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Anisotropic magnetoresistance in single electron transport
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We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and
a non-magnetic island. We identify the variationδµ of the chemical potential of the electrodes as a function
of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device.
Different effects occur depending on the relative size ofδµ and the charging energy. We provide preliminary
quantitative estimates ofδµ using a very simple toy model for the electrodes.
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Introduction Spin polarized transport through carefully designed ferromagnet-nonmagnetic -ferromagnet
(FM1-NM-FM2) nanostructures can be very sensitive to the relative orientation of their magnetic moments[1],
~Ω1 and ~Ω2 . The latter are controlled by external magnetic fields that result in the so called tunnel
magnetoresistance[2] (TMR), Giant magnetoresistance[3] (GMR) and Ballistic magnetoresistance[4] (BMR)
when the NM layer is a tunnel barrier, a metal and a geometrical nanoconstriction respectively.

In bulk ferromagnets, the dependence of resistance on the angle between the magnetization~Ω and the
current~j gives rise to the so called anisotropic magneto-resistance (AMR). The microscopic origin of this
phenomenon is the spin orbit interaction, which also accounts for the stability of the magnetization orien-
tation (magnetic anisotropy). Recently, the concept of Tunneling Anisotropic Magnetoresistance (TAMR)
has been proposed theoretically [5] and independently verified in experiments [6, 7, 8] in tunnel junctions
with GaAsMn electrodes. The related concept of Ballistic Anisotropic Magneto Resistance (BAMR) has
been proposed theoretically [9] and observed in atomic sized Nickel [10] and Iron nanocontacts [11]. As
opposed to TMR and BMR, where the high and low resistance states are related to variations in~Ω1 · ~Ω2,
TAMR and BAMR effects occur for~Ω1 = ~Ω2 ≡ ~Ω and depend on the angle between the transport direction
and~Ω, which is controlled by an external field.

The microscopic origin of BAMR and TAMR can be traced back to the dependence of the electronic
structure on the angle between~Ω and the crystal lattice, originated by the spin orbit (SO) coupling. In
ideal 1-dimensional chains, BAMR occurs if the number of bands at the Fermi energy is different for the
magnetization parallel and perpendicular to current flow [9]. In real metallic nanocontacts, the transmission
of the different channels is not perfect and an ab-initio approach [12] extended to include SO interaction
would be necessary to account for the experimental reports. In the case of TAMR the relevant quantity is the
transmission [5], which is related to the density of states at the Fermi energy. The size of the AMR effects
depends on the relative ratio of the spin orbit interaction∆SO , the Fermi energyǫF and the exchange
splittingJ . Not surprisingly, TAMR has been reported first in III-V ferromagnetic semiconductors, where
SO coupling is the largest energy scale in the system.

Motivated by recent experimental results [13], we consider a different kind of AMR effect, which takes
place in a single electron transistor (SET) with ferromagnetic electrodes. Although in the experiments[13]
both the electrodes and the dot are made of ferromagnetic GaMnAs, here we consider a simpler SET with
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a non-magnetic island (NMI). To the best of our knowledge AMReffect in this kind of SET have not been
explored so far [14, 15]. The NMI is influenced by the magnetization orientation of the electrodes,~Ω, both
because the tunneling ratesΓ and the electrode chemical potentialµ depend on~Ω. Whereas the change
in Γ is related to TAMR, the effect described here is related alsoto the change in chemical potential, and
therefore closer to the so called magneto Coulomb Blockade effect [16].

In the rest of this paper we give apreliminary account of how the magnetization orientation of ferromag-
netic electrodes affects the properties of a SET. The latterare described with a very simple toy model with
Rashba spin orbit and Stoner magnetism. We discuss how, depending on the ratio between the different
energy scales of the device, different magneto-transport effects are possible.

