Vision and Driving
Outline

• Visual function and driving performance
• Visual standards for driving licenses in Europe
• Traffic lights
• Lighting design for motorized and pedestrian traffic
• Vehicle design
• Other complementary topics
 • Non-land vehicles, etc
• Discussion
 • Supplementary reading and learning
 • Mandatory activity no. 5
Lesson 9

Bibliography & Links

- **Basic:**
Bibliography & Links

• Complementary:

Lesson 9

Bibliography & Links

• Complementary:

Bibliography & Links

• Complementary:

Lesson 9

Bibliography & Links

• Complementary links:
 - Dirección General de Tráfico
 - Alain Afflelou Foundation + RACE
 - Vision In Vehicles Conference Series
 - INTRAS
 - European Transport Safety Council
 - Journals in Optometry, Ophthalmology, Work Risks, etc.
Introduction: vision & driving

• Driving a vehicle, land-type or not, is a complex visual task where many motor and visual functions are involved in, even coordinated with other senses, as touch in feet + hands + eye coordination

• Examples:
 • Cars, trucks, buses
 • Motorbikes, bikes
 • Trains, trams
 • Airplanes, helicopters
 • Ships, submarines
 • Spacecrafts, Future??
Introduction: vision & driving

• The on-road driving tasks:
 • Basic control (e.g., steering)
 • General driving (surveillance)
 • Traffic conditions (e.g., passing)
 • Roadway characteristics (e.g., intersections)
 • Environment (e.g., weather)
 • The vehicle (e.g., car emergencies)

• The off-road driving tasks
 • Pre-trip planning
 • Vehicle maintenance
 • Legal responsibilities

Perception & information processing
Lesson 9

Introduction: vision & driving

• Perception + information processing + decision/action:
 • Drivers and capable to adapting to driving situations in three main ways:
 • Strategic: decide to not drive in certain conditions (night, bad weather, etc) for avoiding accidents
 • Tactical: speed selection under particular conditions
 • Operational: increased attention at intersections, or using specific search patterns to look for traffic signs or radars

• Other breakdown for driving task itself:
 • Control: vehicle-driver interaction (braking, displays, etc)
 • Guidance: safe path and speed (roadway, signs, etc)
 • Navigation: planning and execution a trip (maps, guide signs)
Introduction: vision & driving

Level of Psychological Processing

- Decision making
- Attention control
- Perceptual-motor control

Functional Hierarchy

- Vehicle choice
- Trip decisions
- Navigation
- Guidance
- Vehicle control

Speed & Time Control

Handle,
Lane keeping,
Headway control,
Obstacle avoiding,
Crossing,
Management,
Handling,
e.

Filter model of risk behavior and road accident control
Summala (1996)
Vision & driving performance

• Visual perception: detection, recognition and discrimination:
 • Peripheral and central field of view (visual search)
 • Visual interpretation of environment (road, etc)
 • Perception of speed: motion sensitivity, speed adaptation, etc
 • Car following
 • Rear-end collisions
 • Decision making
 • Auditory and other sensory information
 • Information processing and accidents
 • Driver attention and workload
 • Right, comfortable and safe action (steering, guidance)
Vision & driving performance

<table>
<thead>
<tr>
<th>VISUAL FACTOR</th>
<th>RELATED DRIVING TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation</td>
<td>Changing focus from dashboard displays to the roadway</td>
</tr>
<tr>
<td>Static Visual Acuity</td>
<td>Reading distant traffic signs</td>
</tr>
<tr>
<td>Adaptation</td>
<td>Adjust to changes in light upon entering a tunnel in daylight</td>
</tr>
<tr>
<td>Angular Movement</td>
<td>Judging the speed of cars crossing our path of travel</td>
</tr>
<tr>
<td>Movement in Depth</td>
<td>Judging speed of an approaching vehicle</td>
</tr>
<tr>
<td>Color</td>
<td>Identification of colors of signals and cars</td>
</tr>
<tr>
<td>Contrast Sensitivity</td>
<td>Detection of dark-clothed pedestrians at night</td>
</tr>
<tr>
<td>Depth Perception</td>
<td>Passing on two-lane roads with oncoming traffic</td>
</tr>
<tr>
<td>Dynamic Visual Acuity</td>
<td>Reading traffic signs while moving</td>
</tr>
<tr>
<td>Eye Movement</td>
<td>Scanning the road for hazards</td>
</tr>
<tr>
<td>Glare Sensitivity</td>
<td>Reduction in visual performance due to headlight glare</td>
</tr>
</tbody>
</table>
Vision & driving performance

TABLE 2.1

Functional Characteristics and Response Properties of the Ambient and Focal Visual Systems

<table>
<thead>
<tr>
<th>Primary functions</th>
<th>Ambient System</th>
<th>Focal System</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGN (lateral Geniculate Nucleus) source</td>
<td>Visual guidance; motor control</td>
<td>Form recognition; identification</td>
</tr>
<tr>
<td>Cortical stream</td>
<td>Magnocellular</td>
<td>Parvocellular</td>
</tr>
<tr>
<td>Field of view</td>
<td>Dorsal stream</td>
<td>Ventral stream</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>Peripheral (significant rod input)</td>
<td>Central</td>
</tr>
<tr>
<td>Contrast sensitivity</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Spatial frame of reference</td>
<td>Egocentric (absolute body coordinates)</td>
<td>Requires mid-to-high contrast</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>High</td>
<td>Allocentric (relative object space)</td>
</tr>
<tr>
<td>Primary control mode(^a)</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Memory requirements(^b)</td>
<td>Closed-loop</td>
<td>Open-loop</td>
</tr>
</tbody>
</table>

