
 Procedia Computer Science 18 (2013) 2504 – 2507

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.429

International Conference on Computational Science, ICCS 2013

A Parallel Method for Impulsive Image Noise Removal on Hybrid
CPU/GPU Systems

M.G. Sáncheza,b, V. Vidalb, J. Batallerb, J. Arnalc,∗

aDepartamento de Sistemas y Computación, Instituto Tecnológico de Cd. Guzmán, Cd. Guzmán, 49100, Jal. México
bDepartamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Grao de Gandia Valencia, 46730, Spain

cDepartamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, 03071, Spain

Abstract

A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy

metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented.

Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated

in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of

both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate

in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results

show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to

use such algorithms for real-time processing.

Keywords: parallel computing; noise removal in images; GPU; CUDA; multi-core; OpenMP

1. Introduction

Impulsive noise is commonly caused by the sensor malfunction and other hardware in the process of image

formation, storage or transmission [1]. This type of noise affects some individual pixels, by changing their original

values. The most common noise impulsive model is the Salt and Pepper noise (or fixed value noise), which

considers that the new, wrong, pixel value is an extreme value within the signal range. This is the noise type

considered in this paper.

In recent years, the incorporation of GPUs (Graphics Processing Units) in graphic cards has achieved signif-

icant improvements in computational speed, offering a high parallel processing level. Due to this, developments

based on this hardware have become increasingly widespread, not only for graphic implementations but also for

general purpose applications. The most commonly used programming platform for these graphic cards is CUDA

(Compute Unified Device Architecture) [2]. Whilst it is relatively easy to use the CUDA platform to program

the GPU, the problem lies in the difficult task of optimizing application performance, due to several hardware

restrictions and the multiple types of memories included. Thus, it is necessary to carry out a specific study in

order to identify the best approach for using the resources offered by CUDA in each case. Such a study is one

of the subjects of the present paper, applied in this case to noise removal in images. In the present study, we

∗Corresponding author. Tel.: +34-96-590-3900 ; fax: +34-96-590-3902 .

E-mail address: arnal@ua.es.

Available online at www.sciencedirect.com

2505 M.G. Sánchez et al. / Procedia Computer Science 18 (2013) 2504 – 2507

implemented a parallel algorithm for image noise removal based on the family of algorithms proposed in [3, 4, 5].

These methods are based on peer group concept and use a fuzzy metric. They have been proved to be very fast

and achieve a good trade-off between noise suppression and signal-detail preservation. Due to this in this paper

we present a parallel method based on them, but adapted to obtain a good real-time performance on GPUs and on

hybrid CPU/GPU architectures. The noise removal process was divided into two steps: erroneous pixel detection,

and the elimination of these pixels. We analyse the access time to global memory and use the texture memory in

order to reduce it. We have tested this parallel algorithm on GPUs and multi-cores and we did an analysis of the

best pixel distribution in these devices to take advantage of the hardware.

This paper is organised as follows: Section 2 explains the proposed parallel noise removal method. Section

3 discusses how the parallel algorithm was implemented for the GPUs and multi-core. Experimental results are

shown in Section 4, and finally, the conclusions are presented in Section 5.

2. Parallel Image Noise Removal Algorithm

The parallel denoising algorithm introduced in this study uses the peer group of a central pixel xi in a window

W according to [1] but using a fuzzy metric instead. The fuzzy distance between the vectors xi and x j of the colour

image is given by the following function:

M(xi, x j) =

3∏

l=1

min
{
xi(l), x j(l)

}
+ k

max
{
xi(l), x j(l)

}
+ k
. (1)

where (xi (1), xi (2), xi (3)) is the colour vector for the pixel xi in RGB (Red, Green and Blue) format and x j is

a neighbour pixel of xi. In [6], was shown that k = 1024 is an appropriate setting to maintain the image quality,

and this was therefore the value used in the present study. For a central pixel xi in a n × n filtering window W and

fixed the distance threshold d ∈]0, 1], we denote by P(xi, d) the set

P(xi, d) = {x j ∈ W : M(xi, x j) ≥ d}. (2)

Using the terminology employed in [4, 7], given a non-negative integer m, it will be called peer group of m
peers associated to xi a subset P(xi,m, d) of P(xi, d) formed by xi and other m pixels, where m ≤ n2 − 1. The

algorithm performs two main steps. In the first step (detection), described in Algorithm 1, the pixels are labelled

as either corrupted or uncorrupted. In the second step (filtering), presented in Algorithm 2, corrupted pixels are

corrected. In the detection process, the kernel was configured so that each thread processed one item of pixel

data. The thread corresponding to the pixel xi analyses the n × n pixels of W (in the present study, n = 3 was

considered), calculates the peer group and if this satisfies the cardinality m + 1, i.e. #P(xi, d) ≥ m + 1, the central

pixel is diagnosed as uncorrupted; if not, it is diagnosed as corrupted. In the filtering process, the well-known

arithmetic mean filter (AMF) (e.g. [4, 8]) is used.

Algorithm 1 Detection of erroneous pixels.
Require: m, d,W.
Ensure: The image with the pixels classified as corrupt or not.