Theory. We consider single electron tranport through a NMI in the Coulomb Blockade (CB) regime,
weakly coupled to two identical ferromagnetic electrodes,denoted by left (L) and right (R). The reverse
situation, a magnetic dot with strong anisotropy coupled tonon-magnetic electrodes, has been considered
elsewhere [17]. The island is capacitively coupled to a gateelectrode, which is able to change electrostatic
potential, and thereby the charge, inside the NMI. The Hamiltonian of the system reads:

H =
∑

k,ν,η=L,R

Eη
kνη†

k,νηk,ν +
∑

n

(ǫn + eφext) d†nσdnσ+
Q̂2

2C
+

∑

σ,kν,η

〈kνη|V |σn〉η†
kνdnσ +h.c. (1)

The first term describe the ferromagnetic electrodes in a mean field approximation that yields single particle
states labeled with|kν〉, whereν is a band index that includes spin. Because of spin orbit interaction, the
spin σ of the electrons in the electrodes is not conserved. The next2 terms describe the single particle
part, including the coupling to the gate potentialφext, and the electrostatic Coulomb repulsion of the
NMI Hamiltonian in the orthodox model [18]. Since we neglectspin-orbit interactions in the NMI, the
single particle levelsn are also eigenstates of the spin operator, which we quantizeparallel to the electrode
magnetic moment orientation,~Ω. The last term describes the tunneling of electrons betweenthe electrodes
and the NMI. This tunneling occurs via aspin conserving operator,V . The single particle energies of the
NMI are denoted byǫn, andQ̂ = e

∑

n d†ndn is NMI charge operator.C is the capacitance of the island.
The most fundammental result of orthodox CB theory states that the number of electrons in the island

changes fromN to N + 1 when the gate electrode sets into resonance the ground stateenergies withN
andN + 1 electrons. In the framework of othodox CB theory this occurswhen [18]:

ǫN+1 + EC

(

N +
1

2

)

− eφext = µ
(

~Ω
)

(2)

whereµ is the chemical potential of the left and right electrodes,eφext is the gate potential andEC ≡ e2

C

is the SET charging energy. Since the chemical potential of the electrodes depends on the orientation of
their magnetic moment,~Ω, it is apparent that the charging curveN(φext, ~Ω) of the SET depends on~Ω.

As the gate is ramped, peaks in the zero bias conductance appear at the degeneracy point between
ground states withN andN + 1 electrons. The width of the peaks is related to the tunnelingratesΓη

nσ,
which also depend on~Ω. SinceΓη

nσ can be made arbitrarily small, we can in a first stage ignore its
dependence on~Ω and discuss the effects related to a change in the chemical potential of the electrodes, as
~Ω is rotated with a magnetic field. For the sake of the discussion we assume a uniaxial magnet, so that
the angleθ characterizes the angle between the magnetization and the axis ẑ: ~Ω = (sin(θ), 0, cos(θ)).
We consider two orientations of the magnetization of the electrodes, yielding different chemical potentials,
µ1 = µ(θ = 0) andµ2 = µ(θ = π/2). We defineδµ ≡ µ1 − µ2. Depending on the relative value of
δµ, Γ andEC , we distinguish 3 different regimes: (i)Standard. This occurs ifδµ << Γ. In this case the
effect of the change of chemical potential is negligible in both the charging state and the conductance of
the device.

(ii) MagnetoresistiveΓ < δµ << EC . In this case the change of the chemical potential is big enough
as to detune the single electron device from resonance. If the gate potential is tuned to set the device into a
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peak of conductance at a given~Ω1, a large change in the conductance will take place when the orientation
of the electrode magnetization is changed to~Ω2 so thatδµ > Γ. The change in resistance can be positive or
negative depending on whether the single electron transistor gets closer or further away from the CB peak.
In this regime the charge state of the dot isnot affected, or at least weakly affected but the dependence of
Γ on ~Ω will play an important role, as it happens in the case of TAMR.

(iii) MagnetocapacitiveΓ << EC < δµ In this case the change of the chemical potential is big enough
as tochange the charge state of the dot. Neglecting the single-particle spacing, the charging energy for
δN extra electrons isδNEC . Therefore, the number of carriers in the NMI can change by asmany
asδN = δµ

EC
. This anisotropic magneto-capacitive effect is differentfrom TAMR and specific of SET

with ferromagnetic electrodes. The number of electronsδN injected or extracted from the NMI could be
monitored by the number of peaks in the zero bias conductanceas an external magnetic field rotates~Ω so
thatµ crosses the SET charging boundaries defined by (2).

