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ABSTRACT 

Array measurements have become a valuable tool for site response characterization in a 

non-invasive way. The array design, i.e. size, geometry and number of stations, has a 

great influence in the quality of the obtained results. From the previous parameters, the 

number of available stations uses to be the main limitation for the field experiments, 

because of the economical and logistical constraints that it involves.  

Sometimes, from the initially planned array layout, carefully designed before the 

fieldwork campaign, one or more stations do not work properly, modifying the 

prearranged geometry. Whereas other times, there is not possible to set up the desired 

array layout, because of the lack of stations. Therefore, for a planned array layout, the 
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number of operative stations and their arrangement in the array become a crucial point in 

the acquisition stage and subsequently in the dispersion curve estimation. 

In this paper we carry out an experimental work to analyze which is the minimum 

number of stations that would provide reliable dispersion curves for three prearranged 

array configurations (triangular, circular with central station and polygonal geometries). 

For the optimization study, we analyze together the theoretical array responses and the 

experimental dispersion curves obtained through the f-k method.  

In the case of the f-k method, we compare the dispersion curves obtained for the original 

or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion 

curves obtained when a certain number of stations n is removed, each time, from the 

original layout of X geophones. The comparison is evaluated by means of a misfit 

function, which helps us to determine how constrained are the studied geometries by 

stations removing and which station or combination of stations affect more to the array 

capability when they are not available. All this information might be crucial to improve 

future array designs, determining when it is possible to optimize the number of arranged 

stations without losing the reliability of the obtained results. 

 

Keywords: Array design, Array optimization, Seismic noise, f-k technique 

 

 

1.   INTRODUCTION 

Ambient noise based studies constitute an extended procedure for microzonation 

purposes, specially suitable for zones where conventional seismic methods are difficult or 
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even prohibitive to implement, such as urban or environmentally sensitive areas (e.g. 

Bard, 1994; Lebrun et al., 2001; Souriau et al., 2007; D’Amico et al., 2008; Mundepi et 

al., 2010). 

Within the microtremor survey method, array analysis constitutes a valuable tool 

for site response characterization, obtaining the dispersion curve at the study area and 

then estimating the Vs profile by means of an inversion procedure (Ohrnberger et al., 

2004; Parolai et al., 2007; Endrun et al., 2010). Some of the most used array techniques 

are the frequency-wavenumber (f-k) (Capon, 1969; Lacoss et al., 1969; Asten and 

Henstridge, 1984; Horike, 1985; Ohrnberger, 2001), the spatial autocorrelation (SPAC) 

(Aki, 1957; Roberts and Asten, 2004) and the extended spatial autocorrelation (ESAC) 

(Ohori et al., 2002; Okada, 2003). 

Because of the economical and logistical constraints that limit the number of 

stations used in the field experiments, the election of an appropriate array size and 

geometry is a key factor to enhance the resultant dispersion curves (SESAME, 2005). 

Circular layout with an odd number of stations is shown in many works as a good 

way to optimize the array layout for a given number of sensors (Poggi and Fäh, 2010; 

Endrun et al., 2010; Rosa-Cintas et al., 2011; Mahajan et al., 2011). It presents large 

aperture, as well as small inter-station distances, which provide good resolution and 

aliasing capabilities, respectively. Moreover, circular layout displays a good azimuthal 

sampling, showing homogeneous geometry for all the arrival directions. 

Other array shapes reported in literature are triangular (Asten et al., 2004; Chun-

Hsiang et al., 2009; Stephenson et al., 2009; Mundepi et al., 2010), seven-station 

hexagonal (Asten et al., 2000, 2004 and Asten, 2006), semi-circular (Chouet et al., 1998; 
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Asten et al., 2004), cross-shaped (Ohori et al., 2002; Asten et al., 2004), T-shaped 

(Parolai et al., 2007; Picozzi et al., 2010), L-shaped (Horike, 1985) and irregular-

geometry (Parolai et al., 2006, 2007 and 2010; Picozzi et al., 2009; Endrun et al., 2010; 

Boxberger et al., 2011). 

Traditionally, the performance of a given array layout is evaluated by the 

theoretical array response pattern (also known as beam pattern), which provides insights 

about the aliasing effects and the maximum resolution limits, in terms of the maximum 

and minimum wavenumbers, respectively. However, these results only depend on the 

array configuration, without taking into account the nature and direction of the noise 

wavefield, that is the slowness and the wavenumber of the recorded seismic phases. 

Therefore, it is also important to consider the array technique used and then, the obtained 

experimental dispersion curve, which provides insights of the effective wavenumber 

range that can be reached, i.e. the real array capability. 

In this way, several papers study the array optimization in terms of geometry and 

number of stations by using the SPAC method. Asten et al. (2004) and Asten (2006) 

numerically analyze the expected behavior of the SPAC spectrum with different array 

configurations and azimuth samplings. They conclude that for triangular arrays the 

limited spatial averaging provided by the placement of geophones is compensated by 

greater averaging provided by a larger azimuthal spread of energy sources. For semi-

circular arrays, their use provides significant improvements in the SPAC technique when 

dominant seismic noise sources exist at fixed locations, while the hexagonal array is 

superior in maximizing the range of detectable wavelengths. 
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In other researches, Cho et al. (2004, 2006 and 2008) further evaluated the 

maximum expected errors on SPAC spectra, with respect to frequency and number of 

sensors, using different wavefield scenarios. Also Okada (2006) completed a similar 

study, considering the minimum number of stations required by a circular array for 

efficient data collection in terms of analytical efficacy and field effort. He concludes that 

the 3-stations circle array, when compared with other 4-, 5-, and 9-station arrays, is the 

most efficient and favorable for observation of microtremors, if the SPAC coefficients 

are used up to a frequency at which the coefficient takes the first minimum value. He also 

establishes that the Nyquist wavenumber is the most influential factor that determines the 

upper limit of the frequency range up to which the valid SPAC coefficient can be 

estimated. 

