
Towards a Comprehensive Framework for the Specification,
Representation and Unification of Complex Feature Structures:

the Lexical Objects Theory

José F. Quesada
CICA (Centro de Informática Cientı́fica de Andalucı́a), Sevilla������������	�
��������	�� ���

Resumen

This paper describes the main characteristics of the � � � � � � ����� � � � � ��� � ! " # : a framework that com-
prehends the formal, linguistic and computational aspects involved in the study of unification and features
structures in Computational Linguistics. From a functional point of view, our proposal is based on a layered
architecture which distinguish between three main levels. Specification level introduces new expressive tools:
optionality and special values (null, complete and incomplete), and defines the inference rules that obtain the
canonical form of any lexical object. Representation level permits three models: InRange, DataDefined and
EndLess, and concentrates on computational techniques aimed to improve the management of lexical objects.
Finally, Unification Level defines formally Low Level Logic-based, Weak and Constructive Unification strate-
gies.

$&%�'�(�)�*,+�-,./(�0 *1'

The study of the formal properties of feature structures (FS henceforward) and unification
has focused the attention of a lot of research works in Computational Linguistics (CL). These
works can be organized in four main streams.

The first line has concentrated on the study of FS as a model for the 23 4 5 6 7 8:9 7 ;�<=; >@? 7 <�A�B7 4 C
9 7 5D8�E:3 <�;�F=3 <�G . In this context, researchers have analyzed their expressive power and have
proposed different extensions to the basic model: templates and lexical rules (Shieber, 1984),
negation and disjunction (Karttunen, 1984), correference and non-local values (Kasper and
Rounds, 1986), etc.

The second line is related to the use of typification strategies as part of FS–based for-
malisms, obtaining the so-called 9 H 8:3 2JI ;�6@4 ;�6 9 3 2 K�> 3 G�9 B6 314 9 6 B5 9 B6 3 4 (Carpenter, 1992) and
;�6 23 6 C 4 ;�6 9 3 2=B<�7 L@5 G�9 7 ;�< (Meseguer et al., 1990).

Third, some authors have studied the problems associated with the 6 3 8/6 3 4 3 <9 G�9 7 ;�<J; >�> 3 G�C
9 B6 3M4 9 6 B5 9 B6 3 4 : denotational semantics of the model (Shieber, 1984; Pereira and Shieber,
1984), computationally efficient data structures (Karttunen and Kay, 1985; Pereira, 1985),
techniques used for the storage and retrieval of very large FS–based knowledge bases (Que-
sada and Amores, 1995), and so on.

Finally, it is possible to delimitate a fourth stream of work concentrated on the design and
implementation of 3 � 5 7 3 <9�B<�7 L@5 G�9 7 ;�< G�? A�;�6 7 9 E�F�4 . Due to the critical role that unification
plays in CL, this division is full of interesting and very famous proposal: binary trees (Kart-
tunen and Kay, 1985), structure sharing (Pereira, 1985), non–destructive unification (Wrob-
lewski, 1987), strategic lazy incremental unification (Kogure, 1990) or non–redundant lazy
copy (Emele, 1991).

�������,0 .��
	������� ./(�������� *@)��

This work presents a theoretical framework that takes into account the main result of the four
research streams indicated. The model presented here has specially concentrated its attention
on the logico-mathematical analysis of the formal properties of unification and FS. In this ad-
dress, the main precedents we have considered are the works by Robert T. Kasper & William
C. Rounds (Kasper and Rounds, 1986; Rounds and Kasper, 1986; Rounds, 1997), Stuart M.
Shieber (Shieber, 1986) and Bob Carpenter (Carpenter, 1992).

