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ABSTRACT 

In a recent paper [A. Yıldırım, Z. Saadatnia, H. Askari, “Application of the Hamiltonian approach to 

nonlinear oscillators with rational and irrational elastic terms”, Mathematical and Computer Modelling 

54 (2011) 697-703] the so-called Hamiltonian approach (HA) was applied to obtain analytical 

approximate solutions for conservative nonlinear oscillators with certain elastic terms. In this paper we 

demonstrate that the approach proposed is equivalent to the well known harmonic balance method 

(HBM) and that the equations they obtained using the HA can be easily derived from the well known 

first-order HBM applied to conservative nonlinear oscillators with odd nonlinear elastic terms. This 

implies that the approximate frequency and periodic solution obtained using the HA with the trial 

function proposed in that paper are the same as those obtained using the first-order HBM. We think the 

comments presented here could be useful for people working in approximate analytical methods for 

nonlinear oscillators and they would have to be taken into account in the developing and application of 

some approximate techniques. 
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1. Introduction 

 Very recently Yildirim et al. [1] applied the so-called Hamiltonian approach (HA) to 

obtain analytical approximate solutions for three well-known nonlinear oscillators. The 

authors mentioned that this approach is a kind of energy method with a vast application in 

conservative oscillatory systems and they applied the approach to nonlinear oscillators with 

rational and irrational elastic terms. They also pointed out that comparison of the approximate 

solutions and the exact ones proves that the HA is quite accurate in nonlinear analysis of 

dynamical systems. Their results are based on a new method developed [2] which can be 

applied to conservative nonlinear oscillators with odd elastic terms. In this paper we will 

demonstrate that, when the trial function u(t) = Acosωt is used in HA, the results obtained are 

the same as those one can obtain using the known first-order harmonic balance method 

(HBM), and that HA can be derived from the equations obtained when the first-order HBM is 

considered. Therefore, the application of the HA in [1] could be considered as a corollary of 

the first-order HBM, and all the results obtained are the same as those obtained applying the 

HBM. Finally, we include additional comments about the analytical approximate expressions 

for the frequency given in [1] as well as a general expression for this frequency for an 

extensive set of conservative nonlinear oscillators. 

 

2. Derivation of HA equations in [1] from the first-order HBM 

 Consider the simplest nonlinear conservative autonomous system encountered in the 

theory of oscillations with one degree of freedom, whose motion is governed by the following 

dimensionless second-order differential equation 

  
    

€ 

d2u
dt2 + f (u) = 0,             

€ 

u(0) = A,         
    

€ 

du
dt

(0) = 0 , (1) 

where the nonlinear restoring-force function f(u) is odd, i.e.     

€ 

f (−u) = − f (u)   and satisfies 

    

€ 

u f (u) > 0 for     

€ 

u∈[−A, A],     

€ 

u ≠ 0 [3]. It is obvious that u = 0 is the equilibrium position. This 

condition is not considered in [1] but it is necessary to apply the Eq. (4) presented in Yildirim 

et al’s paper. The motion is assumed to be periodic and the problem is to determine the 

angular frequency of oscillation ω and corresponding solution u(t) as functions of the system 

parameters and the amplitude A.  
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 The HBM provides a general technique for obtaining analytical approximate 

expressions for the frequency and the periodic solution of nonlinear oscillators by using a 

truncated Fourier series representation [4, 5]. To solve Eq. (1) by the HBM, a new 

independent variable τ = ωt is introduced, so Eq. (1) can be rewritten as 

  
    

€ 

ω 2 d2u
dτ 2 + f (u) = 0,          

€ 

u(0) = A,         
    

€ 

du
dτ

(0) = 0  (2) 

The new variable is chosen in such a way that the solution of Eq. (2) is a periodic function of τ 

of period 2π [3]. Since the restoring force f(u) is an odd function of u, the periodic solution 

u(τ) has a Fourier series representation which contains only odd multiples of τ and the first-

order harmonic balance solution takes the form 

      

€ 

u(τ) = Acosτ  (3) 

Observe that u(τ) satisfies the initial conditions, Eq. (2), and it is the trial-function used in [1]. 