\(^a\) See Donges (1978).
\(^b\) See Norman (2002).
Vision & driving performance

• Models of driving information acquisition
 • Information theory
 • Gibson’s driving information acquisition model
 • Sign detection theory
 • Other models: ambient (dorsal) vs. focal (ventral vision)

• Methodology used to study driving information acquisition
 • Driving simulators
 • Research methods: observation and testing
 • Recording techniques:
 • Eye movements, drivers’ self-assessments, memory, sign recognition, traffic accidents, reaction time, etc.
Vision & driving performance

• Driver perception-response time
 • Detection
 • Identification
 • Decision: sight or safe distance
 • Response
 • **Night** vs. day
 • Chemicals and driver fatigue
 • Age and gender
 • Cognitive load

• Where do drivers look while driving (and for how long)?
 • In-vehicle displays, mirrors,
Vision & driving performance

Stop time = driver reaction time + system reaction time (0.3 – 2 sec) + braking time

Vehículo medio de 4.0 mt. de longitud

Energías Cinéticas

- Ec. Coche
- Ec. Camión

Ec. camión (90 km/h) = Ec. coche (464 Km/h)
Vision & driving performance

• Other interesting sub-topics:
 • Individual differences (stress, social factors, attitudes, genders, physical disabilities, age-related deficits, etc)
 • Fatigue and driving (long hours, time of day, inadequate sleep, countermeasures to sleepiness, etc)
 • Alcohol and drugs
 • Age differences (young vs. older drivers)
 • Neuropsychological, medical and psychiatric disorders
 • **Driver distraction**
 • Cell phones, navigation systems, etc
 • Driver education, training and licensing
Visual standards for driving licenses in Europe

• Historical context: professional vs. amateur drivers

 • **Before** EU harmonization (Gaceta Óptica, 450-451, 2010)

 • **Nowadays**: **RD 170/2010**

 • Annex I: material for minimal scanning

 – **Ophthalmological**

 – General medicine

 – Psychological

 • Annex II: template for psychophysical aptitude

 • Annex III: template for clinical record

• **Optometric recommendations** from **EU experts**

• Other interesting issues: organizational interventions, etc
Lesson 9

Traffic lights

• SIGNS
 - Instead visible
 - Clear and simple (conspicuity): CIE 137:2000
 - Avoid excessive signaling
 - Avoid confusion
Lesson 9

Lighting design

- Width and number of lanes, curvature radii, accesses, intersections, tunnels, etc.
Lighting design: CIE 1995

<table>
<thead>
<tr>
<th>Category</th>
<th>(L_m) (cd/m(^2))</th>
<th>Uniformity</th>
<th>Glare (TI = 65 \cdot \frac{L_{VEILING}}{(L_m)^{0.5}})</th>
<th>Surround SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>(\geq 2.00)</td>
<td>(\geq 0.4)</td>
<td>(\geq 0.7)</td>
<td>(\leq 10)</td>
</tr>
<tr>
<td>M2</td>
<td>(\geq 1.50)</td>
<td>(\geq 0.4)</td>
<td>(\geq 0.5)</td>
<td>(\leq 10)</td>
</tr>
<tr>
<td>M3</td>
<td>(\geq 1.00)</td>
<td>(\geq 0.4)</td>
<td>(\geq 0.5)</td>
<td>(\leq 15)</td>
</tr>
<tr>
<td>M4</td>
<td>(\geq 0.75)</td>
<td>(-)</td>
<td>(\leq 15)</td>
<td>(-)</td>
</tr>
<tr>
<td>M5</td>
<td>(\geq 0.50)</td>
<td>(-)</td>
<td>(\leq 15)</td>
<td>(-)</td>
</tr>
</tbody>
</table>
Lighting design: CIE 1995

<table>
<thead>
<tr>
<th>Category</th>
<th>E_m (lx)</th>
<th>Uniformity coefficient $U_0 = E_{\text{min}}/E_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>≥ 50</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>≥ 30</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>≥ 20</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>≥ 15</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>≥ 10</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>≥ 7.5</td>
<td></td>
</tr>
</tbody>
</table>
Vehicle design

• Interior

• Exterior
Other complementary topics
Supplementary reading and learning

• Download the next documents related with new optometric recommendations for driving licensing at worldwide:

 • Report on Driver Vision Screeing in Europe (June 2011)

• Why are they interesting?
• Which are the next steps at regulatory and harmonization level in Europe?
• And the future role for the optometrists?
Mandatory activity nº 5

• Relative Weight: 5 %
• Delivery process by Virtual Campus, section forum
• Individual Task:
 • Download the RACE-Alain Afflelou reports (in Spanish):
 • Older drivers and traffic security
 • Visual protection in driving
 • Distractions
 • Night vision in driving
 • Ocular protection in airbag accidents
 • Vision and traffic security
 • Which of them do you consider with well explained at technical/optometric level? Which do you like more? What is the role for the optometrists in these reports?