The main contribution of our model, which justify a full � 3 ��7 5 G�?���� � 3 5 9 4��/E:3 ;�6 H , is to
offer a uniform and completely integrated and formalized framework that accounts all the
stages of the cycle of life of FS. Previous works have usually concentrated on partial aspects,
and this is a source of problems:

 Inconsistency between the formal model that defines the properties of FS and their de-
scriptions (Kasper and Rounds, 1986);

 Almost any study about FS incorporates a well-founded analysis of the problems gen-
erated during their representation. That is to say, the representation level isn’t analysed,
or, in the best case, it is considered as a direct translation of the logical model.

 The lack of a detailed analysis of the representation of FS and its link with the algorithms
of unification increases the computational costs of the latter.

These problems arise as a consequence of very restrictive or partial formalization schemes.
Our proposal aims to present a methodologically interdisciplinar framework that includes si-
multaneously computational, linguistic and formal requirements.

From a functional point of view, the study of lexical objects (LO henceforth) is divided
in three main levels: Specification, Representation and Unification. In the next sections we
describe their main characteristics.

����� � .�0 ��.�� (�0 *1' ����� � 	
��	
������������� �� � � ���� ���"! �$#&%'��(� �")�*+! � (,-*+)�.0/��1�2�� *+!134*+! 5���
From the perspective of its informational domain, a unification–based grammatical formalism
defines the notion of lexical object as a partial function 6 from a set of attributes 7 to a set of
values 8 : 6�9�7 :<; ; ;+=>8 where 7 :@?BA&C D�E�7 C .

This basic model has been enriched using different extensions, such as negation and disyunc-
tion of single and complex values. Our formalism for the specificacion of LO includes all
these possibilities and also incorporates the following:

1. � 8:9 7 ;�<�G�? 7 9 H : F . This let us to indicate a default value for an attribute. There is an inter-
esting linguistic motivation for this extension. With the definition of optionality we will
incorporate a G�3 G H B<�7 L@5 G�9 7 ;�< F=3 5 E�G�<�7 4 F , that is, LO marked as optional will never
fail when unifying.

E
I J ��
�K F L 	�����MON I
�P L K ��
 J M ? I J ��
�K F L 	����RQ
�P L K ��
 J MI J ��
�K F L 	����+MON I J ��
�K �:� L M ? I J ��
�K �:� L M

2. ��7 4 9 4 . The formalism includes lists as a basic data type.

3. S�8:3 5 7 G�?�T�G�? B�3 4 .
(a) U�B�? ?�T�G�? B�3 4 : V and

I V M . These let us to assign no value to an attribute. In conjunc-
tion with the multiple inheritance mechanism, these values allow us to delete (as an
exception) an inherited value. Null values unify with any other:I J ��
�K V MON I J ��
�K �:� L M ? I J ��
�K �:� L MI 	 J � K I V M�MWN I 	 J � K I
�P L K ��
 J M�M ? I 	 J � K I
�P L K ��
 J M�M

(b) X <�5 ;�F,8:? 3 9 3'T�G�? B�3 4 : Y and
I Y M . These values indicate that an attribute has no value,

but it requires some value to be correct. Of course, these values unify with any
other. Also, the Z <�7 L@5 G�9 7 ;�< � 3 [3 ? contains a function able to determine as an error
of unification a LO in which there remain incomplete values:I � P�\�� K I Y M�MON I � P�\�� K I] �	�^1K _/	���`�M�M ? I � P�\�� K I] ��	�^ K _/	��$`�M�M ?ba EI � P�\�� K I Y M�McN I �$\�� K I] �	�^ K _/	��$`�M�M ? I � P�\�� K I Y M�Q � \�� K I] �	�^1K _/	���`"M�M ?0aRde
:�� L+f"g �$h��$i:	 g P���� j�
:	 g `/�����k a E l ?BmRn"o o p q qe
:�� L+f"g �$h:� i:	 g P:�� j
�	 g `:�����k aRd l ?0r&s s t s

(c) u�;�F,8:? 3 9 3@T�G�? B�3 4 . v and
I v M . Its unification with any other value will always fail.I] �	�^ K v MON I] �	�^ K _/	���`"M ?br&s s t sI � P�\�� K I v M�MON I � P�\�� K I] �	$^ K _:	���`"M�M ?0r&s s t sw<xWy z { y z | z } ~ | ~ � z�� } � � � � ~ � � }�� { z y � ~ � � } �

��	 ������R)�� (� �") ����� ���� 2�*+! %
	�� �2$(
1. Atom: Any identifier d is a LO. Special values V , Y and v are also LO, and specifically

atoms.