More recently, Claprood and Asten (2010) propose a methodology to 

experimentally assess the reliability of the SPAC method on observations made with a 

limited number of sensors; investigating parameters such as the number of sensors (pair 

of sensors, triangular or hexagonal arrays), the length of the time series and the frequency 

interval, by analyzing the behavior of the real and imaginary components of the observed 

coherency spectra. 

Concerning the array optimization with f-k method, we found less researching in 

the literature. Barber (1959) and Haubrich (1968) showed ways in which the beam 

pattern can be understood and optimized for a given number of sensors. Later, Kind et al. 

(2005) presented an application based on high-resolution beamforming f-k method 

applied to the vertical component of the measurements. They point out that although the 
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beamforming method does not depend on the specific array configuration, it does play an 

important role controlling the wavenumber resolution properties of the array. 

In a recent work, Picozzi et al. (2010) propose to correct the f-k power spectral 

density function (PSDF) estimate for the effects introduced by the array transfer function, 

in analogy to the correction for the instrumental response of seismological data. This 

methodology qualitative improves the f-k PSDF estimation, which has been traditionally 

based on the selection of a particular array configuration by a visual check of the array 

transfer function characteristics (i.e., Wathelet, 2005). 

The SPAC method is usually preferred in the literature to the f-k one, because of 

its requirement of fewer sensors to achieve the same array resolution and for its better 

resolution at low frequencies, corresponding to deep materials, for the same array 

aperture (Asten and Henstridge, 1984; Chávez-García et al., 2005; Okada, 2006; 

Claprood and Asten, 2010). In this way, Claprood and Asten (2010) propose an 

alternative method to detect the predominant propagation direction of microtremor 

wavefield, based on the azimuthal distribution of the mean square of residuals factors for 

SPAC observations. This new approach is presented as an interesting alternative to the 

traditional f-k method, which has poor resolution at low frequencies, when using a 

restricted number of sensors (i.e., 3- or 6-station arrays) (Claprood and Asten, 2010). 

As shown in the mentioned papers, array design constitutes an important issue in 

the microtremor survey method, even more because no an ideal array outline exists, since 

every configuration has both advantages and disadvantages over other types. For that 

reason, stations layout should be carefully planned before a fieldwork campaign. 

Unfortunately, sometimes, one or more stations do not work properly, modifying the 
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prearranged geometry (e.g. Mundepi et al., 2010; Rosa-Cintas et al., 2011). In other 

cases, there is not possible to set up the desired array layout because of the lack of 

stations. Therefore, for a planned array layout, the number of operative stations and their 

arrangement in the array become a crucial point in the acquisition stage and subsequently 

in the dispersion curve estimation. 

In this paper we have carried out an experimental work to carefully analyze the 

station missing effect over different prearranged array configurations (triangular, circular 

with central station and polygonal geometries) and then, determine the minimum number 

of stations that would provide reliable dispersion curves for the analyzed arrays.  

For the optimization study, we analyze together the theoretical array responses 

and the experimental dispersion curves obtained through the f-k method.  

In the case of the f-k method, we compare the dispersion curves obtained for the 

original or prearranged arrays with the ones obtained for the modified arrays, i.e. the 

dispersion curves obtained when a certain number of stations n is removed, each time, 

from the original layout of X geophones. This comparison study will help us to evaluate 

the possibility of obtaining reliable dispersion curves using (X-n) stations arrays instead 

of the original arrays with X stations. All this information will be valuable to improve 

future array designs, analyzing when it is possible to optimize the number of arranged 

stations, without losing the reliability of the obtained results. 

 

2.   METHODOLOGY 

2.1   Frequency-wavenumber method 
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Surface waves are considered the dominant and most coherent component forming part of 

seismic noise (Toksöz and Lacoss, 1968). When the seismic noise is recorded through an 

array of vertical seismometers simultaneously, the characteristics of the Rayleigh wave 

propagation in the medium can be extracted, that is the Rayleigh wave dispersion curve. 

The array data analysis can be carried out through different techniques, among which the 

frequency-wavenumber analysis (f-k) (Capon, 1969; Lacoss et al., 1969) is the technique 

that we have used. 

This method is based on the estimate of the frequency-wavenumber spectral 

density function, which provides the power as a function of the frequency and the vector 

velocities of the propagating waves. Since the propagation direction and the velocity are 

usually unknown beforehand, the search is performed on a dense wavenumber grid for 

each frequency. The maximum beam power on this grid provides an estimate of the 

propagation direction and the velocity of the plane waves. For that, the stationary 

assumption in both time and two spatial coordinates has to be fulfilled. 

The way of estimating the power spectrum classifies the method in two groups: 

the beam-forming method (BFM) (Lacoss et al., 1969), and the maximum likelihood 

method (MLM) (Capon, 1969). The MLM method increases the capability to distinguish 

between two waves travelling at close wavenumbers, improving the resolving power 

(Okada, 2003; Parolai et al., 2007; Endrun et al., 2010). 

For our study we use the BFM method because it is less sensitive to 

measurements errors (Capon, 1969) than MLM, although it exhibits lower resolving 

power. More details about both methods can be found in Horike (1985) and Okada 

(2003). 
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2.2   Data acquisition 

The seismic noise measurements were recorded around the village of Catral, which is 

located in the central part of the Bajo Segura Basin (southeast Spain). This area 

constitutes a well-known place studied in previous works (Rosa-Cintas et al., 2011, 

2012a, 2012b). 

