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Abstract: In this paper we describe an hybrid algorithm for an even number of processors based on an algo-
rithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare
this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical

computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.
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1 Introduction strictly diagonally dominant; that igq;| > [b;| + | ¢,
Tridiagonal matrices arise in many practical scientific fori =1,2,...,n, withc¢; = b, = 0.

and engineering problems. For instance, tridiagonal

matrices have appeared in the error analysis of numers>  The BSP model

ical solutions of two-point boundary problems associ-
ated with ordinary differential equations employing fi-
nite difference methods. These systems can be solve
efficiently in sequential computers but are difficult to
solve efficiently in parallel computers, where the com-
munications take a significant part of the total execu-

tion time. This fact, together with the fast progress step A BSP program is a sequence of supersteps and

that parallel computing has experimented in the last ach one can be decomposed into three phases: local
decades, has increased the interest and efforts towardes P P '

the development of fast and efficient algorithms for ﬁqoenr:f;rtatm;rys(':g?nlrza?]liCdaa,;[gnwgst'ir:)ﬁ:cgmpgr?cgfstgg
solving such systems. THaulk Synchronous Parallel yop o . . gst t
(BSP) Computingnodel, introduced by Valiant [9], is processors; and the last one is a barrier synchroniza-

' . ’ tion, which waits for all the communication actions
a style of parallel programming developed for general

o . g to be completed. At the end of a superstep, after
purpose parallelism; that is, parallelism across all the X AR
o . . the barrier synchronization is done, the data that were
application areas and a wide range of architectures.

. . . moved to the local memory of destination processors
We consider the problem of solving a linear sys- : . : )
tem are available. If the maximum number of incoming

or outgoing messages per processdr,ithen such a
Az =y, (1) communication pattern is called anrelation.
where The cost model summarizes in a very reduced
number of parameters the differences among the dif-
ap by ferent parallel architectures. If we define the time step
cg ay by as the time required for a single local operation such
A= as an addition or a multiplication in floating point,
then a BSP computer can be characterized by the fol-
lowing four parametersp, the number of processors;
s, the processor speed (the number of time steps per
is a tridiagonal and nonsingular matrix, amd = second)], the synchronization cost, andwheregh
[y, 92, - ., yn}T is the right-hand side vector. We also is the number of flops required for the processors to
assume that matriX is unreduced; that i$; # 0 and  perform anh-relation.
cy1 # 0,fori = 1,2,...,n— 1. Moreover,A is The computational cost of a BSP algorithm is eas-

A BSP computer consists of the following elements:
& set ofp sequential processor-memory pairs, a global
communication network that allows processors to
have access to non local data, and a mechanism for the
global synchronization of all the processors. The BSP
programming model is based on the conceswer-

Cn—1 Gpn—1 bp_1
Cn Qp,
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ily obtained as the sum of all individual supersteps.

e Fori=n—1,n—2,...,q+ 2, compute

The cost of a single superstep measured in time steps

or flops, is upper bounded hy + hg + [ wherew is

the arithmetic cost, anllg is the communication cost.
The total cost (in flops) of a BSP algorithm is given by
the addition of the individual cost of all the supersteps
needed to implement it; that is, is upper bounded by
Q + Hg + Kl where() is the total arithmetic cost of
the algorithm,H is the total sum of the words circu-
lating through the network along the execution of the
computation, ands is the total number of supersteps.

3 An hybrid parallel method to solve

tridiagonal systems

3.1 A method for two processors
Assume thath = 2¢q, for someg > 1 and consider
matrix A factorized as

A= MDYV, 2
whereA, M, D andV are partitioned into two blocks
of sizeq x ¢. Matrix D is diagonal, and first block of
M (respectively)) is lower bidiagonal (respectively,
upper bidiagonal). Second block 81 (respectively,
V) is upper bidiagonal (respectively, lower bidiago-
nal). Elements in the upper diagonal of both matrices
M andV (respectively, lower diagonal) are labelled
asu; (respectively/;) while elements in the main di-
agonal of D are labelled ag;. If we proceed as in
the LDU factorization of matrixA (see for example
Golub and Van Loan [3]), then the elementsidf D
andV are computed as follows:

e Letd; = a1 andd,, = a,,.
e Fori=1,2,...,q—1,let

Us

i1
dit1

(3)

— lip1diu;
_ Cit1b;

