OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS

Juan A. Reyes-Labarta and Ignacio E. Grossmann


Optimal Synthesis of Liquid-Liquid Multistage Extractors

• **Objective**

To develop the optimal synthesis of liquid-liquid multistage extractors using Generalized Disjunctive Programming (GDP)

• **Introduction**
  • Design of Extraction Sequences

• **Problem Statement**

• **General Superstructure**

• **Generalized Disjunctive Programming Model**

• **Solution Algorithm**

• **Numerical Examples**

Design of a Extraction Sequence (crosscurrent and multistage):

Determination of the number of stages and solvent flow required for a desired separation (purity and/or recovery).

\[ R = \text{Raffinate phase} \quad \{R(0) = \text{feed stream to be separated}\} \]

\[ E = \text{Extract phase} \quad \{E(0) = \text{solvent feed}\} \]

---

Optimal Synthesis of Liquid-Liquid Multistage Extractors

Juan A. Reyes-Labarta and Ignacio E. Grossmann

---

**Ternary systems**

Note: “In the liquid-liquid equilibrium the existence of the two phases in equilibrium is not in the whole range of compositions“.

Juan A. Reyes-Labarta and Ignacio E. Grossmann
Quaternary systems

Problem Statement

Given is:
- a set of feed streams with known composition,
- a specified separation and/or recovery of solutes in the product stream.

The design problem consists of determining:
- the optimal number of stages,
- the feed stream locations,
- the solvent flow rate,
- the possibility of placing intermediate streams.

The objective is to minimize the total annualized cost of equipment and utilities.
Optimal Synthesis of Liquid-Liquid Multistage Extractors

Superstructure

Initial Solvent Feed

Initial Raffinate Feed

Final Extract Product

Side Solvent Feeds

Side Feed Streams

Bypass

Final Raffinate Product

Side Product Streams

Multiple Independent Extractors

Juan A. Reyes-Labarta and Ignacio E. Grossmann
The selection of the stages in the optimal extraction cascade will be performed using the following “stage existence disjunction”.

For existing stages:

i) Total and individual mass transfer balances.

ii) Nonlinear equilibrium equations.

iii) Relation between total and individual flowrates (bilinear terms).

For non-existing stages the equations considered are simply input-output relations in which no mass transfer takes place (inlet and outlet flows are the same for each phases).
Optimal Synthesis of Liquid-Liquid Multistage Extractors

$Z_j$ is a boolean variable which can be true or false depending if the stage $j$ is selected or not.

To avoid equivalent solutions that are due to the multiplicity of representation for a given number of trays, the following logic constraints are added:

$Z_j \Rightarrow Z_{j-1} \quad \forall j \in \text{NINT}$

Juan A. Reyes-Labarta and Ignacio E. Grossmann

---

Optimal Synthesis of Liquid-Liquid Multistage Extractors

Therefore, the constraints are given by the following set of equations.

- **Purity and recovery requirements in the final products streams $E_1$ and $R_{\text{def}}$:**
  
  $E_{1,kc'} \geq \xi_{E1,kc'} \left( R_{0,kc'} + \sum_{k=1}^{K} RL_{k,0,kc'} \right)$
  
  $x_{R_{\text{def}},kc'} \leq \tau_{R_{\text{def}},kc'}$

  if $kc' = \text{key component in the extract stream}$

- **Purity and recovery requirements in the side products streams $PL_q$:**
  
  $PL_{q,kc''} \geq \xi_{PL_q,kc''} \left( R_{0,kc''} + \sum_{k=1}^{K} RL_{k,0,kc''} \right)$
  
  $x_{PL_q,kc''} \geq \tau_{PL_q,kc''}$

  if $kc'' = \text{key component in the raffinate stream}$

Juan A. Reyes-Labarta and Ignacio E. Grossmann
Optimal Synthesis of Liquid-Liquid Multistage Extractors

- Global mass balance:
  \[ E_{1,c} + R_{\text{def},c} + \sum_{q=1}^{Q} PL_{q,c} = R_{0,c} + \sum_{k=1}^{K} RL_{k,c} + \sum_{j=1}^{n} EL_{j,c} \]
  \( \forall c \in \text{COMP} \)