The Bajo Segura Basin constitutes a Neogene-Quaternary depression developed 

in the northeast part of the Betic Cordillera (Delgado et al., 2000 and 2003). The basin 

has an elongated morphology in the ENE-WSW direction and it is controlled principally 

by two faults, the Crevillente fault to the north and the Bajo Segura fault to the south 

(Alfaro et al., 2002). The basement of the basin is mainly composed of limestones and 

marls (Triassic to Cretaceous age), while in the sedimentary fill of the basin we can find 

sandstones and marls, with levels of conglomerates and presence of gypsums, with ages 

comprised from the Late Miocene right up to the present time (Soria et al., 1999; Delgado 

et al., 2000 and 2003). 

Though the seismicity in the study area is moderate to low, several episodes of 

destructive earthquakes have taken place during the last centuries, like the 1829 

Torrevieja earthquake, with a maximum intensity EMS-98 of IX-X (Martínez Solares and 

Mézcua, 2002). 

The array was arranged using seismic refraction/reflection equipment consisting 

of twenty-four 10 Hz vertical geophones connected to a multichannel seismic recorder 

(RAS-24 Exploration Seismograph). The data acquisition was taken during 30 minutes at 

a sample rate of 500 Hz. 
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The same equipment was recently used by Rosa-Cintas et al. (2012b), in a similar 

way to Galiana-Merino et al. (2011), in order to study the suitability of low-cost 

geophones for taking array measurements of ambient noise and estimating the dispersion 

curves through the f-k and the ESAC techniques. The comparison of the results obtained 

by 1Hz-sensors and 10Hz-vertical-geophones arrays in terms of power spectra density 

functions and dispersion curves demonstrate the suitability of standard seismic 

refraction/reflection equipment for ambient noise array measurements. 

For the analyzed arrays and methods, the study reveals the capability of the 10 Hz 

vertical geophones to analyze frequencies much smaller than their natural one, reaching 

values down to 2 Hz for the large-aperture arrays. However, the effectiveness of the 10 

Hz geophones should be tested at each site, as it depends on the level of noise in the 

studied area. If such level is strong enough at the frequency we want to look at, likely 

also the 10 Hz geophones are capable to capture a part of the energy even at frequencies 

well below 10 Hz. Similar works studying the broadening of the usable frequency range 

for different kinds of sensors can be found in the literature, e.g. Strollo et al. (2008a and 

b), applied to the H/V technique (Nakamura, 1989).  

The studied zone is the same that in Rosa-Cintas et al. (2012b): the Bajo Segura 

Basin. Thus, based on the assumption of a stochastic wavefield, which is stationary both 

in time and space (Okada, 2003; Endrun et al., 2010; Rosa-Cintas et al., 2012b), we can 

consider proved the suitability of the 10 Hz vertical geophones for taking array 

measurements of ambient noise and estimating the dispersion curves down to frequencies 

of 2-3 Hz. 
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3.   ARRAY DESIGN 

The analyzed array configurations and their associated theoretical array responses are 

represented in Figure 1: triangular (7-geophones), circular with central station (9-

geophones) and polygonal (9-geophones) (Figures 1a, 1b and 1c, respectively). A set of 

eighteen geophones was precisely arranged using measuring tape in order to create a 

general array configuration of 25 m of aperture, which comprised all the analyzed 

geometries. Each one of the studied layouts is then derived from the general one, by 

removing a certain number of geophones before the data analysis. This way of 

performing the arrays allows simultaneous registers for all the studied geometries. 

The objective is to generate three layouts with similar characteristics in both 

number of stations and maximum aperture, despite the maximum inter-station distance is 

of 25 m in the circular and polygonal arrays and of 21.65 m in the triangular array, as it is 

inscribed in the circular geometry. 

In Table 1 we show the wavenumber limits, kmax and kmin/2 values, 

corresponding to the theoretical response of the arrays represented in Figure 1. kmax 

parameter provides insights about the aliasing effects and it is related to the lateral peaks 

of the theoretical array response; whereas the kmin value determines the resolution 

capability of the array to distinguish waves travelling at close wavenumbers and it is 

linked to the width of the central peak (Wathelet, 2005). 

From the values presented in Table 1, we can establish that the circular geometry 

is the one that provides a wider wavenumber range for the analysis of the computed 

dispersion curve. Concerning the maximum resolution limit (kmin/2), the circular shape 

shows lower limit value than the other two geometries, being almost the half of the 
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polygonal one. In the case of the triangular shape, it is normal that a higher limit value is 

provided, because the aperture is smaller and it is a 7-stations array front the other two 9-

stations arrays. But the polygonal array, conceived to join the largest aperture of the 

circular geometry with the shortest inter-station distances presented in the general array, 

shows unfortunately the highest maximum resolution limit, which actually means the 

shortest capacity of analysis at low frequencies. It provides even higher limit than the 

triangular geometry, which presents smaller aperture but providing higher spatial 

symmetry. 

Regarding the aliasing limit (kmax), the analyzed 9-geophones arrays provide 

considerably better results than the triangular one, with two stations less. The analyzed 

polygonal geometry, with the shortest inter-station distances, provides the highest limit, 

which means the biggest capacity of analysis at high frequencies. The difference respect 

to the circular geometry is small; nevertheless a small variation in the wavenumber 

domain can have a strong impact at high frequencies. 

 

4.   ARRAY OPTIMIZATION STUDY 

For the present study, we analyze together the theoretical array responses and the 

experimental dispersion curves obtained through the f-k method. 

The natural way to evaluate the influence of the array geometry and the number of 

stations is studying the theoretical array response. It is important that the array 

configuration provides a symmetric theoretical response respecting to the central peak, 

which ensures an equal response for waves coming from all azimuths. In contrast, the 

good performance of arrays that provide aligned theoretical responses will depend on the 
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direction of the incoming waves. The theoretical response also provides insights about 

the aliasing effects and the maximum resolution limits, in terms of the maximum and 

minimum wavenumbers, respectively.  