2. List: If is a LO, then � �� is also a LO.

3. Attribute–Value Pair: If � is an identifier and is a LO, then �B9� is a LO. Special
values

I V M , I Y M and
I v M are also LO, and specifically pairs.

4. Negation: If is a LO, then �� is a LO.

5. Optionality: If is a LO, then � is a LO.

6. Conjunction: If and � are two LO, then �� � is a LO. We will use also the symbol �
to represent conjunctions.

7. Disjunction: If and � are two LO, then �� � is a LO. We will use also the symbol �
to represent disjunctions.

��� ��� �! �" #�$ %'& ()+*-,�./" 01$ %/2�3�45%/0 & 6 $ (%'& 0
Rules 1 to 3 introduce different semantic types of LO:

1. Atoms (mRr87:9';'</=). We will refer to them with lower case letters: >/� ? � @ @ @
2. Lists (mRr87:A�B C ;): � >�� � � ? � � @ @ @
3. Attribute–Value Pair (mRr87ED�9�B F). We will use lower case Greek letters: G1� H1� @ @ @ to

refer to LO of type pair. The notation G�I J+K indicates that G is a pair, where the attribute
is � and the value is .

Over the previous definition of LO we will impose the following semantic constraints:
lists will be generated only from mRr87E9';'</= objects, and both objects in a conjunction or
disjunction will have the same semantic type.

We will refer to any special atomic value by means of >/C and to any special pair value by
G-C . Capital Greek letters: �� ��� @ @ @ , will refer to LO of any type.

��� ��� �!L-$ 6 " %'& M�" 0 " 0-$ %/2ON/$ P/" Q 0 �
The formalism includes the use of parentheses as a neutral operator that may improve the
legibility of LO and change the precedence R and order of application S of operators:T U�}�� V z } ~ � � z y � |$�"| z W � z } � z$� X � Y { � � } � Z�z y � � | [Z�\ � Y | �]�� z }�} z z V z V ^ _$z�{ z y Z�� ~ ~ � z$� | z�� X } � }�� Y { � � } � Z�z y � � | [Z�\ � Y |� | � } `�| ~ � } V � y V�~ z � � } � W � z | a W � � ~ z |'b c d ^ � } e z y ~ z V�� � ZfZ�� |'b g d$� } V�z | � � { z�| z W � z } � z | �h i�[fV z X � � Y ~ ^ X y � Z<y � ` � ~$~ �/Y z X ~ �j i�[fV z X � � Y ~ } z ` � ~ � � }�� } V�� { ~ � � } � Y � ~ [^ Y � | ~ | ^ { � � y | ^ V � | k � } � ~ � � } ^ � � } k � } � ~ � � } �

 Parenthesis: If is a LO, then
k l is a LO too.

Rule 3 permits the creation of a LO from an attribute � and a LO . The specification
language permits the addition of a label to the attribute. The label is an identifier between
two � symbols:

��p > � n"s$p�� � >�? p � �49�
Labels allow for the introduction of correference constraints. Besides, labels allow for

the extension of the basic scheme of LO specification with special constraints introduced by
certain grammatical formalisms and theories.

��	 ���)f� �� �)�2��� 5�! ��
��� ��� �! �& $ �5"8��	�
�" �5$ & (45%O$ %/2�� .�& (45%�$ Q (& , �
At the end of this stage, the negation and optionality operators will be applied on atoms ex-
clusively, except optionality that may be applied over negation.