0

e Let

Compute

Un—1

Cit1b;
di = a; — lip1dip1u; = a; — ;rllz (4)
1+
and let
Ci
. = =
K3 dl’
vy — bi—1
11— d,L
e Finally, compute
Cqr1b Cqr2b
dyi1 = agi1 — q+1Y%  Cq+2 q+1' (5)

dq dq+2

To implement the above computation in a com-
puter with two processors we use a technique similar
to those developed by Van der Vorst [10] for symmet-
ric matrices. To solve system (1) using the factoriza-
tion (2) we need to solve systeM Dz = y, for z
and then solve systemix z, for xz. As a con-
sequence of the structure of matricks and D the
vectorz = [z1,2,...,2,]" can be obtained directly

as
Y1 Yn
Z1 dl’ Zn dn’ ( )
5 = B (7)
(2
1=2,3,...,q,
bz
5 = L ®)
(2
t=n—1,n—2,...,q+ 2,
— Cg+12g — bgr12
el = Ya+1 — Cqt1%q — Ug+1%¢+2 )

dg+1

Now, as a consequence of the structure of matrix

V,whenwe solv&/x = z, forz = [z1, 29, ..., 2,]"
we obtain thatr, 1 = 2411 and then
B biziv1 .
Ty = Z— ) Z_Q)q_lv"°717(lo)
d;
r; = zi—%, i=q+2,...,n. (11)
d;
The above computation suggest the following

BSP algorithm for two processors. We assume that
matrix A and vectory are stored in the main proces-
sor Fy.

Algorithm 1 Parallel BSP algorithm for two proces-
sors.

Superstepl



ProcessorP, sends to processoP; the elements
ai, b, iy, fori=q+1,q+2,...,n.

Superstep2 Compute the elements and z;.

e |n processorF,

— Letd; = a; and computez; using
(6).
—Fori = 2,3,...,q, computed;_,

and z; using (3) and (7).
— ProcessorP, sends to processaP;
the elements,, by, d, andz,.
e In processorP;,

- Letd, = a, and computez, using
(6).

—Fori=n—-1,n-2,...,q+2, com-
puted; and z; using (4) and (8).

— ProcessorP; sends to processaF,
the elementd, > andz,4o.

Superstep3 Compute the element§ 1, z,+1 and
the solution.

e Both processors computg.; and z,41
according to (5) and (9), respectively. Let
Tg+1 = Zq+1- Then,

— In processorP, computez;, for i =
q,q—1,...,1,using (10).

— In processorP;, computer;, for i =
q+2,...,n,using (11).

e ProcessorP; sends to processaP, the
components of the solution;, for 4
q+2,...,n.

The cost of Algorithm 1 |5<%n + 6) + (%n + 5) g+
3l flops (see [2]).

3.2 Generalization forp processors

In this paper we propose an hybrid parallel algorithm
based on Algorithm 1 and the OPM method (see [6]).
Consider system (1) partitioned irfdblocks as figure

slightly modify this partition addingm equations (re-
spectively, components) to the first and last blocks
of the coefficient (respectively, right-hand side vec-
tor). So, each of the subsystems has the same size.
The OPM method proposes to solve each of these in-
termediate systems in the processors usinglibe
factorization. Nevertheless, instead of this technique
we propose to apply Algorithm 1 to solve modifyed
systems in each pair of processO;_o, P;—1) for
i=1,2,...,%

We can d2escribe the method in three phases.

Phasel. Each pair of processofd;_2, Ps;—1)
fori =1,2,...,% receive 4; andy,. Each proces-
sor can receive in a unique communication step the
needed data to run Algorithm 1 in next phase. The
total number of data received by each one of the
processors arét, with

n
t=—4+m=k+m.
p

In order to perform the communication in one step,
we introduce a new vector gf components that we
call row, which represents the number of the first
row that each processor must receive from the main
one. That is, théth component of this vector repre-
sents the number of the first row that must be commu-
nicated from the main processor to the proced3or
Observe that this vector is computed in the main pro-
cessor. We can set the following algorithm to compute
the components of vectatow.

Algorithm 2 Computation of vectorow.

row(0) = 1.
IFp>4THEN
FORi=1,2,...,2 -2,
o
row(2i) = N,
p
END
ENDIF
2n
row(p—2)=n—— —2m+1
p
FORi=1,2,...,2,
row(2i — 1) = row(2i — 2) + t,
END.