However, these results just show the theoretical array response and they only 

depend on the array configuration. The recorded measurements depend on the array 

configuration, but also on the nature and direction of the incoming noise wavefield. Thus, 

for the aim of this paper, we also consider that it is important to study the obtained 

dispersion curves, which provide insights of the effective wavenumber range that can be 

reached with a lower number of stations.  

For the experimental analysis, we only presuppose the general suppositions 

considered for array measurements: i.e. homogeneous and isotropic soil conditions under 

the area covered by the array (Okada, 2003); and stochastic and stationary noise 

wavefield in both space and time (Okada, 2003; Parolai et al., 2007; Endrun et al., 2010). 

In Figure 2, we show the directionality of the recorded seismic noise at four different 

frequencies, selected from the analyzed frequency range. The f-k analysis of the circular 

configuration has been chosen to display the noise sources distribution, since this layout 

provides the highest central symmetry of all the analyzed ones. The panels allow a clear 

identification of the maxima for all the frequencies depicted. The distribution of the noise 

sources is approximately isotropic with slight highlight of the maxima in directions E-W 

and NW-SE. 

In Figure 3, the dispersion curves estimated with the original geometries are 

presented. We also show the wavenumber limits functions for kmax/2 and kmin/2 values, 
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based on Table 1 parameters, to establish the theoretical valid wavenumber interval for 

each dispersion curve (Wathelet, 2005).  

At this point we would like to indicate that geophone #10 did not work properly 

during the acquisition time, so it was not considered for the data analysis of the circular 

array. Anyway, we can check that the obtained dispersion curve does not differ from the 

ones obtained with the triangular and the polygonal arrays, Thus, for the purposes of the 

present work, we could start establishing that the lack of one station in the 9-station 

circular array does not affect to the obtained dispersion curve (considering the mean 

value  standard deviation in the valid frequency interval). 

From Figure 3, it can be noticed that the three obtained dispersion curves are very 

similar. The differences among the analyzed array configurations can be found in the 

valid wavenumber range (given by kmin/2 and kmax/2), as it was previously observed in 

Table 1. The intersection of the obtained dispersion curves with the theoretical 

wavenumber limits allows establishing the frequency intervals of analysis for the 

dispersion curves. In the case of the circular array, the obtained dispersion curve does not 

intersect with the kmax/2 limit, but we can observe that for frequencies from about 15 Hz 

onward the phase velocity starts to increase, which is indicative of the spatial aliasing. 

Attending to this criterion, the frequency interval associated to each geometry is shown 

by different color areas in Figure 3.  

For the subsequent study we have decided to set the upper limit of analysis at 10 

Hz for the circular and polygonal arrays, as we are more interested in checking the 

behavior of the dispersion curves at low frequencies. Therefore, the analyzed frequency 
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ranges are: 4-9.5 Hz in the triangular layout, 3.5-10 Hz in the circular one and 5-10 Hz in 

the polygonal geometry. 

The f-k analysis was carried out using GEOPSY software from the Sesarray 

package (www.geopsy.org). The recorded signals were divided in data windows of 

frequency dependent length, including 30 periods of the frequency in focus. The 

identification of the high power regions in the wavenumber plane was conducted through 

the selection of two parameters: the grid size (kmax/2), which defines the usable range 

for the search of the maximum beam power and it is bounded by the aliasing limit; and 

the grid step (kmin/4), which defines the grid resolution.  

For the optimization study, we compare the dispersion curves obtained with the 

original array layouts with the dispersion curves computed for the modified arrays, i.e. 

the dispersion curves obtained when a certain number of stations n is removed, each time, 

from the original layout of X geophones. For the analysis of the modified arrays, the grid 

parameters were remained constant, being the same that the ones used with the 

corresponding original arrays. In this way, we can compare both curves in the same 

frequency band and then, evaluate the viability of using (X-n) geophones, instead of X 

ones, for the estimation of the dispersion curves. In Figure 4, we show the theoretical 

resolution limits (i.e. the kmin/2 values) of the original and the reduced configurations 

that provide at least acceptable results. In the case of the reduced configurations, different 

resolution limit values are obtained for the same number of geophones, depending on 

their distribution. Thus, a resolution limit range is provided when using (X-n) geophones. 

In general, the resolution limit increases as the number of geophones is reduced, 
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decreasing the theoretical array capability, although the minimum value can be also 

reached for some reduced configurations. 

We have also analyzed different layouts that can be considered equivalent, as they 

have the same geometry but different azimuths respecting to the incoming seismic noise. 

Thus, these equivalent geometries represent rotation of certain angles for the same layout. 

The aim of analyzing these equivalent geometries is to test the robustness of the modified 

arrays to anisotropic ambient noise.  

In order to show the significance (or not) of the bias, the mean value and the 

standard deviation of the dispersion curves obtained with the original and the modified 

array layouts are shown in Figures 5, 7 and 8. These differences have also been 

quantitatively evaluated through a misfit function, which has been computed in the 

analyzed frequency intervals by means of the following equation: 

    



m 
1

N

xS (i)  xG(i)

S (i)











2

i1

N

 
1

N

xS (i)  xG(i)

G(i)











2

i1

N

  (1) 

 

where 



xS and 



S are the mean value and the standard deviation of the dispersion 

curve obtained for the original array at the frequency sample i; 



xG and G  are the mean 

value and the standard deviation of the dispersion curve obtained for each modified array 

at the frequency sample i; and N is the number of frequency samples. 

The graphical comparison of the dispersion curves and the associated misfit 

values are shown for all the tested geometries in the annexes chapter. We refer to the 

annexes by using the nomenclature: ‘A.X.N’; where A means Annex, X denotes the array 

shape (i.e., T, Triangular; C, Circular and P, Polygonal) and N refers to the number of 
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annexes. In Figures 5, 7 and 8, we represent the cases that show the lowest and the 

highest misfit values for every array shape and number of geophones tested. 

