
An hybrid parallel algorithm for solving tridiagonal linear systems
versus the Wang’s method in a Cray T3D BSP computer1

JOAN-JOSEP CLIMENT, LEANDRO TORTOSA, ANTONIO ZAMORA
Departament de Ciència de la Computació i Intel·ligència Artificial

Universitat d’Alacant
Ap. 99 E-03080 Alacant

SPAIN
jcliment@dccia.ua.es, tortosa@dccia.ua.es, zamora@dccia.ua.es

Abstract: In this paper we describe an hybrid algorithm for an even number of processors based on an algo-
rithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare
this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical
computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.

Key-words:Tridiagonal linear systems, BSP, Wang’s method, Overlapping Partition (OPM) method.

1 Introduction
Tridiagonal matrices arise in many practical scientific
and engineering problems. For instance, tridiagonal
matrices have appeared in the error analysis of numer-
ical solutions of two-point boundary problems associ-
ated with ordinary differential equations employing fi-
nite difference methods. These systems can be solved
efficiently in sequential computers but are difficult to
solve efficiently in parallel computers, where the com-
munications take a significant part of the total execu-
tion time. This fact, together with the fast progress
that parallel computing has experimented in the last
decades, has increased the interest and efforts towards
the development of fast and efficient algorithms for
solving such systems. TheBulk Synchronous Parallel
(BSP) Computingmodel, introduced by Valiant [9], is
a style of parallel programming developed for general
purpose parallelism; that is, parallelism across all the
application areas and a wide range of architectures.

We consider the problem of solving a linear sys-
tem,

Ax = y, (1)

where

A =


a1 b1
c2 a2 b2

...
cn−1 an−1 bn−1

cn an


is a tridiagonal and nonsingular matrix, andy =
[y1, y2, . . . , yn]T is the right-hand side vector. We also
assume that matrixA is unreduced; that is,bi 6= 0 and
ci+1 6= 0, for i = 1, 2, . . . , n − 1. Moreover,A is

strictly diagonally dominant; that is,|ai| ≥ |bi|+ |ci|,
for i = 1, 2, . . . , n, with c1 = bn = 0.

2 The BSP model
A BSP computer consists of the following elements:
a set ofp sequential processor-memory pairs, a global
communication network that allows processors to
have access to non local data, and a mechanism for the
global synchronization of all the processors. The BSP
programming model is based on the concept ofsuper-
step. A BSP program is a sequence of supersteps and
each one can be decomposed into three phases: local
computation using local data within each processor-
memory pair; communication actions amongst the
processors; and the last one is a barrier synchroniza-
tion, which waits for all the communication actions
to be completed. At the end of a superstep, after
the barrier synchronization is done, the data that were
moved to the local memory of destination processors
are available. If the maximum number of incoming
or outgoing messages per processor ish, then such a
communication pattern is called anh-relation.

The cost model summarizes in a very reduced
number of parameters the differences among the dif-
ferent parallel architectures. If we define the time step
as the time required for a single local operation such
as an addition or a multiplication in floating point,
then a BSP computer can be characterized by the fol-
lowing four parameters:p, the number of processors;
s, the processor speed (the number of time steps per
second);l, the synchronization cost, andg, wheregh
is the number of flops required for the processors to
perform anh-relation.

The computational cost of a BSP algorithm is eas-
1This work was partially supported by Spanish DGES grants PB97-0334 and PB98-0977

ily obtained as the sum of all individual supersteps.
The cost of a single superstep measured in time steps
or flops, is upper bounded byw + hg + l wherew is
the arithmetic cost, andhg is the communication cost.
The total cost (in flops) of a BSP algorithm is given by
the addition of the individual cost of all the supersteps
needed to implement it; that is, is upper bounded by
Ω + Hg + Kl whereΩ is the total arithmetic cost of
the algorithm,H is the total sum of the words circu-
lating through the network along the execution of the
computation, andK is the total number of supersteps.

3 An hybrid parallel method to solve
tridiagonal systems

3.1 A method for two processors
Assume thatn = 2q, for someq ≥ 1 and consider
matrixA factorized as

A = MDV, (2)

whereA,M ,D andV are partitioned into two blocks
of sizeq × q. MatrixD is diagonal, and first block of
M (respectively,V) is lower bidiagonal (respectively,
upper bidiagonal). Second block ofM (respectively,
V) is upper bidiagonal (respectively, lower bidiago-
nal). Elements in the upper diagonal of both matrices
M andV (respectively, lower diagonal) are labelled
asui (respectively,li) while elements in the main di-
agonal ofD are labelled asdi. If we proceed as in
theLDU factorization of matrixA (see for example
Golub and Van Loan [3]), then the elements ofM , D
andV are computed as follows:

• Let d1 = a1 anddn = an.