1. The OPM method consider a new partition based

on the above partition, addirign equations (respec-

In the same communication step, we must send

tively, components) to each general central block of from main processor to the remaining ones the values

coefficient matrix (respectively, right-hand side vec-
tor), andm equations (respectively, components) to
the first and last block of coefficient matrix (respec-
tively, right-hand side vector). The new blocks are

of parametersn andt because they will be required
in further computations.
Phase2. In this phase each pair of processors

(Poi—2, Poi—1), for i = 1,2,..., 5, execute Algo-

now overlapped one each other as a consequence aithm 1 for the elements that have been received in
the new patrtition. Therefore, we can rewrite the new phasel, except the initial and last communication of

p

subsystems ad,;#; = ¥,, fori = 1,2,...,2. We

the algorithm.
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Figure 1:
Phase3. After executing Algorithm 1 in phasg m
each processor has obtained a partial solution vector D
of t components. Now, the objective of this phase is to
send from each processor to the main one the desired e ProcessorP; i, fori=2,..., p_ 1,
components of the partial solution vector, accordingly row2 = 1, numeqs =t — m, 2
with the OPM method. We take all the components , (i—1)n
from the first and the last processor; the last m jump = ———=—+1t—m.
components from the even processors, except for the
last even processor, from which we take the fastm e ProcessorP, s, row2 = 2m + 1,
components. Finally, we take the fitst- m compo- . (p—2)n
nents from the odd processors, except for the first even numeqs =t = 2m, jump = p
processor, from which we take the fitst 2m com-
ponents_ ° Processoer,l, row?2 = ].,
Now, our objective is to derive a method that allow numeqs = t, jump =n —t.

us to build in the main processor the final solution vec- _ _ _
tor of (1), which contains the desired components of The following BSP algorithm implements the new
each partial solution vector that have been computedParallel method for solving tridiagonal systems, based
in each processor in Phage To accomplish this, we 0N the three phases we have described above.
define, in each processor, three new variables called as _ _ _
row2, numeqandjump The first variableow2takes, ~ Algorithm 4 A BSP parallel algorithm for solving
in each processor, the initial row number of the first tridiagonal systems fop processors.

component in its partial solution vector that become
as part of the final solution in the main processor. The
second variable, calletumeqsrepresents the number
of components of the partial solution vector, in each

Superstepl Start and initial communication.

e Computen andt in P, (see [6]).

processor, which must be transmitted to the main one e Each of the processors receive from
as part of the final solution. The third variable, called main processor the corresponding ele-
jump, give us the position, in the solution vector of ments fromA and y, using the vector
main processor, where the first choose component of row, given by Algorithm 2.

the partial solution vector of each processor must be
placed. The following algorithm computes the values
of these variables.

Algorithm 3 Computations required to obtain in Superstep2 Execution of Algorithm 1 in each pair

e Main processor sends: andt to the re-
maining ones.

each processor the variables row2, numegs and jump. of processors.
e Processorry, row2 =1, eFor i = 1,...,2  processors
numeqs = t, jump = 0. (Py;_o, Py;_1) execute superstegsand3

of Algorithm 1, except for the final com-
munication of the solutions at the end of
superstef3.

e ProcessorP;, row2 =1,
numeqs =t — 2m, jump =t.
. p
e ProcessorPy;, fori =1,2,..., 3~ 2 e Each processor computes row2, numegs
row2 = m+ 1, numeqs =t —m, jump = and jump, according with Algorithm 3.



e Main processor obtains the solution vec- Algorithm 5 A BSP Wang’s partition algorithm for
tor from the partial solution vector in each tridiagonal systems.
processor, using the variables row2, nu- S ten 1
megs and jump. uperstep
ProcessorP;, for i = 2,3,...,p, receives block

The computational cost of the Algorithm 4, (see A;, the elementsh;, ciiq and the vector

2]), is
[ ]) [dk(i—l)-‘rl? dk(i—l)+27 e 7dki}T-
Superstep 2
(3n 4 9k + 9m + 3p + 30)
+ (51— 5k — 5m + 4mp + 5p — 2)]g (12) e FOri=1,2,...,p,
+ 3l flops

— ProcessorP; vanishes the elements

4 Wang's Method to solve tridiago- Cr(i=1)+j O] = 2,3, k.

nal systems — ProcessorP; vanishes the elements
For a detailed description of the Wang’s method, see bi(i—1)4j, forj =k—2k—=3,...,1.
[11]. We can briefly describe the method saying that e For i = 2,3,...,p, processorP; re-

we proceed simultaneously to eliminate the elements
located up and below the main diagonal of coefficient
matrix, carrying out the necessary elementary oper-
ations until finally A is diagonalized. The nonzero
elements of the subdiagonal blocks appearing in theSuperstep 3
first stage of the Wang’s method are labelledagor
1=1,2,...,n.