� V� V k ��� ��� � l
� v� Y k ��� ��� � l
�4Y� v k ��� ��� � l

� I V M I V M k ��� ��� � l
� I v M I Y M k ��� ��� � l
� I Y M I v M k ��� ��� � l
��� >��� � ��>�� k ��� ��� � l

��G-I J+K� G-I J��'K k ��� ��� � l
� � � k ��� ��� l
� � � �+� k ��� ��� � ! l

� k ��� l k �� l � k ��� lk ��� ��� ��� l
� k ��� l k �� l � k ��� lk ��� ��� � � l

� >�;" >�; k ��� ��� � � l
� Gf;" Gf; k ��� ��� � � l
��� >��# � � >�� k ��� ��� � � l

� G-I J+K$ G-I J&% K k ��� ��� � � l
� � ' � k ��� ��� � � l

� k ��� l k � l � k � � l k ��� ��� � � l
� k ��� l k � l � k � � l k ��� ��� � l

��� ��� � �& $ �5" �(�)�(0 * +�%/) & (,5"�
�456 #�$ Q.-�456 #O�
At this stage we aim to get the disjunctive normal form (DNF) of mRr87 D�9�B F LO.

It is worth to note that the specification level doesn’t fulfil the commutative property (due
to the inheritance mechanism). This is the motivation of formula (S.2.3).

G I J b � ��� d H/I J � ���'I J � k ��� � � � lk G���H l ���" k G���� l � k HO��� l k ��� � � � l
G�� k H���� l k G���H l � k G���� l k ��� � � � l

��� ��� � �& $ �5" �(�-(+/0 (45%��/ �(#�.�Q (�) $ & (45%8$ %/2 �#�4�45& M�(% �'�
The goal of this stage is to merge the multiple definitions of the same attribute. To simplify
this operation and obtain a very-well defined logical representation this stage includes a set
of smoothing (simplification) rules.

G-I J�� �� G-I J�� k ��� � � � l
� >��'�:� ? �# � ? � k ��� � � � l
� >��'�:� ? �# � >�� ? � k ��� � � � l
G-C���' k ��� � � � l

G � k H/C��� l k ��� � � � l
G ��H/C� H/C k ��� � � � l

G-I J+K ��H/I J�� ��'I J b K��� d k ��� � � � l
G-I J+K�� k H/I J��8��� l �� I J b K��� d ��� k ��� � � � lk G�� H l ��' G�� k H��� l k ��� � � lk G�� H l ��' G�� k H��� l k ��� � � � ! l

G-I J+K�� H�� J�� H�� J��8��G-I J+K�� � �� J���� ��� k ��� � � ��� l
G-I J+K � k H�� J������ l H�� J��8� k G-I J+K ��� l � � �� J���� ��� k ��� � � � � l

� � ���D)�� ��� '�(�� (�0 *1' ����� � 	

This level includes a typification layer, which main original contribution is the distinction
between three main domain typification models:

1. X <"!,G�<�A3 . The possible values of an attribute are previously specified.

2. # G�9 G # 3 L@<:3 2 . The possible values of an attribute are also a very-well defined set, but
the user doesn’t define that set using a pre-declaration like with the InRange model. In
this case, the system has to obtain the set of values from the LOs where the attribute
appears.
$ i�[�&%�%�I _$z�Z�z � }�~ � � ~�� ~ ~ y � \ � ~ z � � |�� Y { � � \ z ~ � � � Y Y [+| Z�� Y Y z y�~ � � }�� ~ ~ y � \ � ~ z I �

3. �1<�2 � 3 4 4 . From a theoretical point of view, the domain of values is endless, because
always it is possible to incorporate new values.

From an operational perspective, DataDefined objects may be thought as an user-friendly
technique based on a post-typification mechanism. At the end of the analysis process, DataDe-
fined objects will be considered as InRange.

As a result of the typification layer, the system will know for each attribute its semantic
type (Atom, List or Pair) and its typification model (InRange or EndLess).