The similarity of the three original dispersion curves helps for the misfit 

comparison among the different tested geometries, in order to determine which array 

configuration is less constrained by stations removing. 

In Table 2, we group the different analyzed cases according to the obtained misfit 

values and we compare the three array layouts combinations, for each determined number 

of geophones. The dispersion curves are classified in three groups according to the misfit 

values: (m  0.2) comprises the curves that can be considered as good ones, (0.2 < m  

0.5) the curves that can be considered as acceptable and (0.5 < m) the unacceptable ones. 

In the case of all the circular and polygonal configurations tested with 8 and 7 

stations, they provide good dispersion curves, with misfits down 0.2. Thus they are not 

included in Table 2.  

 

4.1 Triangular array 

In this section we analyze in more detail the results obtained for the triangular 

configurations, presenting in Figure 5 the cases that show the lowest and the highest 

misfit values for each determined number of geophones. The dispersion curves, including 

the standard deviation ranges, are represented together with the theoretical array 

responses and the theoretical k limits. 

By removing one geophone from the original triangular layout, the theoretical 

array response obtained for all the tested geometries maintain the central symmetry and 
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the differences experimented in the dispersion curves are insignificant, being ‘T.6.5’ and 

‘T.6.1’ the best and worst combinations, respectively (A.T.1, Figure 5a).  

When two or more stations are removed, then more attention has to be paid to the 

central symmetry of the theoretical response, as some of the modified arrays might 

highlight a particular direction or azimuth.  

In case of removing two geophones, the dispersion curves obtained for all the 

tested modified arrays are included inside the mean value  standard deviation range of 

the dispersion curve obtained for the original array, presenting then very slight 

differences among them. In this case, ‘T.5.4’ and ‘T.5.7’ provide the best and worst 

combinations, respectively (A.T.2, Figure 5b). 

When three or four geophones are removed, the standard deviation of the 

dispersion curves obtained for the modified arrays is higher than the one obtained for the 

original array, even though some of the analyzed cases present very low misfit values.  

For the three geophones removal, the good or acceptable geometries, according to 

their misfit values, are the ones with a theoretical array response showing a clear central 

symmetry (e.g. ‘T.4.2’ with m=0.0661, in Figure 6a and A.T.3). In contrast, the 

unacceptable geometries use to present a theoretical array response that highlights some 

particular direction (e.g. ‘T.4.5’ which is the worst analyzed case, in Figure 5c and 

A.T.3). At this point, it is important to comment the particular situation provided by the 

best geometry (i.e., ‘T.4.11’ in Figure 5c and A.T.4). In this case, the theoretical array 

response is lined up respecting to the horizontal view, but the obtained misfit value is the 

minimum of all the analyzed cases. This is probably because the characteristics of the 

recorded ambient noise that enhance the obtained results for this array configuration. We 
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can test this situation when we compare it with the results obtained with the array ‘T.4.9’ 

(in Figure 6b and A.T.4). In this configuration, the theoretical array response is lined up 

in the vertical view (perpendicular to the one obtained by the ‘T.4.11’) and the misfit 

value is 0.5403, close to the worst analyzed configuration. Thus, even though the 

geometry ‘T.4.11’ provides the minimum misfit value, we recommend to avoid it, as its 

theoretical array response does not present central symmetry and then, the goodness of 

the obtained dispersion curve might depend on the direction of the incoming ambient 

noise.  

When four geophones are removed, some layouts also provide good dispersion 

curves like ‘T.3.5’ or ‘T.3.7’, despite most of them are only acceptable like ‘T.3.2’ or 

‘T.3.9’ or unacceptable, e.g. ‘T.3.1’ or ‘T.3.3’ (see A.T.4 and A.T.5). The 3-stations 

layouts forming equilateral triangles with the shortest inter-station distances are the ones 

that generally provide the best dispersion curves. Figure 5d displays ‘T.3.7’ as the best 

configuration, with central symmetry in the theoretical response. In the other hand, 

‘T.3.10’, which is a linear configuration, shows the worst result. 

 

4.2 Circular array 

Secondly, we comment the results obtained for the circular geometry, which is, in fact, an 

8-stations array, as stated before. In Figure 7 we present the dispersion curves of the 

cases that show the lowest and the highest misfit values for each number of geophones, 

including the standard deviation ranges. The theoretical responses and the k limits are 

also displayed. 
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When one, two or three stations are removed, we can observe that the good or 

acceptable dispersion curves, according to their misfit values, are the ones with 

theoretical array responses showing a clear central symmetry (e.g. ‘C.7.3’, ‘C.6.6’ or 

‘C.5.13’ which are the best analyzed cases, in Figure 7a-c and A.C.1 to A.C.5). In 

contrast, the analyzed unacceptable geometries present theoretical array responses that 

highlight some particular direction (e.g. ‘C.7.6’, ‘C.6.11’ or ‘C.5.4’ which are the worst 

analyzed cases, in Figure 7a-c and A.C.1 to A.C.5). 

In the case of one station removal, the worst analyzed geometry provides also a 

good dispersion curve that matches very well to the one obtained through the original 

array. Nevertheless, as it was commented previously for the triangular configurations, we 

recommend avoiding any geometry without central symmetry in the theoretical array 

response. 

When four or five stations are removed, then it is difficult to find geometries that 

provide central symmetry in the theoretical array response. In these cases, most of the 

obtained dispersion curves are acceptable or unacceptable, according to their misfit value, 

with a standard deviation higher than the one obtained for the original array. In Figure 7d 

and 7e, the best and the worst analyzed geometries are shown. 