Substituting Eq. (3) into Eq. (2) gives 

      

€ 

−ω 2 Acosτ + f ( Acosτ ) = 0 (4) 

Following the single term harmonic balance approximation, it is necessary to expand Eq. (4) 

in a Fourier series and to set the coefficient of   

€ 

cosτ  (the lowest harmonic) equal to zero. The 

first coefficient of this Fourier series expansion can be easily obtained through the following 

integral  

  
    

€ 

4
π

[−ω 2 Acosτ + f ( Acosτ )
0

π /2∫ ]cosτ dτ = 0  (5) 

which can be written as follows 

  
    

€ 

[−ω 2 Acos2τ + Fu( Acosτ )
0

π /2∫ cosτ] dτ = 0  (6) 

where     

€ 

F(u) = f (u)du∫  and      

€ 

f (u) = dF(u)
du ≡ Fu(u) . Function F(u) is the potential energy 

considered in [1]. It is easy to verify that Eq. (6) can be written as follows 

    

€ 

[−ω 2 Acos2τ + Fu( Acosτ )
0

π /2∫ cosτ] dτ =
∂

∂(1/ω )
ωAcos2τ +

1
ω

Fu( Acosτ )cosτ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dτ

0

π /2∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

    

€ 

=
∂
∂A

∂
∂(1/ω )

1
2
ωA2 sin2 τ +

1
ω

F( Acosτ )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

dτ
0

π / 2
∫

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 0 (7) 
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where the following equations have been taken into account 

  
  

€ 

cos2τdτ
0

π /2∫ = sin2τdτ
0

π /2∫  (8) 

  
    

€ 

∂F(u( A,τ ))
∂A

=
dF(u)

du
∂u
∂A

= Fu(u)
∂u
∂A

     and     
    

€ 

∂u
∂A

= cosτ  (9) 

as well as Eq. (3). Finally, taking into account that τ = ωt, it follows that 

    

€ 

[−ω 2
0

π / 2
∫ Acos2 τ + Fu( Acosτ )cosτ]dτ =

∂
∂A

∂
∂(1/ω)

1
2
ω 2A2 sin2ωt + F( Acosωt )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dt

0

T / 4
∫

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

    

€ 

=
∂
∂A

∂
∂(1/ω )

1
2

du
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ F(u)
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
dt

0

T / 4∫
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

=
∂
∂A

∂
∂(1/ω )

Hdt
0

T / 4∫⎛ ⎝ ⎜ 
⎞ 
⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

∂
∂A

∂J
∂(1/ω )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0

   (10) 

where Eq. (3) has been taken into account,     

€ 

T = 2π /ω  is the period, H is the Hamiltonian 

function considered in Eq. (2) in [1]  

  
    

€ 

H (u) =
1
2

du
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ F(u) = constant  (11) 

and J(u) is the function introduced in Eq. (4) in [1]. As can be seen from Eq. (10), by applying 

the first-order HBM to the nonlinear oscillator governed by Eq. (1), we can easily derive the 

HA considered in [1].  

 It is well known that the first order analytical approximate frequency for these 

nonlinear oscillators obtained using the HBM is given as follows [3] 

  
    

€ 

ω =
a1

A
 (12) 

where a1 is the first coefficient of the Fourier series expansion of the nonlinear function 

    

€ 

f ( Acosωt )  

  
    

€ 

f ( Acosωt ) = a2n+1
n=0

∞

∑ cos[(2n +1)ωt]  (13) 

where 

  
    

€ 

a2n+1 =
4
π

f ( Acosτ)
0

π /2∫ cos[(2n +1)τ]dτ  (14) 
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3. Analytical expressions for the approximate frequencies derived in [1] 

 The approximate expressions for the frequencies derived in [1] (Eqs. (13), (20) and 

