In the past, many strategies have been proposed to solve liquid-liquid equilibrium (LLE). Nevertheless, some papers and process simulation software packages still show inconsistent procedures for LLE regressions that lead to apparent solutions which are not true tie-lines. This study illustrates some of the pitfalls of the LLE data correlation and proposes some ideas to overcome them.

The activity objective function (O.F.(a)) is evaluated close to the LLE solution (Figure 1). A variety of false tie-lines can be obtained that correspond with very low values of the activity objective function although, obviously, the true tie-line is unique. The activity function provides a poor definition of the objective function minimum (O.F.(a)<10^-12 in Figure 2), because the gM surface for this system is very flat. The activity function is obtained (necessary condition). The common tangent line contribution to the objective function is:

\[
\text{O.F.(a)} = \sum \left(a_i - a^* \right)^2 = 0
\]

Next, a combination of the activity and the minor common tangent condition (O.F.(t) in Figure 2) based on Iglesias-Silva et al. [2] is used, and a sharper minimum for the objective function value is obtained. The common tangent line contribution to the objective function is:

\[
\text{O.F.(t)} = \frac{\left(\frac{\partial g_{ax}}{\partial x_a M} \right)_I + \left(\frac{\partial g_{ax}}{\partial x_a M} \right)_II}{\left(\frac{\partial g_{ax}}{\partial x_a M} \right)_I - \left(\frac{\partial g_{ax}}{\partial x_a M} \right)_II} \left[\left(\frac{\partial g_{ax}}{\partial x_a M} \right)_I - \left(\frac{\partial g_{ax}}{\partial x_a M} \right)_II \right] \cdot \frac{x_a^I - x_a^II}{x_a^I - x_a^II}
\]

Finally, we present a modification of the vector method [3] developed by Eubank et al. [4]. The original work used the vector method combined with the maximum area criterion as equilibrium condition (later proved to be only applicable for binary systems [5]).

Our algorithm, that is applicable to the ternary systems, uses the minor common tangent equilibrium condition (O.F.(t)) [2]:

- An α-angle range for each ternary global mixture M (Figure 3) is defined.
- For a sheaf of straight lines passing through M, the two common tangent points (I, II) to the gM function in the corresponding sectional plane are obtained (necessary condition).
- Among all pairs of calculated compositions, the “true” tie-line corresponds to the O.F.(a) equal to zero (sufficient condition) which corresponds to the minimum value for the Gibbs energy of mixing (gM).

The O.F.(a) is evaluated for each α-angle at the two common tangent points. Those values (suggested method O.F.(a)) are compared to the other previous approaches (Figure 2) showing that a sharper minimum is obtained.

When the activity condition is combined with the common tangent line criterion, either simultaneously (eq 2) or sequentially (vector method), a more efficient equilibrium calculation can be carried out, avoiding false solutions with very low values of the O.F.(a)).

The suggested method improves the convergence of the optimization.