Next, the Representation Level concentrated on the relations between the logical descrip-
tion obtained from the previous level (Specification) and their use by the unification algo-
rithms in the next level (Unification).

��	
 � ���� �� �)"(*�(� �")-�����) � *+)��"��&(���-� 2O� ���� 2�*+! %
	�� �2$(�
Let us consider that the domain of an InRange Atomic LO (for instance, >) has � different
values:

	 ��?�
 � E � �$d � @ @ @ � � ��
We can represent each value of this domain as a sequence of � bits:

� E ? � !�! @ @ @ !
�$d ? ! � ! @ @ @ !

...
� &? !�!�! @ @ @ �

The negation will be represented as the one’s complement:

��� E ? ! ��� @ @ @ �
The disjunction of two values is their bitwise inclusive OR:

� E ���$d ? ��� ! @ @ @ !
To store optionality we will use an additional bit:

� E ? � !�! @ @ @ ! 9 !
� � E ? � !�! @ @ @ ! 9 �
�+��� E ? ! ��� @ @ @ � 9 �

InRange special atomic LO will be stored as � :
V'? ����� @ @ @ � 9 ! ?�������� 9 !
Y<? !�!�! @ @ @ ! 9 � ?��������b9 �
v'? !�!�! @ @ @ ! 9 ! ?��������b9 !�]1z/_$� Y Y � | z���� A5A � y���� A5A ~ ��� } V � � � ~ z�~ � � ~$��� z Y V�� � |! �� y E ^ y z | { z � ~ � e z Y [^ � }R� Y Y � ~ |5\ � ~ | �

��	 ��� ���� �� �)"(*�(� �")-��� �)�.-� �� ���&(���-� 2�� ���� 2�*+! %
	�� �2$(�
Our goal is to store only once every different value. This way, two objects are in fact the same
if they have been stored in the same memory address.

Therefore, the representation of an object of this type will require a memory address (a
pointer �) and two additional bits: the flags of optionality and negation. To store disjunction,
we will use a pointer to the same data structure, obtaining a recursive list of elements.

Let be the domain of an EndLess Atomic LO (for instance, p), the following set:

	�� ?�
 � E � ��d � @ @ @ �
We will use the next representation strategies

�
:

� E ? � �E 9 !�� � 	 <9 ! � � 	 9 NULL

� � E ? � �E 9 � � � 	 '9 ! � � 	 9 NULL

�
� E ? � �E 9 !�� � 	 <9 � � � 	 9 NULL

�+��� E ? � �E 9 � � � 	 <9 � � � 	 9 NULL

� E ����d ? � �E 9 ! 9 ! 9 ��= � �d 9 ! 9 ! 9 NULL

EndLess special atomic LO will be stored as:

V<? ������� 9 ! 9 ! 9 NULL
Y&? ������� 9 � 9 ! 9 NULL
v<? ������� 9 ! 9 ! 9 NULL

��	 � � ���� �� �)"(*�(� �")-����� � � (�
Lists will be represented as strings of the corresponding types of atoms.

��	 � � ���� �� �)"(*�(� �")-���
�*+� � �
To simplify the management of this kind of structures, the Representation and Unification
Levels consider all the pairs as being of EndLess type. Also, each component of the DNF will
be stored separately. The representation scheme in this case is based on three data structures:

1. �1G�7 6 !,; ;�9 . This structure contains the following fields:

(a) 6 ; ;�9 9 H 8:3 . Normal (8�G�7 6 ? 7 <�H) or derreferenced (23 6 6 3 > 3 6 3 <�5 3).
(b) 23 6 6 3 > 3 6 3 <�5 3 . A �1G�7 6 !,; ;�9 pointer.