Whereas there is plenty of experimental information about typical charging energies of SET, which
range fromµeV to meV, we are not aware of reports of the dependence of chemical potential on mag-
netization orientation. Calculations of this quantity using realistic models or ab-initio are necessary.
Here we use a very simple model to explore this problem. We describe the electrodes as a one dimen-
sional electron gas with parabolic dispersion and spin splitting J modified by a Rashba spin orbit term:
Hel = p2

2m
δσ,σ′ − J

2
~σ · ~Ω + λpσz . Herem is the effective mass (in units of the free electron mass) andλ is

the strength of the spin-orbit interaction. We takeh̄ = 1. andλ has dimensions of velocity. A dimension-
less ratio of Stoner and spin orbit interactions is given by(λh̄kf )/J , wherekf is the Fermi wave-vector.
In magnetic semiconductors like GaMnAs the exchange splitting is comparable or even smaller than the
SO coupling. In metals like Nickel the exchange splitting ismore than 10 times larger than the SO orbit
interaction.

The eigenstates|kν〉 and eigenvaluesEkν of Hel can be obtained analytically. In figure 1 we plotEkν

for J = 1, m = λ = 0.5. For this rather large value of the spin orbit interaction, the bands change
significantly as the~Ω rotates. In this sense the situation is similar to the case ofGaMnAs [19] Upon simple
quadratures we can obtainµ(~Ω) for fixed values ofJ ,m andλ as a function of the electron density. In
fig. 1d we see that theµ(n) curve is different for different values ofθ. The jump inµ(n) is related to
the occupation of the upper band, which occurs at a value of the density that depends on~Ω. Assuming
a constant electronic density we can invert the curveµ(n) and obtainδµ (fig. 1e). We see thatδµ can
be either positive or negative, depending onn, and its absolute value ranges 0 and 0.15J , which would
largerly exceed the change inν when the magnetic field is applied parallel to~Ω [16]. The change in size
and magnitude ofδµ as a function ofn are related to the change of the ratios between exchange energy,
band energy and spin orbit coupling. In fig. 1f and 1g we showµ(θ) for n = 0.5 andn = 0.3 respectively.
The horizontal lines in 1g stand for values ofµ at which the number of electrons in the NMI changes,
assumingEC = 0.05J , we see how the dot would gain up to 2 extra electrons as theθ is varied from
π/2 (the easy axis in this case) to 0 orπ. The vertical lines in 1g stand for the values ofθ at which a
conductance peak would be observed.

We now discuss briefly how the tunneling rates are affected bythe rotation of the electrode magnetiza-
tion. The scattering rate for then level of the QD, with spinσ along the~Ω axis reads:

Γη
nσ(~Ω) =

1

h̄

∑

k,ν=±

|〈kη|V |n〉|
2
|Ck,ν,σ(~Ω)|2δ

(

ǫn − Eη
ν,k(~Ω)

)

(3)

where|kν〉 =
∑

σ Ck,ν,σ(~Ω)|σ〉|k〉. It is apparent thatΓnσ depends on~Ω both through the density of states
and throug the mixing coefficientsCk,ν,σ. The tunability ofΓ can bring and additional knob to study the
SET in the Kondo regime [15].

In summary, we have provided a simple conceptual framework to understand the different effects
that occur in a non-magnetic single electron island coupledto ferromagnetic electrodes with magnetic
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Fig. 1 . 1a-1c: Bands for three different magnetization orientations,θ = 0 (a),θ = π

4
(b) andθ = π

2
(c). 1d: density

vs chemical potential for the 3 same values ofθ. 1e: difference in chemical potential forµ(0) − µ(π/2).1f,1gµ(θ)
for n = 0.5 (f) andn = 0.3 (g). In the latter we also show the charge in the dot for different values ofµ.

anisotropy. The sensitivity of a single-electron transistor device to the chemical potential of the electrodes
results in new physical effects when these are ferromagnetic. Both the single particle lifetimesΓ and the
charge vs gate curve depend on the orientation of the magnetic moment~Ω with respect to the easy axis.
This effect can be used to probe the chemical potential of ferromagnetic electrodes and could have practical
applications. Further theoretical work is necessary to provide realistic description of the electrodes as well
as to consider the case of ferromagnetic island, either metallic [20] or semiconducting [21].
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