• For i = 1, 2, . . . , q − 1, let

ui = bi
di

;
li+1 = ci+1

di
;

di+1 = ai+1 − li+1diui
= ai+1 − ci+1bi

di
.

 (3)

• Let
uq = bq

dq
,

lq+1 = cq+1

dq
.

Compute

ln =
cn
dn
,

un−1 =
bn−1

dn
.

• For i = n− 1, n− 2, . . . , q + 2, compute

di = ai − li+1di+1ui = ai −
ci+1bi
di+1

(4)

and let

li =
ci
di

;

ui−1 =
bi−1

di
.

• Finally, compute

dq+1 = aq+1 −
cq+1bq
dq

− cq+2bq+1

dq+2
. (5)

To implement the above computation in a com-
puter with two processors we use a technique similar
to those developed by Van der Vorst [10] for symmet-
ric matrices. To solve system (1) using the factoriza-
tion (2) we need to solve systemMDz = y, for z
and then solve systemV x = z, for x. As a con-
sequence of the structure of matricesM andD the
vectorz = [z1, z2, . . . , zn]T can be obtained directly
as

z1 =
y1

d1
; zn =

yn
dn
, (6)

zi =
yi − cizi−1

di
, (7)

i = 2, 3, . . . , q,

zi =
yi − bizi+1

di
, (8)

i = n− 1, n− 2, . . . , q + 2,

zq+1 =
yq+1 − cq+1zq − bq+1zq+2

dq+1
. (9)

Now, as a consequence of the structure of matrix
V , when we solveV x = z, forx = [x1, x2, . . . , xn]T

we obtain thatxq+1 = zq+1 and then

xi = zi −
bixi+1

di
, i = q, q − 1, . . . , 1, (10)

xi = zi −
cixi−1

di
, i = q + 2, . . . , n. (11)

The above computation suggest the following
BSP algorithm for two processors. We assume that
matrixA and vectory are stored in the main proces-
sorP0.

Algorithm 1 Parallel BSP algorithm for two proces-
sors.

Superstep1

ProcessorP0 sends to processorP1 the elements
ai, bi, ci, yi, for i = q + 1, q + 2, . . . , n.

Superstep2 Compute the elementsdi andzi.

• In processorP0,

– Let d1 = a1 and computez1 using
(6).

– For i = 2, 3, . . . , q, computedi−1

andzi using (3) and (7).

– ProcessorP0 sends to processorP1

the elementsaq, bq, dq andzq.

• In processorP1,

– Let dn = an and computezn using
(6).

– For i = n−1, n−2, . . . , q+ 2, com-
putedi andzi using (4) and (8).

– ProcessorP1 sends to processorP0

the elementsdq+2 andzq+2.

Superstep3 Compute the elementsdq+1, zq+1 and
the solution.

• Both processors computedq+1 and zq+1

according to (5) and (9), respectively. Let
xq+1 = zq+1. Then,

– In processorP0 computexi, for i =
q, q − 1, . . . , 1, using (10).

– In processorP1, computexi, for i =
q + 2, . . . , n, using (11).

• ProcessorP1 sends to processorP0 the
components of the solutionxi, for i =
q + 2, . . . , n.

The cost of Algorithm 1 is
(

9
2n+ 6

)
+
(

5
2n+ 5

)
g+

3l flops (see [2]).

3.2 Generalization forp processors
In this paper we propose an hybrid parallel algorithm
based on Algorithm 1 and the OPM method (see [6]).
Consider system (1) partitioned intop2 blocks as figure
1. The OPM method consider a new partition based
on the above partition, adding2m equations (respec-
tively, components) to each general central block of
coefficient matrix (respectively, right-hand side vec-
tor), andm equations (respectively, components) to
the first and last block of coefficient matrix (respec-
tively, right-hand side vector). The new blocks are
now overlapped one each other as a consequence of
the new partition. Therefore, we can rewrite the new
subsystems aŝAix̂i = ŷi, for i = 1, 2, . . . , p2 . We

slightly modify this partition adding2m equations (re-
spectively, components) to the first and last blocks
of the coefficient (respectively, right-hand side vec-
tor). So, each of the subsystems has the same size.
The OPM method proposes to solve each of these in-
termediate systems in the processors using theLU
factorization. Nevertheless, instead of this technique
we propose to apply Algorithm 1 to solve modifyed
systems in each pair of processors(P2i−2, P2i−1) for
i = 1, 2, . . . , p2 .