(c) 8�G�7 6 ? 7 <�H . A �1G�7 6 ��7 <�H pointer.� ��� A5A � } V���� A5A � y z�} � ~�� Y Y � _$z V�~ �/\ z+� � y y z � ~ Z�z Z�� y ["{ � | � ~ � � } | �� ���w y z { y z | z } ~ | ~ � z'Z�z Z�� y ["� V V y z | |5_$� z y z � w � � |5\ z z }R| ~ � y z V �

(d) 8�; 4 9 5 ; 8/H . An integer flag.

2. �1G�7 6 ��7 <�H .
(a) 8�G�7 6 . A �1G�7 6�T�G�? pointer.

(b) <:3 � 9 . A �1G�7 6 ��7 <�H pointer.

3. �1G�7 6�T�G�? .
(a) G�9 9 6 7 � B�9 3 .
(b) 4 9 6 4 E�G�6 7 <�A . An integer flag: structure sharing.

(c) [G�? 9 H 8:3 . Controls the type of information pointed by [G�? B�3 .
(d) [G�? B�3 . A pointer to a LO; it may be an Atom (InRange or EndLess), a List or a Pair

(�1G�7 6 !,; ;�9).
We will use the following graphics for their representation:

derreference

pairlink next

pair
attribute

value

PairRoot PairLink PairVal

��� �����
.

�
	 ',0 ��.�� (�0 *1' ����� � 	
��	
��)�� �R2�*�(� �") ��� �&(���-��� ��� #f� ����� � ����!-� ���"� 2���)�� �R2�*�(� �") *+)�.�� �*�����)�� �

�R2�*�(� �")
��� �5� ����%�(�) $ & (45%�4 ��� %��+$ % �5" � & 45#�()"! � �"# N/" $�() $ Q.� P * ") & 0 �
The next three unification rules control this case distinguishing between double, single and
no optionality. %

> 9 �ON B 9 ?�9 � k >'&�(*)�+ ? l 9 � k , � � l
>'9 - N B 9 ?�9 k � �.- l

/ > 9 ! � � k -10*0 ! l �
?�9 ! �$h] ���32/���� � k , � � l

> 9 !�N B 9 ?�9 ! k >'&�(j*4*5 ? l 9 ! k , � � l6 7�8 9�:'� } V;7�8 <>=>? � y z�~ � z�\ � ~ _$� | zA@*B<� } V�U*C*D'� { z y � ~ � � } | ^ y z | { z � ~ � e z Y [�3E } ~ � z+} z F ~�| z � ~ � � } | ^ G1^ � } V � � y z\ � } � y [�e � y � � \ Y z | �

��� �5� � ��%�(�) $ & (45%�4 � � %/2�N/" 0 0 � & 45#�()"! � �"# N/" $�() $ Q.� P * ") & 0 �
In this case, we have to control the flags of negation and optionality, as well as disjunctions:

> � 9 ! 9�� N�� 9 ? � 9 ! 9��
/ > � 9 ! 9�� � � k > � 0*0 ? � l �
�������b9 ! 9 ! �$h] ���32/������ k , � � l

> � 9 ! 9�� N�� 9 ? � 9 ! 9 k � ��� l
�	
 	� >

� 9 ! 9 ! � � k � 0*0 ! l 	�
+^ k > �� 0 ? � l �
? � 9 ! 9 ! � � k � 0*0 � l 	�
+^ k > �� 0 ? � l �
�������b9 ! 9 ! �$h] ���32/������ k , � � l

> � 9 -�9�� N�� 9 ? � 9 k � �.- l 9!�"
/ > � 9 -�9�� � � k - 0*0 ! l
? � 9 k � � - l 9!� �$h] ���32/���� � k , � � l

> � 9 � 9�� N�� 9 ? � 9 � 9!�"
�	
 	� > � 9 � 9�� � � k > � 0*0 ? � l 	�
+^k � 0*0 � l �
> � 9 � 9�� � ? � 9 � 9!� �$h] ���32/���� � k , � � l

k ��� l N�� 9�� �� k k N�� 9�� l � k � N�� 9�� l l k , � � l
 N�� 9 k � ��� l �� k k N�� 9 � l � k N�� 9�� l l k , � l