- Mass balances in each stage:
  \[ R_{j,c} + E_{j,c} + \sum_{q=1}^{Q} PL_{q,j,c} = R_{j-1,c} + E_{j+1,c} + \sum_{k=1}^{K} RL_{k,j,c} + EL_{j,c} \]
  \( \forall j \in NT \forall c \in \text{COMP} \)

- Bypass mass balance:
  \[ R_{0,c} = R_{0,\text{ext},c} + R_{0,\text{byp},c} \]
  \( \forall c \in \text{COMP} \)

Juan A. Reyes-Labarta and Ignacio E. Grossmann

Optimal Synthesis of Liquid-Liquid Multistage Extractors

- Component and total flowrate relations (bilinear terms).
- Side stream balances.
- Summation mass fractions equal to 1.
- Nonlinear equilibrium relations.

The objective function involves the minimization of the total annualized cost of equipment and utilities. For simplicity, the total capital cost is considered proportional to the sum of stages, and the operating cost of the process, a function of the flowrate of the solvent feed stream

\[ \min \ OF = (E_0 + \sum_{j=1}^{n} EL_j) \cdot C_E + \sum_{j=1}^{n} Z_j \cdot C_n \]
Tie line Correlation Model (Reyes et al., 1999)

\[
\begin{align*}
\log\left(\frac{y'_k}{y''_p}\right) &= \left[ a_{k,p} + b_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right) + c_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right)^2 \right] + \left[ d_{k,p} + e_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right) + f_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right)^2 \right] \cdot \log\left(\frac{x'_2}{x'_1}\right) + \\
&\quad \left[ g_{k,p} + h_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right) + i_{k,p} \cdot \left(\frac{x'_4}{x''_2}\right)^2 \right] \cdot \left[ \log\left(\frac{x'_2}{x'_1}\right) \right]^2
\end{align*}
\]

\[
\log\left(\frac{y'(3)}{y'(2)}\right) = k_1 \quad \log\left(\frac{y'(2)}{y'(1)}\right) = k_2 \quad \log\left(\frac{y'(4)}{y'(3)}\right) = k_3
\]

\[
y'(1) + y'(2) + y'(3) + y'(4) = 1 + 4 \cdot C
\]

\[
\downarrow \quad \text{Note that: } y'(i) = y(i) + C
\]

Four equations with four variables!!

Juan A. Reyes-Labarta and Ignacio E. Grossmann

Optimal Synthesis of Liquid-Liquid Multistage Extractors

### Solubility Surface Correlation Model

\[
x'(3) + x'(4) = \left( A' \cdot M + B' \right) \cdot \left( x'(1) + x'(4) \right) + \left( C' \cdot M + D' \right)
\]

\[
x'(2) + x'(4) = \left( A \cdot M^2 + B \cdot M + C \right) \cdot \left( x'(1) + x'(4) \right)^2 + \left( D \cdot M^2 + E \cdot M + F \right) \cdot \left( x'(1) + x'(4) \right) + \left( G \cdot M^2 + H \cdot M + I \right)
\]

\[
M = \frac{x'(4)}{x'(4) + x'(2)}
\]
Optimal Synthesis of Liquid-Liquid Multistage Extractors

First approach: MINLP techniques.

i. Formulating all equations using big-M inequalities

ii. DICOPT (GAMS)

Difficulties: VERY SENSITIVE TO:

i. INITIAL POINT (Local Optimums, Infeasible)

ii. MILP SOLVER USED (OSL, MINOS, CPLEX...)

GENERAL DISJUNCTIVE PROGRAMMING

\[
\begin{align*}
\text{Initial NLP subproblems (fixes binary variables)} & \quad \rightarrow \quad \text{linearization in all previous NLP solutions} \\
\text{MILP master problem (big M)} & \quad \rightarrow \quad \text{new binary variables} \\
\text{New NLP subproblem} & \quad \rightarrow \quad \\
\end{align*}
\]
GENERAL DISJUNCTIVE PROGRAMMING ALGORITHM

Initial NLP subproblems

Set of different problems with fixes binary variables which contemplate all the possibilities of the superstructure

Linearization of all non linear equations, in all previous NLP solutions

MILP master problem

Linear approximation of the original problem using big-M inequalities to relax the linear approximations of the disjunctions

new set of binary variables and lower bound of the O.F.