In the case of three aligned geophones (‘C.3.10’ in Figure 7e), the obtained 

dispersion curve presents some abrupt changes that may be due to instabilities in the 

computation process, since such dispersion curve does not correspond to any realistic 

physic structure of the ground. 

 

4.3 Polygonal array 
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For the polygonal geometry, the dispersion curves of the cases that show the lowest and 

the highest misfit values for each number of geophones, including the standard deviation 

ranges, are represented in Figure 8. We also include the theoretical array responses and 

the k limits for each layout. 

The original polygonal layout does not present a clear central symmetry in the 

theoretical array response (Figure 1c), what means a higher sensibility to the lack of some 

stations. 

When only one geophone is removed from the analyzed layouts (Figure 8a), the 

central symmetry of the theoretical array responses is almost maintained, and the 

obtained dispersion curves fit well to the one obtained through the original array.  

The suppression of more stations evidences the sensibility of the theoretical array 

response in the polygonal geometry, as some particular direction might be clearly 

highlighted, even by removing only two geophones. This is shown for 7 and 6-stations 

layouts in Figures 8b and 8c. Despite of providing good or acceptable dispersion curves 

in any case, the central symmetry of the theoretical array responses is not clear. The best 

cases, ‘P.7.1’ and ‘P.6.1’, highlight the vertical view, while the worst ones enhance an 

oblique direction. Thus, directionality in the incoming noise is going to be more 

determinant in the quality of the calculated dispersion curves than in previous geometries. 

By removing four, five or six geophones, the possibility of obtaining more regular 

geometries increases. Layouts with central symmetry in the theoretical array response 

coincide with the best estimated dispersion curves, as it is shown in Figures 8d, 8e and 8f. 

On the other hand, aligned or sparse geometries, which provide theoretical array 
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responses lined up in some preferential directions, are generally related to the worst 

dispersion curves. 

For 5-stations layouts, good dispersion curves are presented from layouts ‘P.5.1’ 

to ‘P.5.12’ and acceptable ones from ‘P.5.13’ to ‘P.5.14’ (see A.P.5 to A.P.7), according 

to the misfit values. When five geophones are removed (i.e., 4-stations layouts), from 

‘P.4.1’ to ‘P.4.7’ the dispersion curves are good, while from layouts ‘P.4.8’ to ‘P.4.10’ 

they are only acceptable (see A.P.7 to A.P.9). With six geophones less, there are no good 

dispersion curves and only for layout ‘P.3.1’ the dispersion curve can be considered as 

acceptable. 

 

4.4 Common inferences of the array optimization study 

Evaluating the statistical information presented in Table 2, we can state that among the 6-

stations arrays, the triangular combination clearly provides the best results, with misfit 

values always below 0.2. The other two layouts show higher error values, though most of 

the curves can be considered as good ones anyway. 

For the 5-stations combinations, the triangular geometry also provides the most 

stable dispersion curves, with more than 90% of the cases showing misfit values down 

0.2. Between the circular and the polygonal array, second one presents clearly better 

results with more good and less unacceptable dispersion curves. 

When four geophones are considered, the triangular combinations generally show 

the best results, but very close to the polygonal ones. Indeed, the polygonal geometry 

provides more cases of good curves than the triangular one. The difference lies in the 

percentage of acceptable curves, which for the triangular layout is double than for the 
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polygonal one. Meanwhile, the circular configuration shows more than a 50% of 

unacceptable curves. 

Finally, for the 3-stations layouts, the triangular array is the only geometry that 

shows good dispersion curves with a 20% of the cases with misfit values below 0.2. The 

configurations that generally provide the best results correspond to equilateral triangles 

with the shortest inter-station distance. 

Therefore, from the study carried out, we can observe how the inclusion of fewer 

stations in the array design does not necessary mean a worsening in the obtained 

dispersion curve, when they are suitable placed. Some examples of this are ‘T.3.7’ front 

‘T.5.7’ and ‘T.6.1’ (Figure 5, A.T.5, A.T.2 and A.T.1); ‘C.3.9’ front ‘C.5.4’ and ‘C.6.11’ 

(Figure 7, A.C.8, A.C.4 and A.C.3) or ‘P.3.1’ front ‘P.5.16’ and ‘P.6.16’ (Figure 8, A.P.9, 

A.P.7 and A.P.5). 

Also for the different analyzed cases, we find that when only a reduced number of 

stations are available, i.e. five or less, then it is preferred to keep the proximity between 

the sensors in a reduced layout, despite shortening the maximum aperture of the array, 

e.g. ‘T.3.7’ (A.T.5), ‘C.5.7’ (A.C.4) or ‘P.4.1’ (A.P.7). We should avoid linear 

configurations, e.g. ‘T.3.8’ (A.T.5), ‘C.4.12’ (A.C.7) or ‘P.4.15’ (A.P.9); isolated 

geophones or sparse geometries, e.g. ‘T.3.3’ (A.T.5), ‘C.4.7’ (A.C.6) or ‘P.4.11’ (A.P.9), 

which might lead to theoretical array responses without central symmetry and non-

reliable dispersion curves. 

Respecting to the theoretical resolution limits, we can see in Figure 4 how they 

change as the number of geophones is reduced. The minimum resolution limit is obtained 

for the original layout, although it can be also reached by some modified configurations. 
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Thus, from the study carried out, we can conclude that the resolution limit obtained for 

the original layout can be used for most of the good and acceptable reduced 

configurations without losing the reliability of the obtained dispersion curves. 

All these results have been obtained for a nearly isotropic noise wavefield (Figure 

2). Therefore, the extracted inferences might be considered general only for the frequency 

range where the distribution of the noise sources was homogeneous in space. 