We carried out a modification of the original
method consistent in updating, at the same time, in
all the processors the nonzero elements for i = Superstep 4
1,2,...,p — 1, which appear throughout the process
in the superdiagonal blocks . The updating of the ele- Fori=1,2,...,p — 1,
ments in the right-hand side vector is achieved in pro-
cessors’, P, ..., P, as follows

ceives the elements,;, di; and by;, for
j = 1,2, ..., pwith j # i from the
remaining ones.

Fori = 1,2,...,p — 1, processorP; vanishes the
element9;; and receives the updated elements
ar; anddy; from the remaining processors.

e Processor P;,; vanishes the elements

fkiﬂ»,forj =1,2, ..., k.
rp = dp, e ProcessorP; receives the elementg,;,
T = dkt - a Tt4+1, t= p—- 17p - 27 v 72’ ak(i+l)’ dk(i—i_l).
k(t+1) Superstep 5
The processof;, fori = 1,2,...,p — 1, updates the e Fori=1,2,...,p—1
elementd,,; from the received elements from proces- B
sorsP;, forj =i+ 1,i+2,...,p, by means of the
- ’ ] — ProcessorP; updates the elemeriy;
following elementary operation according Cvitﬁ (13) and then \}:Z:ln-
; ishesgg;.
dp; = dy; — - ‘((]kl )Ti—i-l‘ (13) ki
E(i+1
— ProcessorP; vanishes the elements
Once these elements have been updated, we proceed Irii—1)4g. fOrj =1,2,... k- 1.
to eliminate the off diagonal elements in each of e Fori — 1.2 p, processorP; com-
- gLy 7

the diagonal blocks and we modify the components
dp(i-1)45> forj = 1,2,...,p — 1. In this way, we
avoid the loosing of parallelism when we develop the d(i—1)+j )

final computations, which lead us to obtain a diagonal Ti = Ue(i1)2 for j=1,2,....p.
matrix. So we save a step of communication to the

main processor. The following algorithm resumes the e Each processor sends its partial solution
characteristics exposed above. to the main one.

putes



Table 1: BSP parameters for a CRAY T3D.

S p [ g  Nip
CRAYT3D |12 32 201 1.1 28
64 148 1.0 27
128 301 1.1 20
256 387 1.2 15
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Figure 2: Theoretical times measured in a CRAY T3Djct 128 with 4096 < n < 65536.
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Figure 3: Theoretical times measured in a CRAY T3Dgat 256 with 4096 < n < 262144.

Table 2: Theoretical times measured in a CRAY T3DJ®y64, 128 and256 processors.

p =32 p =64 p =128 p = 256
n Alg. 4 WANG | Alg. 4 WANG | Alg. 4 WANG | Alg. 4 WANG

4096 | 0.0023 0.0019 | 0.0024 0.0033 | 0.0029 0.0113 | 0.0038 0.0526
8192 | 0.0044 0.0029 | 0.0043 0.0039 | 0.0048 0.0105 | 0.0057 0.0415
16384 | 0.0084 0.0052 | 0.0081 0.0057 | 0.0088 0.0115 | 0.0097 0.0375
32768 | 0.0165 0.0097 | 0.0158 0.0094 | 0.0167 0.0150 | 0.0179 0.0386
65536 | 0.0328 0.0188 | 0.0311 0.0170 | 0.0325 0.0227 | 0.0344 0.0455
131072 | 0.0652 0.0369 | 0.0617 0.0322 | 0.0642 0.0384 | 0.0672 0.0615
262144 | 0.1302 0.0732 | 0.1228 0.0627 | 0.1275 0.0699 | 0.1330 0.0946
524288 | 0.2601 0.1457 | 0.2452 0.1236 | 0.2542 0.1331 | 0.2646 0.1615
1048576| 0.5198 0.2908 | 0.4900 0.2455 | 0.5076 0.2594 | 0.5278 0.2956
2097152| 1.0393 0.5809 | 0.9794 0.4892 | 1.0143 0.5122 | 1.0541 0.5638
4194304/ 2.0783 1.1612 | 1.9584 0.9766 | 2.0277 1.0177 | 2.1068 1.1004