The operator � eliminates duplied components in conjunctions and disjunctios of EndLess
Atomic objects and duplied components in conjunctions of InRange Atomic objects:

� k ��> � 9 -�9�� ��� ��> � 9 -�9�� ��� l ��> � 9 -�9�� ���E��� k , � � ! l
� k ��> � 9 -�9�� ��� ��> � 9 -�9�� ��� l ��> � 9 -�9�� ���E��� k , � ��� l

� k ��> 9 -����E� >'9 -���� l ��>'9 -8� �E��� k , � � � l
��	 � ��)�� �R2�*�(� �") ����� � � (��� � �
List Unification is defined using the previous definitions of Atomic Unification join with the
next rules:

� �� N A � � � � N 9 � � k , � � � l
> � ? N 9 o �� k k > N 9 o l � k ? N 9 o l l k , � � � l
> N 9 ?���o �� k k > N 9 ? l � k > N 9>o l l k , � � � l

��	 � ��)�� �R2�*�(� �") ���
�*+� � �.� � #��&�")�� (� 5�2$(� ��.��)�� �R2�*�(� �")
The formal properties of Pair Unification are summarized in the next rule:

k G-I J+K ����� l N D k H�� J��8����� l
�	
 	� G-I J+K��

k � � N D k H�� J��8��� � l l � � � ��� J �
H�� J��8� k k G-I J+K ��� � l N D � � l � � J���� � �
� I J b K x � d � k � � N D � � l � � � 0*0 J @

k , � � � l
where � � and � � may be normal or empty pairs objects. If � � is empty (� � ? �

), then
G ��� � ? G . The empty set is a neutral element for unification:

 N D � k , � � � l
� N D ' k , � � � l

From a computational perspective we introduce Constructive Unification. This algorithm
mixes in a novel way different well-known strategies:

 Structure-sharing.

 Reversible Unification. The algorithm includes two working models: reversible unifi-
cation with disunification and non-reversible unification with post-copy (with in its turn
avoids pre-, over- and redundant copying).

 Strategic Unification. The algorithm uses ordered LO as input, and by the manipulation
of the �1G�7 6 ��7 <�H data structures is able to obtain a ordered LO too. If the ordering criteria
isn’t the alphabetic order of attributes, but the descendent probability of unification fail
previously obtained in a training process, we will easily obtain a strategic algorithm.

 Typed Unification. In any case, the algorithm eliminates the process of searching at-
tributes, a expensive task both from the computational and the complexity perspectives.

As a single ilustration, Fig. 2 contains the representation of the LO � � and � � . Dark lines
in this figure represent the modifications introduced by the unification algorithm.

� � 0 I 	1K f Q �1K �1Q ^1K �RQ �1K ��M
� � 0 I 	1K f Q \�K ��Q �RK �"M

e

t

a
p

a

c

d

p

q

r

b
s

c
q

2

4 5

6 7

8 9

10

11 12

13 14

1

3

15 16

��� �����
.: Constructive Unification of ��� and ���

As part of the unification algorithm we will have obtained a list of the

� ^�	$h:	 (� h���P��$h�P����Q=�/��� g ^1QJ� g ^ (�� 	 g P:�	�
changed (disunification information), that for Fig. 2 is

����� Q ^������� �:������
���RQ 4	�	������Q �	� Q
:� ��h1Q ����Q ��� � Q
�����h Q 4��	�	���	�
Now we can select between:

1. Post-copy the unified object. In this case, we have to copy only the �1G�7 6 !,; ;�9 (1) and
�1G�7 6 ��7 <�H (2, 13, 15, 6 and 8) structures, marking the �1G�6�T�G�? (3, 14, 16, 7 and 9) as
structure-shared. Once post-copied, we will apply the disunification algorithm obtaining
the input structures.

2. Store the disunification information in the �1G�7 6 !,; ;�9 structure and continue. Later, we
can apply or not the disunification algorithm.