 

4.5 Additional tests 

In order to evaluate the obtained common inferences, the same kind of analysis has been 

repeated for other circular arrays with different apertures and different kind of 

instruments. These noise measurements were recorded at different sites of the Bajo 

Segura Basin (southeast Spain). Concretely in Almoradí (two circular arrays with 25 m 

and 100 m of aperture) and in Catral (circular array with 60 m of aperture). Each array 

was composed of nine 1Hz Mark L-4C-3D seismometers: one of them in the center of the 

circular layout and the other 8 distributed approximately around it. During the data 

acquisition, one of the perimeter stations failed, producing a similar situation to the one 

analyzed previously with the geophones and the circular array. More details about this 

field campaign can be found in Rosa-Cintas et al. (2011). 

From the analysis carried out in the 25m-aperture array, we can extract the same 

general inferences stated in section 4.4. In Figure 9 we show the dispersion curves of the 

cases that show the lowest and the highest misfit values for each number of stations, 

together with the theoretical responses and the k limits. For this configuration, we can 
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check that even with only five stations it is possible to obtain geometries with central 

symmetry in the theoretical array responses and good or acceptable dispersion curves.  

For the other analyzed arrays, with apertures of 60 m and 100 m, respectively, the 

obtained results are worse than the ones obtained for the previous small arrays. As the 

distances among the stations are higher, the lack of some of these stations affects much 

more to the final results. From the analysis carried out, we can conclude that at least 6 or 

7-stations configurations are needed to obtain good or acceptable dispersion curves with 

these apertures. 

Therefore, the array optimization study works better for small aperture arrays, 

where the reduction of some geophones does not imply a severe separation among the 

rest of them. In contrast, as the array aperture increases, the reduction of geophones could 

conduct to a small set of geophones separated by a great distance, which would result in 

isolated geophones or sparse geometries and then in unacceptable dispersion curves.  

 

5.   CONCLUSIONS 

In this paper we have developed an experimental work to examine which is the minimum 

number of stations that would provide reliable dispersion curves for three prearranged 

array configurations: 7-geophones triangular, 9-geophones circular with central station 

and 9-geophones polygonal geometries. 

Each one of the studied layouts is derived from a general array of 25 m of 

aperture, by removing a certain number of geophones before the data analysis. The 

circular layout provides the wider frequency range for the dispersion curve analysis, with 

the lowest maximum resolution limit and one of the highest aliasing limits. Whereas, the 
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analyzed polygonal array, conceived to join the largest aperture of the circular geometry 

with the shortest inter-station distances presented in the general layout, does not show 

very promising results. In this case, it is clear that more stations would be needed to reach 

the same theoretical kmin limit than for the circular configuration. Regarding the 

triangular layout, it presents even lower maximum resolution limit than the polygonal 

array, with smaller aperture, and clearly lower aliasing limit than the two 9-stations 

arrays. 

By checking the dispersion curves obtained through the original layouts, we can 

notice that the three ones are very similar. The principal variation of using different array 

configurations is the valid frequency interval associated to each dispersion curve. In this 

sense, the circular and triangular geometries would be clearly preferred to the equivalent 

polygonal layouts. 

For the array optimization study we evaluate the theoretical array responses and 

the differences between the dispersion curves obtained through the original and the 

modified arrays, by means of a misfit function. Then we use this misfit value to classify 

the curves as: good, acceptable or unacceptable. 

The nature and direction of the incoming noise can be crucial in the final results. 

So we recommend designing layouts that present central symmetry in their theoretical 

array responses, as it was already addressed in the deliverables and guidelines of the 

SESAME project (i.e., SESAME, 2005).  

Although this first evaluation provides insights of the good performance of the 

modified arrays and their theoretical wavenumber limits, it is not enough to determine the 

minimum number of stations that might be used without losing the capability of the 
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original arrays. Thus, a subsequent evaluation of the dispersion curves is required, which 

provides estimation about the real effects on them. 

Among the tested layouts, the triangular geometry is generally less constrained by 

stations removing and therefore, it provides better results than the circular and the 

polygonal configurations. For the analyzed triangular geometries, we obtain good 

dispersion curves even with only three stations, whenever that the central symmetry of 

the theoretical array response is maintained. In this case, the best results are obtained by 

forming an equilateral triangle with the shortest inter-station distance. 

In the case of the circular layouts, we can obtain geometries with central 

symmetry in the theoretical array responses and good or acceptable dispersion curves, 

even with only five stations. When more than four stations are removed, then it is 

difficult to find geometries that provide central symmetry in the theoretical array 

response, because with few geophones placed in the perimeter of the circle, the resulting 

combinations are generally aligned or sparse. Thus, most of the obtained dispersion 

curves are acceptable or unacceptable, with higher standard deviation than the one 

obtained for the original array. 

Finally, the polygonal layout does not present a clear central symmetry in the 

original theoretical array response. This involves higher sensibility to the stations 

suppression, which could highlight some particular directions. As the number of 

geophones is reduced, more regular geometries can be obtained with clearer central 

symmetry in the theoretical array response. In these cases, the analyzed layouts present 

mostly good or acceptable dispersion curves, even with only four stations configurations.  
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As general conclusion, when the number of usable stations is reduced, we should 

try to preserve the central symmetry of the theoretical array response and to position the 

sensors maintaining the spatial continuity among them. From the analysis carried out in 

this work, we have shown that with a small-aperture, but well-configured array, it is 

possible to extend by far their capability of analysis in the lower frequency range, 

providing dispersion curves very similar to those obtained with bigger and denser (i.e., 

with more stations) layouts. On the other hand, by separating too much the stations, the 

analysis can provide bad dispersion curves at all. 

The conclusions extracted from the array optimization study can be better 

extrapolated for small aperture arrays, where the reduction of some geophones does not 

imply a severe separation among the rest of them. In contrast, for large-aperture arrays, 

the reduction of some stations could conduct to a small set of geophones separated by a 

great distance, which would result in unacceptable dispersion curves. In this case, the 

possible reduction of the number of stations would be lower than the obtained for the 

small-aperture arrays.  