1: Calculate P(xi, d) :
2: Each thread calculates:
3: distance = M(xi, x j)
4: if distance ≥ d then
5: pixel x j ∈ P(xi, d)
6: endif
7: if (#P(xi, d) ≥ m + 1) then
8: xi is declared as non-corrupted pixel
9: else

10: xi is declared as corrupted pixel

11: end if

2506 M.G. Sánchez et al. / Procedia Computer Science 18 (2013) 2504 – 2507

Algorithm 2 Elimination of erroneous pixels.
Require: n, threads corresponding to the pixels labelled as corrupted.
Ensure: Filtered Image.

1: Each thread builds its window W of pixels.
2: Calculate the AMF of uncorrupted pixels from W.

3: Thread corresponding to the pixel xi replaces value obtained by the AMF.

3. Comments on the GPU and multi-core implementation

We decomposed the algorithm into two phases –detection and filtering– not only to follow the separation of

concerns principle, but also because we use the AMF for replacing corrupted pixels. Given that AMF considers

only uncorrupted pixels for mean computation, the filter phase cannot start until the detection phase is done.

In consequence, to ensure this synchronisation requirement, in our parallel implementation on GPU we have

developed two kernels, so that the filtering kernel is not launched until the detecting kernel has finished. In multi-

core two separate functions have been implemented. In the implementation on GPU, we use texture to access data

from GPU. We have developed three implementations. The first is in multi-core using OpenMP, the second with

CUDA on GPUs. The third is a combination of multi-core and GPUs. Figure 1 shows the distribution of an image

using cores and GPUs.

Fig. 1. Distributed image on 4 GPUs and 8 cores.

4. Experimental Results

The CPU used was a Mac OS X Intel Xeon Quad-Core processor at 2×2.26 GHz with 8GB memory and with

four NVIDIA GPUs. Each GPU is a GeForce GT 120 [9]. This card has 512MB of memory, 4 multiprocessors,

32 CUDA cores with processor clock 1400 MHz, 16KB shared memory and 16GB/s memory bandwidth. This

GPU supports CUDA Compute Capability 1.1. The CUDA toolkit 4.0.50 was used. Our implementation used C

language and single-precision calculations. The results were obtained using the Caps image (Figure 1) from the

Kodak image database [10]. MATLAB command imnoise was used to generate the noisy image.

Figure 2 shows the speedup when comparing the sequential version running on CPU and the parallel version

on multi-core and GPUs. On the multi-core the speedup increases with the number of used cores for all image

sizes. On the GPUs, parallelising an image smaller than 1536×1024 is best done in one GPU. Dividing the image

into 4 GPUs smaller than 3072 × 2048, leads to a greater time than dividing the distribution on two GPUs. We

observe that when the image is large, the optimal distribution is obtained by using four GPUs, but not for small

images (less than 3072 × 1048). Figure 3 shows the results obtained when the image is divided into 4 GPUs and

all the cores. The best time is shown when more load is assigned to the GPU leaving less on the cores.

5. Conclusions

A parallel algorithm based on peer group concept that uses a fuzzy metric has been proposed to detect and

remove impulsive noise in digital images. We have implemented it to be run on GPUs using CUDA and on multi-

cores using OpenMP. We conducted experiments to adjust our algorithm, and to compare it with the sequential

2507 M.G. Sánchez et al. / Procedia Computer Science 18 (2013) 2504 – 2507

Fig. 2. Speedup for different image sizes. Caps image.

Fig. 3. (a) Size 3072 × 2048.; (b) Size 6144 × 4096.

version of the algorithm obtaining outstanding results in speedup. It was concluded that parallel implementations

of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for

real-time processing. For future works, we plan to implement this algorithm to detect edges in an image.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation [Project TIN2011-26254]. M. G.

Sánchez would like to acknowledge DGEST ITCG for the scholarship awarded through the PROMEP program.

References

[1] B. Smolka, Peer group switching filter for impulse noise reduction in color images, Pattern Recognit. Lett. 31 (6) (2010) 484–495.

[2] NVIDIA (2012) http://www.nvidia.com/page/home.html.

[3] S. Morillas, V. Gregori, G. Peris-Fajarnés, Isolating impulsive noise pixels in color images by peer group techniques, Comput. Vision

Image Understanding 110 (1) (2008) 102–116.

[4] J.-G. Camarena, V. Gregori, S. Morillas, A. Sapena, Fast detection and removal of impulsive noise using peer groups and fuzzy metrics,

J. Visual Commun. Image Represent. 19 (1) (2008) 20 – 29.

[5] J.-G. Camarena, V. Gregori, S. Morillas, A. Sapena, Some improvements for image filtering using peer group techniques, Image Vision

Comput. 28 (1) (2010) 188–201.

[6] S. Morillas, V. Gregori, G. Peris-Fajarnés, P. Latorre, A fast impulsive noise color image filter using fuzzy metrics, Real-Time Imaging

11 (5-6) (2005) 417–428.

[7] B. Smolka, A. Chydzinski, Fast detection and impulsive noise removal in color images, Real-Time Imaging 11 (5-6) (2005) 389–402.

[8] A. Toprak, I. Güler, Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter, Digital Signal

Process. 17 (4) (2007) 711–723.

[9] NVIDIA GeForce GT 120 Graphic Card (2012), http://www.geforce.com/hardware/desktop-gpus/geforce-gt-120.

[10] Kodak Lossless True Color Image Suite (2012), http://r0k.us/graphics/kodak/index.html.