We can describe the method in three phases.
Phase1. Each pair of processors(P2i−2, P2i−1)

for i = 1, 2, . . . , p2 receiveÂi and ŷi. Each proces-
sor can receive in a unique communication step the
needed data to run Algorithm 1 in next phase. The
total number of data received by each one of thep
processors are4t, with

t =
n

p
+m = k +m.

In order to perform the communication in one step,
we introduce a new vector ofp components that we
call row, which represents the number of the first
row that each processor must receive from the main
one. That is, theith component of this vector repre-
sents the number of the first row that must be commu-
nicated from the main processor to the processorPi.
Observe that this vector is computed in the main pro-
cessor. We can set the following algorithm to compute
the components of vectorrow.

Algorithm 2 Computation of vectorrow.
row(0) = 1.
IF p > 4 THEN

FORi = 1, 2, . . . , p2 − 2,

row(2i) =
2in
p
−m+ 1,

END
ENDIF

row(p− 2) = n− 2n
p
− 2m+ 1

FORi = 1, 2, . . . , p2 ,
row(2i− 1) = row(2i− 2) + t,

END.

In the same communication step, we must send
from main processor to the remaining ones the values
of parametersm andt because they will be required
in further computations.

Phase2. In this phase each pair of processors
(P2i−2, P2i−1), for i = 1, 2, . . . , p2 , execute Algo-
rithm 1 for the elements that have been received in
phase1, except the initial and last communication of
the algorithm.


A1 B1

C2 A2 B2

...
C p

2
−1 A p

2
−1 B p

2
−1

C p
2

A p
2




x1

x2
...

x p
2
−1

x p
2

 =


y1

y2
...

y p
2
−1

y p
2



Figure 1:

Phase3. After executing Algorithm 1 in phase2,
each processor has obtained a partial solution vector
of t components. Now, the objective of this phase is to
send from each processor to the main one the desired
components of the partial solution vector, accordingly
with the OPM method. We take all the components
from the first and the last processor; the lastt − m
components from the even processors, except for the
last even processor, from which we take the lastt−2m
components. Finally, we take the firstt −m compo-
nents from the odd processors, except for the first even
processor, from which we take the firstt − 2m com-
ponents.

Now, our objective is to derive a method that allow
us to build in the main processor the final solution vec-
tor of (1), which contains the desired components of
each partial solution vector that have been computed
in each processor in Phase2. To accomplish this, we
define, in each processor, three new variables called as
row2, numeqsandjump. The first variablerow2 takes,
in each processor, the initial row number of the first
component in its partial solution vector that become
as part of the final solution in the main processor. The
second variable, callednumeqs, represents the number
of components of the partial solution vector, in each
processor, which must be transmitted to the main one
as part of the final solution. The third variable, called
jump, give us the position, in the solution vector of
main processor, where the first choose component of
the partial solution vector of each processor must be
placed. The following algorithm computes the values
of these variables.

Algorithm 3 Computations required to obtain in
each processor the variables row2, numeqs and jump.

• ProcessorP0, row2 = 1,
numeqs = t, jump = 0.

• ProcessorP1, row2 = 1,
numeqs = t− 2m, jump = t.

• ProcessorP2i, for i = 1, 2, . . . ,
p

2
− 2,

row2 = m + 1, numeqs = t −m, jump =

in

p
.

• ProcessorP2i−1, for i = 2, . . . ,
p

2
− 1,

row2 = 1, numeqs = t−m,

jump =
(i− 1)n

p
+ t−m.

• ProcessorPp−2, row2 = 2m+ 1,

numeqs = t− 2m, jump =
(p− 2)n

p
.

• ProcessorPp−1, row2 = 1,
numeqs = t, jump = n− t.

The following BSP algorithm implements the new
parallel method for solving tridiagonal systems, based
on the three phases we have described above.

Algorithm 4 A BSP parallel algorithm for solving
tridiagonal systems forp processors.

Superstep1 Start and initial communication.

• Computem andt in P0 (see [6]).

• Each of the processors receive from
main processor the corresponding ele-
ments fromA and y, using the vector
row, given by Algorithm 2.

• Main processor sendsm and t to the re-
maining ones.

Superstep2 Execution of Algorithm 1 in each pair
of processors.

• For i = 1, . . . , p2 , processors
(P2i−2, P2i−1) execute supersteps2 and3
of Algorithm 1, except for the final com-
munication of the solutions at the end of
superstep3.

