� On the left side there are the input connections� and on
the right side there are the output ones� The number of inputs or outputs
connections can be chosen depending on the IPO kind� There are IPOs that�
because of its nature� have no input or output� IPOs that necessarily have a
certain number of inputs or outputs� IPOs that have maximum and minimum
limits in the inputs or outputs� etc�

��� Considerations of IPO Execution

The execution of each IPO of a scheme can be controlled manually through the
execution button each IPO has� To execute an IPO and to operate input data� the
execution button must be activated� This operation can be performed manually
by the user� switching on the IPO button with the mouse� or automatically when
the automatic execution mode is activated� Besides� before executing an IPO�
the previous IPOs should have been correctly executed� so that their outputs
are available�

When the execution of an IPO is achieved� this activates its execution indica�
tor� operates input data according to speci�c properties� and� if the execution is
correct� generates output data� that is sent to other IPOs which are connected�
There are also IPOs as the viewer one or the disk writer �from the kind of IPO
disk access� which don�t produce any output data to other IPOs� and that only
represent graphically or save the results� This kind of IPOs can be considered as
outputs schemes� where the data �ow ends�

The IPOs pass its data through some objects called connections�

��� IPOs connections

The connections are the way in which the dependence between input data of
an IPO and output data generated by other IPOs is represented� A connection
is represented in a scheme as a pipe that starts in an output IPO and stops�
through possible rami�cations� in the inputs of another IPOs�

When a IPO has not yet been executed �either it has been added recently
to the scheme� or it has been reseted�� the connections that start from this one
are drawn as broken pipes to indicate that new data have not yet reached its
destination� On the contrary� when an IPO is correctly executed and sends the
data to its destination IPOs� the output connections appear as continuous pipes�
without any cut� so representing circulation of the data to destination IPOs� This
can be observed in the scheme of Fig� �� where the XOR IPO has not yet been
executed� and that�s why the pipe to the AND IPO is broken� The same happens
with the pipe between AND and the Disk Writer IPO�



Fig� �� A scheme example

� Results Viewer� Viewer IPO

��� Viewer IPO Performance

A viewer IPO is not able to create by itself a window where to show the image
received by the input connection� Instead� if it knows how to communicate to a
server�

In this way� to be able to see images that arrive at the viewer IPOs� the viewer
can reside in the same machine than the visual workspace� or in a machine which
can be accessed through a network from the machine where the visual workspace
is being executed�

��� Communication with IP Sockets

The connection between the visual workspace application and the server can be
achieved through sockets� some objects to communicate between applications of
a same machine or machines that coexist in a TCP�IP based network� A server
will have assigned an IP address �the machine address where it is being executed
in a network� and a port number that identi�es it�

� Visual Workspace 	 Scheduler Interface

It constitutes one of the main contributions of the present project� Its mission
is to serve as an union link between the two applications�

The visual workspace that is described in the previous sections o�ers as a
result a scheme of operations to be executed� As it has already been explained�
these schemes are composed of elementary blocks �the so�called IPOs� intercon�
nected between them�

Therefore� the elements that will be served as inputs for the interface are




� Used IPOs�

� Connections between IPOs�

� Environment database�

The database contains detailed information about each one of the IPOs that
can take part in the scheme� This information will be essential to convert the
input data �scheme of operations� to a task graph �set of tasks� precedence
relations and computation times required by the scheduling subsystem��

More in detail� the output interface must contain the following elements


� List of elementary subtasks that take part in the process �generally� an IPO
will be composed by several tasks of lower level��

� Data relative to the computation time for the subtasks�

� Precedence and exclusion relations �they will be described later��

� Information about preemptive and non preemptive tasks�

� Communication requirements and their associated costs�

��� Information about IPOs

We will study in depth which are the contents of the IPOs database required by
the interface�

Subtasks Each IPO in the environment constitutes an arti�cial vision opera�
tion� It�s possible� therefore� to split it in elementary blocks at many di�erent
levels� A high level division would represent a small number of operations and a
high complexity degree� while a low level division would require more operations
each one showing less complexity�

A multilevel representation has been used for the environment� so the user
can work with elementary operations or� if he wish� he can use higher level
operators� This way� he does not need to know the internal performance of each
one of the algorithms he uses� For example� he can add in the system a block that
carries out a certain morphological �lter� instead of adding blocks for each one of
the elementary operations of erosion and dilation� It�s always possible� as it has
been mentioned before� to use elementary blocks for very speci�c algorithms�

On the contrary� the task scheduler requires a representation at the lowest
possible level� to be able to get an e�cient implementation� Whichever algorithm
is capable to be executed faster if we use the maximum parallelism of the system�
if we use at the same time di�erent processors to execute each subtask� On the
other hand� the fact of executing in a certain order each one of the steps in an
algorithm can also produce a speed improvement� But to achieve that point�
it�s necessary to know in detail the process� And the �rst data to be known are
the subtasks in which a task can be divided� Besides� the more detailed this
subdivision� the better the results�



Processor First of all� each one of the subtasks mentioned before must be
characterized by the kind of function or kind of processors that can execute it�

First� in an arti�cial vision system there will be mainly two kinds of processor

CPUs and image processing boards �IAPBs�� Most tasks will be carried out using
whichever of these two elements� But there will be operations �for example image
acquisition� that will be only executed by the processing board� In the same way�
there will be complex algorithms that will be only implementable using CPUs�

This way� it�s necessary to specify the kind or kinds of processors able to
execute each subtask� This information will be used as a restriction in order to
get a feasible scheduling�

Execution Time This value must also be speci�ed for each subtask� A standard
measure is used
 the number of operations required� This way it will be possible
to consider the di�erent processor speeds in task assignment and scheduling�

Depending on the processors� there will be �xed or variable execution times�
In the latter case� times will be represented by a formula according to the input
image size and depth� or in general� according to whichever variable related to
the block�

Possible Parameters Finally� the blocks also admits the possibility to be
characterized according to


� Di�erent possibilities to perform the same operation�
� Image kind and size�
� Etc�

Most information is used at present by the scheduling system� The remaining
data has been added anticipating possible new scheduler features�

��� Interface process

As it has been mentioned before� the output that must produce this interface is
a task group� The information contained in this graph is organized in two lists


� Task and associated data list
Each task is described in terms of

� Execution time�
� Preemption�
� Communication requirements�

� Precedence relations list
Considers task pairs in a �xed order

� Source task�
� Destination task�

To obtain these lists a top�down procedure� which starts from a rough general
description to re�ne it step by step� has been designed�

The necessary stages in this process are speci�ed




� Obtaining the initial graph
A �rst graph is created assigning one task to each IPO� In this way� a tasks
list and precedence list is generated� The precedence list is generated accord�
ing to the present connections in the scheme�

� Exploding the initial graph
Sequentially� each task �so far representing only one IPO� is exploded in its
elemental components� This operation requires the following modi�cations
in the lists

� Elimination of the task corresponding to the IPO and creation of as
many new tasks as components it has�

� Creation of new elements in the precedence relation list� binding each
one of the IPO components�

The �nal result of this process is a completely de�ned graph� to the detail
speci�ed in the visual workspace database�


 Task Scheduler

It constitutes the last stage in the resolution of vision problems� Depending on
the available hardware� an optimized space�time scheduling is calculated�

The system is generic and realistic
 a static scheduler has been designed that�
on one hand� considers subtasks interruption and� besides� takes into account
precedence relations� In this way� we can assure that the o�ered solution is a
feasible solution and therefore can be implemented in practice�

��� Characteristics of a static scheduling

In static scheduling the processor assignment� as well as start execution times
for each subtask� are calculated before its real execution�

One of the main objectives of this scheduler is to reduce the �nal execution
time of a subtasks group� as well as to obtain information about the possibility of
executing it within certain time limits� �
� ��� ��� ���� The algorithms that perform
static scheduling can be classi�ed in two groups
 �rst of all� those that give an
heuristic solution� This solution is usually based according to a cost weighted by
the subtasks to be executed or another important information� so an exhaustive
search of solutions is performed� and it tries to calculate the better possible one�
On the other hand we have the algorithms that search an approximated solution�
and they will stop in the moment that the achieved solution is acceptable� These
algorithms are usually based on a solution and re�ne it in following iterations�

The major advantage of a static scheduling is that the required calculation
time to perform the scheduling is spent in the subtasks compilation� what results
to be more e�cient at the execution time than the dynamic scheduling�

We must also have in mind that these systems do not always give an optimal
solution because its calculation� practically in all cases� is a NP�hard problem ����
An NP�hard ploblem is a seemingly intractable decision ploblem for which the
only known solutions are exponential funcions of the ploblem size� Furthermore�



there is not tolerance to treat with extern events that could appear during the
system execution�

For the application� we have adopted static scheduling methods because they
perfectly �t in the system nature
 either the tasks to be executed or the available
hardware are known a priori� what means that unexpected events will never
appear� Moreover� the user needs to know in a reliable way the execution time
associated to a certain scheme� Systems using dynamic scheduling are not able
to o�er such data�

��� Relations between Subtasks

Two kinds of relationship between subtasks can been established� one according
to their creation instant and the other according to the capacity of being or not
being able to be blocked between them �������

Def� Precedence relations� a subtask i precedes another� j if and only if j can
not start execution until the i subtask has been �nished� The precedence relations
can be expressed with a guided graph where the nodes are the subtasks to be
executed and the edges represent the actual precedence relations� Independent
subtasks can be executed concurrently�

Def� Exclusion relations� a subtask i excludes another j� when the i subtask
is being executed the j subtask can not be executed� This condition serves to
guarantee the access to shared resources� as input�output ports or printers�

��� Kinds of Subtasks

To perform the system scheduling we need to know the subtasks graph in which
this system is divided� The interface module generates this information from the
scheme coming from the arti�cial vision system editor�

The subtasks of this graph can be divided in three groups


CPU This kind of subtask is to be executed only in a processor of CPU kind�
and having in mind the characteristics of it� they will be able to be preemptive�
The main purpose in vision systems will be to execute high level operations
not available in hardware� as well as synchronizing execution with the rest of
processors when necessary�

IAPB Low level subtasks that are only executed in a IAPB processor� as for
example the image acquisition� �ltering� etc� They will be able to be preemptive�
To execute such a task in a certain IAPB� a CPU processor should have sent pre�
viously the proper order� These orders can be sent in packets� so making a better
use of the available broadband� Therefore� before executing a IAPB subtask� a
CPU task and a communication one called CPU�IAPB will be required�



CPU	IAPB They permit to send data between CPU and IAPB processors�
This data can be� from single instructions to execute a certain process� to the
results achieved in a certain processing� These subtasks can not be stopped and
require the two implied processors to be available during the transmission� it�s
to say� we can consider that they are being executed in the two processors at the
same time�

��� Scheduling and Allocation

The exposed development allows multiple possibilities of task scheduling�assignment�
the user can choose among them according to the results he wishes to obtain


	� Temporal scheduling using only one processor of each kind�


� Temporal scheduling provided a previous spatial assignment has been per�
formed manually�

�� Spatial assignment based on a temporal scheduling previously calculated for
only one processor�

�� Simultaneous assignment and scheduling� These methods give the better
results because they consider the possible interrelations between spatial and
temporal distributions�

�� Information about the maximum number of processors of each kind necessary
for a minimum time execution�

For the algorithms of kind 
� � and �� it�s necessary to know how many
processors of each kind are available� This is part of the information required by
the scheduler
 the available hardware�

The scheduler gives� whichever the chosen algorithm� the following informa�
tion about the scheduling results


	� Spatial and temporal distribution graph
 shows graphically which subtasks
are executed in each processor and their start and �nish times� Besides� a
color code allows to distinguish between subtasks types�


� Processor usage
 indicates how busy each processor is �percentage of time
the processor is not idle��

�� System usage
 average time for all the available processors�

�� System Execution time
 time necessary to fully execute the scheme�

�� Subtasks graph
 graph used to obtain the scheduling�

�� Information about the subtasks
 it allows to view the information relative to
each subtask� displaying only those groups selected by the user�

Finally� we must emphasize that once the initial simulation has been per�
formed� it�s possible to obtain another simulation with the same data using a
di�erent algorithm or modifying the available hardware�



� Example of the System Performance

To evaluate the functionality of the presented system� an example is outlined
below showing a stereo correspondence algorithm� The example algorithm cal�
culates the stereo correspondence between edge features obtained as the zero�
crossings of the convolution of each image with the r�G �Laplacian of Gaussian�
operator ���� The algorithm implements the cross�channel coherence between �l�
ters tuned to di�erent spatial frequencies �	���

Without deepening in the algorithm� whose details can be found in the previ�
ously indicated references� the images obtained from a stereo pair of parallel axis
�	�� are �ltered at three di�erent spatial frequency channels� The correspondence
at each channel establishes a set of candidates based on the similarity constrains
of sign and direction� within a maximum disparity interval� The last module
establishes a coherence checkup between channels to accomplish a classi�cation
of matching candidates�

The following �gures show step by step how the system behaves� Figure �
represents the �rst step where the algorithm is represented as a visual workspace
scheme� Figure � shows the task graph obtained from the scheme� Task proce�
dures computation times and other data are available at this level� Figure �
outlines the automatic allocation and scheduling results provided there are �
CPUs and 
 IAPBs in the system� Figure � shows an alternative schedule us�
ing manual assignment� Finally� Fig� 	� represents the automatic allocation and
scheduling provided there are no hardware restrictions�

Fig� �� Stereo algorithm scheme 	Visual workspace view




Fig� 	� Stereo algorithm task graph 	Scheduler view


� Conclusions

The visual workspace becomes a powerful tool in the development of applications
in computer vision� with the added possibility of hierarchical design in complex
processes�

The application o�ers a huge amount of information to the user� as compared
to other similar tools� Particularly� hardware selection becomes an easy task once
the time requirements are �xed� And it is also possible to check for the feasibility
of a certain real time processing algorithm by just simulating the system with
no hardware restrictions�

The general algorithm �simultaneous assignment and scheduling� does not
always �nd the optimal solution� In fact� on complex systems like those we are
dealing with� it can not be assured that the optimal solution has been found
without checking all the possible schedules� which in most cases is an una�ord�
able work �references on this point can be found on ��� and �		��� What the
system gives is a pseudo�optimal schedule based on a heuristic algorithm� The
performance evaluation of our algorithm in comparison with other scheduling
techniques is not easy as most of these techniques can not be applied to scenar�
ios as complex as those our algorithm deals with �preemption� etc���

On the other side� the �no hardware restrictions algorithm� �hardware re�
quirements for optimal performance
 �gure 	�� does give an optimal solution in
terms of execution time� as it uses as many processors as needed�



Fig� 
� Automatic task allocation and scheduling 	Hardware� 
 CPU�s� � IAPB�s


Fig� �� Automatic scheduling 	Hardware� 
CPU�s� � IAPB�s




Fig� ��� Hardware requirements for optimal performance

Future improvements include the consideration of communication costs in
order to make the simulations even more realistic� New scheduling techniques
�	
��	��are being investigated at present with promising results�


 Acknowledgments

This work was supported by the Spanish Government through CICYT in the
framework of project TAP������
��C����	�

References

�� Ben Shneiderman� Designing the User Interface� Addison Wesley� �����
�� Lo� V�M�� Heuristic Algorithms for Task Assignment in Distributed systems� IEEE

Trans� Computers� Vol C�
�� N��� Nov� ����� pages �
����
���

� Sarkar� V�� and J� Hennesy� Compile�Time Partitioning and Scheduling of Parallel

Programs� Symp� Compiler Constructrion� ACM Press� New York� N�Y�� �����
pages ������

�� Shirazi� B�� M� Wang and G� Pathak� Analysis and Evaluation of Heuristic Methods
for Static Task Scheduling� In Parallel and Distributed Computing� Vol�� ��� �����
pages �����
��

�� Stone� H� S� Multiprocessor Scheduling with the Aid of Network Flow Algorithms�
IEEE Trans� Software Eng� Vol� SE�
 N�� Jan ����� pages ����


�� Phillip A� Laplante� Real�Time Systems Design and Analysis� IEEE Press� New
York 	����
�

�� F� Torres Medina� Arquitectura paralela para el procesado de imgenes de alta
resolucin� Aplicacin a la inspeccin de impresiones en tiempo real� PhD� ETSII�
Polytechnic University of Madrid� �����

�� C�M� Krishna� Kang G� Shin� Real�time systems� McGraw�Hill� New York 	����
�



�� Marr� D� Vision� Ed� Freeman� ����
��� Mayhew� J�E�W� and Frisby� J�P� Psychophysical and Computation Studies Towars

a Theory of Human Stereopsis� Arti�cial Intelligence� ��� pp�
���
��� �����
��� Nimal Nissanke� Realtime Systems� Prentice Hall� London 	����
�
��� Lee� B�� A� R� Hurson� and T��Y Feng� A Vertically Layered Allocation Scheme for

Data Flow Systems� In J� Parallel and Distributed Computing� Vol� ��� N 
� �����
pages ��������

�
� Wang� M�� et al�� Accurate Communication Cost Estimation in Static Task Schedul�
ing� In Proc ��th Ann� Hawaii Int�l Conf� System Sciences� Vol I� IEEE CS Press�
Los Alamitos