When post-copying structures, we will use the 8�; 4 9 5 ; 8/H mark to avoid redundant copying.

��� 0 	 0 *��@)��1���
�

Bob Carpenter. 1992. The logic of typed feature structures. Cambridge Tracts in Theoretical
Computer Science. Cambridge: Cambridge University Press.

Martin C. Emele. 1991. Unification with lazy non-redundant copying. In 29th Annual
Meeting of the Association for Computational Linguistics, pages 323–330. Association
for Computational Linguistics.

Lauri Karttunen. 1984. Features and Values. In Proceedings of the Tenth International Con-
ference on Computational Linguistics COLING–84. Stanford, California. Also in (Shieber
et al., 1986), Part I, 17–36.

Lauri Karttunen and Martin Kay. 1985. Structure sharing with binary trees. In 23rd An-
nual Meeting of the Association for Computational Linguistics, pages 133–136. Also in
(Shieber et al., 1986), Part II, 5–16.

Robert Kasper and William C. Rounds. 1986. A Logical Semantics for Feature Structures.
In 24th Annual Meeting of the Association for Computational Linguistics, pages 257–266.

Claude Kirchner. ed. 1990. Unification. San Diego, California: Academic Press Inc.

Kiyoshi Kogure. 1990. Strategic lazy incremental copy graph unification. In Proceedings of
the 13th International Conference on Computational Linguistics, pages 223–228.

José Meseger, Joseph A. Goguen and Gert Smolka. 1990. Order–Sorted Unification. In
(Kirchner, 1990), pages 457–487.

Fernando C. N. Pereira and Stuart M. Shieber. 1984. The Semantics of Grammar Formalisms
seen as Computer Languages. In Proceedings of the Tenth International Conference on
Computational Linguistics. Stanford, California. Also in (Shieber et al., 1986), Part I, 37–
58.

Fernando C. N. Pereira. 1985. A Structure–Sharing Representation for Unification–Based
Grammar Formalisms. In 23rd Annual Meeting of the Association for Computational Lin-
guistics, pages 137–144. Also in (Shieber et al., 1986), Part II, 17–35.

José F. Quesada and J. Gabriel Amores. 1995. A Computational Model for the Efficient Re-
trieval of Very Large Structure–Based Knowledge Bases. In Proceedings of the Knowl-
edge Representation, Use and Storage for Efficiency (KRUSE’95) Symposium, pages 86–
96. Santa Cruz, California.

William C. Rounds and Robert Kasper. 1986. A complete logical calculus for record struc-
tures representing linguistic information. In Proceedings of the 1st Symposium on Logic
in Computer Science.

William C. Rounds. 1997. Feature logics. In J. van Benthem and A. ter Meulen. (eds.) 1997.
Handbook of Logic and Language. North–Holland.

Stuart M. Shieber. 1984. The Design of a Computer Language for Linguistic Information.
In Proceedings fo the Tenth International Conference on Computational Linguistics. Stan-
ford, California. Also in (Shieber et al., 1986), Part I, 4–16.

Stuart M. Shieber. 1986. An Introduction to Unification–based Approaches to Grammar.
CSLI Lecture Notes 4. Stanford, California: Center for the Study of Language and Infor-
mation.

Stuart M. Shieber, Fernando C. N. Pereira, Lauri Karttunen and Martin Kay. (eds.) 1986. A
Compilation of Papers on Unification–Based Grammar Formalisms. Parts I and II. Re-
port No. CSLI-86-48. Stanford, California: Center for the Study of Language and Infor-
mation.

Gert Smolka and Hassan Aı̈t–Kaci. 1990. Inheritance Hierarchies: Semantics and Unifica-
tion. In (Kirchner, 1990), pages 489–516.

David Wroblewski. 1987. Non–destructive Graph Unification. In Proceedings of the 6th
National Conference on Artificial Intelligence, AAAI, pages 582–587, Seatle, Washington.