Obviously, attending to the present study, if we had nine stations or more, we 

would use all of them for the field campaign. However this is not the real situation for 

many small research groups, where the number of available stations is very limited by the 

economic support. In these circumstances, the developed study acquires a significant 

usefulness, providing some guidelines to maximize the analysis capability of the arranged 

arrays when using a reduced number of stations. 
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TABLES 

 

Table 1: Wavenumber limits (in rad/m) for the three original array geometries. 

Array  

Geometry 
kmin/2 kmax 

Circular 0.096 1.065 

Triangular 0.127 0.604 

Polygonal 0.164 1.073 
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Table 2: Different analyzed cases grouped according to the number of geophones 

and the obtained misfit values. In the first column we specify in brackets the number of 

cases done for each layout. In the other columns we put into brackets the number of cases 

that accomplish the misfit criterion respect to the all tested. 

 

Six geophones 

Misfit (m) m  0.2 0.2 < m  0.5 0.5 < m 

Triangular (5) (5/5) 100.0%   

Circular (15) (14/15) 93.3%  (1/15) 6.7% 

Polygonal (16) (14/16) 87.5% (2/16) 12.5%  
    

Five geophones 

Misfit (m) m  0.2 0.2 < m  0.5 0.5 < m 

Triangular (11) (10/11) 90.9% (1/11) 9.1%  

Circular (17) (10/17) 58.8% (2/17) 11.8% (5/17) 29.4% 

Polygonal (16) (12/16) 75.0% (2/16) 12.5% (2/16) 12.5% 
    

Four geophones 

Misfit (m) m  0.2 0.2 < m  0.5 0.5 < m 

Triangular (14) (6/14) 42.9% (6/14) 42.9% (2/14) 14.3% 

Circular (14) (2/14) 14.3% (4/14) 28.6% (8/14) 57.1% 

Polygonal (16) (7/16) 43.7% (3/16) 18.8% (6/16) 37.5% 
    

Three geophones 

Misfit (m) m  0.2 0.2 < m  0.5 0.5 < m 

Triangular (10) (2/10) 20.0% (4/10) 40.0% (4/10) 40.0% 

Circular (10)  (2/10) 20.0% (8/10) 80.0% 

Polygonal (16)  (1/16) 6.3% (15/16) 93.7% 
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FIGURE CAPTIONS 

 

Figure 1. Array configurations: (a) triangular, (b) circular with central station and (c) 

polygonal. The theoretical array responses are also shown in the right panels. 

 

Figure 2. Examples of the f-k analysis for 4, 6, 8 and 10 Hz using the circular array 

configuration. 

 

Figure 3. Dispersion curves calculated for the original geometries, including the 

wavenumber limits functions for kmax/2 and kmin/2 values. The valid frequency 

intervals for each dispersion curve are marked with color areas, according to the 

intersection of the dispersion curves and the wavenumber limits functions for kmax/2 and 

kmin/2 values (Wathelet, 2005). 

 

Figure 4. Theoretical resolution limit of the original layout and theoretical resolution 

limit ranges (i.e. the range between the minimum and maximum kmin/2 values) of the 

reduced configurations that provide at least acceptable results. The resolution limits are 

shown for the triangular (a), circular (b) and polygonal (c) arrays. 
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Figure 5. Theoretical array response with the k limits (left panels) and dispersion curves 

(right panel) for the geometries that present the lowest (left column) and highest (right 

column) misfit values for different number of sensors in the triangular array: 6 (a), 5 (b), 

4 (c) and 3 (d). In all the cases, the dispersion curves of the modified arrays are compared 

with the dispersion curve corresponding to the original triangular array, showing their 

mean value and their associated standard deviation.  

 

Figure 6. a) Modified triangular array (‘T.4.2’) with central symmetry in the theoretical 

array response and with one of the lowest misfit values. b) Modified triangular array 

(‘T.4.9’) with the theoretical array response lined up in the vertical view (perpendicular 

to the one obtained by the ‘T.4.11’) and the misfit value close to the worst analyzed 

geometry. 

 

Figure 7. Theoretical array response with the k limits (left panels) and dispersion curves 

(right panel) for the geometries that present the lowest (left column) and highest (right 

column) misfit values for different number of sensors in the circular array: 7 (a), 6 (b), 5 

(c), 4 (d) and 3 (e). In all the cases, the dispersion curves of the modified arrays are 

compared with the dispersion curve corresponding to the original circular array, showing 

their mean value and their associated standard deviation. 
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Figure 8. Theoretical array response with the k limits (left panels) and dispersion curves 

(right panel) for the geometries that present the lowest (left column) and highest (right 

column) misfit values for different number of sensors in the polygonal array: 8 (a), 7 (b), 

6 (c), 5 (d), 4 (e) and 3 (f). In all the cases, the dispersion curves of the modified arrays 

are compared with the dispersion curve corresponding to the original polygonal array, 

showing their mean value and their associated standard deviation. 

 

Figure 9. Theoretical array response with the k limits (left panels) and dispersion curves 

(right panel) for the geometries that present the lowest (left column) and highest (right 

column) misfit values for different number of sensors in the 25m-aperture array of 

Almoradí: 7 (a), 6 (b), 5 (c), 4 (d) and 3 (e). In all the cases, the dispersion curves of the 

modified arrays are compared with the dispersion curve corresponding to the original 

circular array, showing their mean value and their associated standard deviation. 
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Fig 1 
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Fig 9 
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Highlights 

 We analyze the stations suppression influence in the dispersion curve calculation. 

 We compare 3 array layouts: triangular, circular with central station and 

polygonal. 

 Comparison of the obtained dispersion curves is done by means of a misfit 

function. 

 The study improves future array designs by optimizing the number of stations 

arranged. 