• Each processor computes row2, numeqs
and jump, according with Algorithm 3.

• Main processor obtains the solution vec-
tor from the partial solution vector in each
processor, using the variables row2, nu-
meqs and jump.

The computational cost of the Algorithm 4, (see
[2]), is

(3n+ 9k + 9m+ 3p+ 30)
+ (5n− 5k − 5m+ 4mp+ 5p− 2)]g (12)

+ 3l flops.

4 Wang’s Method to solve tridiago-
nal systems

For a detailed description of the Wang’s method, see
[11]. We can briefly describe the method saying that
we proceed simultaneously to eliminate the elements
located up and below the main diagonal of coefficient
matrix, carrying out the necessary elementary oper-
ations until finallyA is diagonalized. The nonzero
elements of the subdiagonal blocks appearing in the
first stage of the Wang’s method are labelled asfi, for
i = 1, 2, . . . , n.

We carried out a modification of the original
method consistent in updating, at the same time, in
all the processors the nonzero elementsgki, for i =
1, 2, . . . , p − 1, which appear throughout the process
in the superdiagonal blocks . The updating of the ele-
ments in the right-hand side vector is achieved in pro-
cessorsP1, P2, . . . , Pp as follows

rp = dn,

rt = dkt −
gkt

ak(t+1)
rt+1, t = p− 1, p− 2, . . . , 2.

The processorPi, for i = 1, 2, . . . , p− 1, updates the
elementdki from the received elements from proces-
sorsPj , for j = i + 1, i + 2, . . . , p, by means of the
following elementary operation

dki = dki −
gki

ak(i+1)
ri+1. (13)

Once these elements have been updated, we proceed
to eliminate the off diagonal elements in each of
the diagonal blocks and we modify the components
dk(i−1)+j , for j = 1, 2, . . . , p − 1. In this way, we
avoid the loosing of parallelism when we develop the
final computations, which lead us to obtain a diagonal
matrix. So we save a step of communication to the
main processor. The following algorithm resumes the
characteristics exposed above.

Algorithm 5 A BSP Wang’s partition algorithm for
tridiagonal systems.

Superstep 1

ProcessorPi, for i = 2, 3, . . . , p, receives block
Ai, the elementsbki, cki+1 and the vector
[dk(i−1)+1, dk(i−1)+2, . . . , dki]

T .

Superstep 2

• For i = 1, 2, . . . , p,

– ProcessorPi vanishes the elements
ck(i−1)+j , for j = 2, 3, . . . , k.

– ProcessorPi vanishes the elements
bk(i−1)+j , for j = k−2, k−3, . . . , 1.

• For i = 2, 3, . . . , p, processorPi re-
ceives the elementsakj , dkj and bkj , for
j = 1, 2, . . . , p with j 6= i from the
remaining ones.

Superstep 3

For i = 1, 2, . . . , p − 1, processorPi vanishes the
elementsbki and receives the updated elements
aki anddki from the remaining processors.

Superstep 4

For i = 1, 2, . . . , p− 1,

• Processor Pi+1 vanishes the elements
fki+j , for j = 1, 2, . . . , k.

• ProcessorPi receives the elementsgki,
ak(i+1), dk(i+1).

Superstep 5

• For i = 1, 2, . . . , p− 1,

– ProcessorPi updates the elementdki
according with (13) and then van-
ishesgki.

– ProcessorPi vanishes the elements
gk(i−1)+j , for j = 1, 2, . . . , k − 1.

• For i = 1, 2, . . . , p, processorPi com-
putes

xi =
dk(i−1)+j

ak(i−1)+j
, for j = 1, 2, . . . , p.

• Each processor sends its partial solution
to the main one.

Table 1: BSP parameters for a CRAY T3D.

s p l g N1/2

CRAY T3D 12 32 201 1.1 28
64 148 1.0 27
128 301 1.1 20
256 387 1.2 15

The computational cost of algorithm 5 is, (see
[1]),

(21k + 3p− 18)
+ (5n− 5k + 8p2 − 16p+ 8)g (14)

+ 5l flops.

5 Numerical results
In this section, we compare theoretical predicted times
for Algorithm 4 and Wang’s method (a fast and clas-
sical method to solve tridiagonal linear systems) on a
Cray T3D using the cost model provided by the BSP
model. The BSP parameters, for this machine, are re-
sumed in Table 1.

To compute the parameterg, we follow the model
proposed by Hockney [5], whereg is defined as a
function of the message sizer as

g =
(

1 +
N1/2

r

)
g∞

with g∞ the asymptotic communication cost for very
large messages andN1/2 is the size of message that
produces half the optimal bandwidth of the machine.