New NLP subproblem

upper bound

Stop?

Juan A. Reyes-Labarta and Ignacio E. Grossmann


Optimal Synthesis of Liquid-Liquid Multistage Extractors

Big M formulation

Linear constraints

\[
\begin{align*}
Z_j \quad & \quad \quad -Z_j \\
G(t) = H(t') \quad & \quad \quad G(t) = S(t')
\end{align*}
\]

\[
\Rightarrow \quad \begin{cases}
-M_H \cdot (1 - Z_j) + H(t') \leq G(t) \leq M_H \cdot (1 - Z_j) + H(t') \\
-M_S \cdot Z_j + S(t') \leq G(t) \leq M_S \cdot Z_j + S(t')
\end{cases}
\]

For instance:

\[
\begin{align*}
R_{j-1} - M_R \cdot (1 - Z_j) & \leq R_j \leq R_{j-1} + M_R \cdot (1 - Z_j) \\
E_{j+1} - M_E \cdot (1 - Z_j) & \leq E_j \leq E_{j+1} + M_E \cdot (1 - Z_j)
\end{align*}
\]

\forall j \in NT

Constraints with linear approximations

slack variables are introduced to make mathematically feasible all the different linearizations of the same nonlinear and nonconvex equation \( P \) in the different points corresponding to the previous NLP solutions.

\[
\begin{align*}
P_s(\bar{u}^{nl}) + \nabla P_s(\bar{u}^{nl}) \cdot (\bar{u} - \bar{u}^{nl}) & \leq M_{P_s} \cdot (1 - Z_j) + \text{sv1}(P_s^{nl}) \quad \forall s \in NLF, \forall nl \in PNLP \\
P_s(\bar{u}^{nl}) + \nabla P_s(\bar{u}^{nl}) \cdot (\bar{u} - \bar{u}^{nl}) + \text{sv2}(P_s^{nl}) & \geq -M_{P_s} \cdot (1 - Z_j) \quad \forall j \in NT, \forall c \in COMP
\end{align*}
\]

Juan A. Reyes-Labarta and Ignacio E. Grossmann

Simple extractor.

\[
y_{1,c} = \begin{bmatrix} 0.0168 \\ 0.2155 \\ 0.7224 \\ 0.0454 \end{bmatrix}
\]
\[x_{o,c} = \begin{bmatrix} 0.75 \\ 0.12 \\ 0.0 \\ 0.13 \end{bmatrix}\]

\[\xi_{E1,E2} = 90\% \quad \xi_{E1,E4} = 50\%\]

\[E_1 = 52\ kg/h\]
\[E_2 = 86\ kg/h\]
\[E_3 = 38\ kg/h\]

\[R_o = 100\ kg/h\]

\[R_o = R_{def} = 86\ kg/h\]

\[\begin{array}{c}
\text{Chloroform} \\
\text{Acetic Acid} \\
\text{Acetone} \\
\text{Water}
\end{array} = \begin{bmatrix} 0 \\ 0 \\ 0.0168 \end{bmatrix}\]

\[\begin{array}{c}
\text{Acetic Acid} \\
\text{Acetone} \\
\text{Water}
\end{array} \begin{bmatrix} 0.8586 \\ 0.008 \end{bmatrix}\]

\[\xi_{E1,E2} = 90\% \quad \xi_{E1,E4} = 50\%
\]

\[
F.O.$ = $363,579/yr
\]

Juan A. Reyes-Labarta and Ignacio E. Grossmann
Extractor with 1 side feed stream.

Extractor with 1 side product stream.
2 independent extractors.

\[ y_{11,c} = \begin{bmatrix} 0.0474 \\ 0.3612 \\ 0.5314 \\ 0.0600 \end{bmatrix} \]

\[ y_{E1} = \begin{bmatrix} 0.1000 \\ 0.0100 \end{bmatrix} \]

2 interrelated extractors.

\[ y_{11,c} = \begin{bmatrix} 0.0454 \\ 0.3552 \\ 0.5406 \\ 0.0588 \end{bmatrix} \]

F.O. = $1,056,079/yr

F.O. = $962,129/yr
Optimal Synthesis of Liquid-Liquid Multistage Extractors

Characteristics of the initial GDP model for the different examples.

<table>
<thead>
<tr>
<th>Example:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NLP</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No equations</td>
<td>503</td>
<td>547</td>
<td>547</td>
<td>953</td>
<td>2116</td>
</tr>
<tr>
<td>Subproblem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. cont. var.</td>
<td>300</td>
<td>350</td>
<td>350</td>
<td>586</td>
<td>866</td>
</tr>
<tr>
<td>CPU time (s)</td>
<td>1.3</td>
<td>2.5</td>
<td>8.3</td>
<td>10</td>
<td>49</td>
</tr>
<tr>
<td><strong>MILP</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of equations</td>
<td>1130</td>
<td>1317</td>
<td>1317</td>
<td>4113</td>
<td>6124</td>
</tr>
<tr>
<td>Master</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. cont. var.</td>
<td>2950</td>
<td>3800</td>
<td>3800</td>
<td>11000</td>
<td>19196</td>
</tr>
<tr>
<td>No. boolean var.</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>CPU time (s)</td>
<td>69.6</td>
<td>69</td>
<td>80.3</td>
<td>3301</td>
<td>443</td>
</tr>
<tr>
<td>Total CPU time (s)</td>
<td>71</td>
<td>71.5</td>
<td>88.6</td>
<td>1110</td>
<td>492</td>
</tr>
<tr>
<td>Total loops</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

The major bottleneck is the solution of the MILP master problem, due to the presence of binary variables.


Future work:
Possibility of including distillations columns in order to recover the extraction solvent

Optimal Synthesis of Liquid-Liquid Multistage Extractors

1 feed stream, 2 extractor with multiple solvent feeds and using 2 different solvents in each extractor.

Global Optimization:  -Good Bounds  
-Convex underestimators  
-Spatial Branch and Bound  

Juan A. Reyes-Labarta and Ignacio E. Grossmann  

ACKNOWLEDGMENTS

The financial support from the Conselleria d’Educacio-Generalitat Valencia of Spain and from the Center of Advanced Process Decision-making (CAPD) at Carnegie Mellon University (Pittsburgh, USA).

Thanks very much for your attention.

Juan A. Reyes-Labarta and Ignacio E. Grossmann  
Optimal Synthesis of Liquid-Liquid Multistage Extractors

- Component and total flowrate relations (bilinear terms).

\[
\begin{align*}
R_{j,c} - R_{j} x_{j,c} &= 0 \\
E_{j,c} - E_{j} y_{j,c} &= 0 \\
EL_{j,c} - EL_{j} y_{EL,j,c} &= 0 \\
RL_{k,j,c} - RL_{k} x_{RL,k,c} &= 0 \\
PL_{q,j,c} - PL_{q} x_{j,c} &= 0 \\
\end{align*}
\]

\[
\begin{align*}
R_{def,c} - R_{def} x_{def,c} &= 0 \\
R_{0,hyp,c} - R_{0,hyp} x_{0,c} &= 0 \\
R_{0,ext,c} - R_{0,ext} x_{0,c} &= 0 \\
RL_{k,hyp,c} - RL_{k,hyp} x_{RL,k,c} &= 0 \\
PL_{q,c} - PL_{q} x_{PL,q,c} &= 0 \\
\end{align*}
\]

\[
\begin{align*}
\forall j \in N_T, \forall c \in \text{COMP} \\
\forall k \in K, \forall q \in Q
\end{align*}
\]

Juan A. Reyes-Labarta and Ignacio E. Grossmann

---

**OPTIMAL SYNTHESIS OF LIQUID-LIQUID MULTISTAGE EXTRACTORS using Generalized Disjunctive Programming (GDP)**

- **COMPLEX EXTRACTOR DESIGN (GDP)**

http://newton.chme.cmu.edu/interfaces/extractor/main.html


- Marcilla et al. "Review and extension of the McCabe-Thiele method covering multiple feeds, products and heat transfer stages" (2012). http://hdl.handle.net/10045/23195