In Table 2 theoretical cost measured in seconds is
presented for32, 64, 128, and256 processors. These
times are computed using expressions (12) and (14),
for different sizes of the coefficient matrixn in a range
that varies from4096 to 4194304.

As we can see in Table 2, when the number of
processors is high the method proposed in Section
3 improves the execution times given by the Wang’s
method, for some sizes. Observe that forp = 128,
Wang’s method is slower than the other one for sizes
less than32768; when the number of processors in-
crease to256, the size increase to131072, as we show
in Figures 2 and 3.

References:
[1] Climent, J.J., Tortosa, L., Zamora, A.: Compar-

ing the BSP cost of different algorithms for tridi-

agonal systems. Report DTIC-97/06 Universitat
d’Alacant (1997)

[2] Climent, J.J., Tortosa, L., Zamora, A.: A new
BSP algorithm for tridiagonal systems. Actas de
las IX Jornadas de Paralelismo San Sebastian
(1998) 183–190

[3] Golub,G.H., Van Loan,C.: Matrix Computa-
tions. Johns Hopkins University Press Baltimore
(1989)

[4] Hill, J.M., Crumpton, P.I., Burgess, D.A.: The-
ory, practice, and a tool for BSP performance
prediction. EuroPar’961124in Lecture Notes in
Computer Science Springer-Verlag (1996) 697–
705

[5] Hockney, R.: Performance Parameters and
benchmarking of supercomputers. Parallel Com-
puting17 (1991) 1111–1130

[6] Larriba, J.L., Jorba, A., Navarro, J.J.: Solution
of strictly diagonal dominant tridiagonal sys-
tems on vector computers. Report CEPBA Uni-
versitat Polit̀ecnica de Catalunya 93/09 (1993)

[7] Miller, R.: A library for bulk-synchronous par-
allel programming. Proceedings of the British
Computer Society Parallel Processing Specialist
Group Workshoop on General Purpose Parallel
Computing (1993)

[8] Miller, R., Reed, J.L.: The Oxford BSP library
users’ guide. Technical report Programming Re-
search Group University of Oxford (1993)

[9] Valiant, L.G.: A Bridging Model for Parallel
Computation. Communications of the ACM33
(1990) 103–111

[10] Van der Vorst, H.A.: Analysis of a parallel solu-
tion method for tridiagonal linear systems. Par-
allel Computing5 (1987) 303–311

[11] Wang, H.H.: A parallel method for tridiagonal
equations. ACM Transactions on Mathematical
Software7 (1981) 170–183

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

10000 20000 30000 40000 50000 60000

Cost
(sec)

n

Alg4
Wang

Figure 2: Theoretical times measured in a CRAY T3D forp = 128 with 4096 ≤ n ≤ 65536.

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

50000 100000 150000 200000 250000

Cost
(sec)

n

Alg4
Wang

Figure 3: Theoretical times measured in a CRAY T3D forp = 256 with 4096 ≤ n ≤ 262144.

Table 2: Theoretical times measured in a CRAY T3D for32, 64, 128 and256 processors.

p = 32 p = 64 p = 128 p = 256
n Alg. 4 WANG Alg. 4 WANG Alg. 4 WANG Alg. 4 WANG

4096 0.0023 0.0019 0.0024 0.0033 0.0029 0.0113 0.0038 0.0526
8192 0.0044 0.0029 0.0043 0.0039 0.0048 0.0105 0.0057 0.0415
16384 0.0084 0.0052 0.0081 0.0057 0.0088 0.0115 0.0097 0.0375
32768 0.0165 0.0097 0.0158 0.0094 0.0167 0.0150 0.0179 0.0386
65536 0.0328 0.0188 0.0311 0.0170 0.0325 0.0227 0.0344 0.0455
131072 0.0652 0.0369 0.0617 0.0322 0.0642 0.0384 0.0672 0.0615
262144 0.1302 0.0732 0.1228 0.0627 0.1275 0.0699 0.1330 0.0946
524288 0.2601 0.1457 0.2452 0.1236 0.2542 0.1331 0.2646 0.1615
1048576 0.5198 0.2908 0.4900 0.2455 0.5076 0.2594 0.5278 0.2956
2097152 1.0393 0.5809 0.9794 0.4892 1.0143 0.5122 1.0541 0.5638
4194304 2.0783 1.1612 1.9584 0.9766 2.0277 1.0177 2.1068 1.1004