(27) in [1]) –which have been shown to be the same than those obtained using the HBM–, 

have the following analytical approximate expression: Eq. (13) in [1] can be written as 

follows 

  

    

€ 

ωHA =
cos2 t

1+ A2 cos2 t
dt

0

π /2∫
sin2 t dt

0

π /2∫
=

2
A2 1−

1

1+ A2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (15) 

The integrals in Eq. (20) in [1] can be easily obtained and then the approximate frequency has 

the following analytical expression 

  

    

€ 

ωHA =
cos2 t − cos2 t

1+ A2 cos2 t{ }dt
0

π /2∫
sin2 t dt

0

π /2∫
= 1−

2
A2 1−

1

1+ A2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (16) 

Finally, Eq. (27) in [1] can be written as follows 

 

    

€ 

ωHA =
cos2 t − γ cos2 t

1+ A2 cos2 t

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

dt
0

π /2∫

sin2 t dt
0

π /2∫
= 1−

4γ
πA2 [E(−A2 ) − K(−A2 )]  

 
    

€ 

= 1−
4γ
πA2 1+ A2 E A2

1+ A2( ) − 1

1+ A2
K A2

1+ A2( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 (17) 

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 

respectively, defined as follows 

  
    

€ 

K(m) =
dθ

1−msin2θ0

π /2∫  (18) 

  
    

€ 

E(m) = 1−msin2θ dθ
0

π /2∫  (19) 

 These expressions (Eqs. (15)-(17)) for the approximate frequency can be found in 

several papers in which the HBM is applied to this type of nonlinear oscillators. 
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4. Final comments about the first-order analytical approximate frequency 

 It is possible to consider the nonlinear differential equation 

  
    

€ 

d2u
dt2 + λ1u + λ2

sgn(u) u
α1

(1+α3u2 )α 2
= 0  (20) 

which corresponds to an extensive set of conservative nonlinear oscillators depending on the 

values of parameters λ1, λ2, α1, α2 and α3. Eq. (20) includes the three oscillatory systems 

considered in [1], as well as a wide range of conservative nonlinear oscillators. The first order 

analytical approximate frequency for this set of nonlinear oscillators can be obtained using the 

HBM (or the HA with the trial function given in Eq. (3)) by means of Eq. (12). To do this it is 

necessary to obtain the first coefficient of the Fourier series expansion of the nonlinear 

function 

  
    

€ 

f (u) = λ1u + λ2
sgn(u) u

α1

(1+α3u2 )α 2
= 0 (21) 

Considering that this function is an analytic function of u, it can be expanded in Taylor’s 

series about u = 0 as 

  
    

€ 

f (u) = λ1u + λ2
sgn(u) u

α1

(1+α3u2 )α 2
= λ1u + λ2

Γ(1−α2 )α3
n u u2n+α1−1

Γ(n +1)Γ(1− n −α2 )n=0

∞

∑  (22) 

where the following equation has been taking into account 

  
    

€ 

1
(1+α3u2 )α 2

=
(−1)n(α2 )nα3

nu2n

n!n=0

∞

∑ =
Γ(1−α2 )α3

nu2n

Γ(n +1)Γ(1− n −α2 )n=0

∞

∑  (23) 

where Γ(z) denotes the gamma function and (α2)n is the Pochhammer’s symbol. Then, 

introducing Eq. (3) into Eq. (22) and using Eq. (14) one obtains 

 
    

€ 

a1 =
4λ1A
π

cos2τ dτ +
0

π /2∫ 4λ2

π
Γ(1−α2 )α3

n A2n+α1

Γ(n +1)Γ(1− n −α2 )n=0

∞

∑ cos2n+α1 +1
0

π /2∫ τ dτ  

 

    

€ 

= λ1A + λ2
Γ(1−α2 )α3

n A2n+α1

Γ(n +1)Γ(1− n −α2 )n=0

∞

∑
2Γ n +1+ α1

2( )
πΓ α1

2 + 3
2( )
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€ 

= λ1A + λ2

2Aα1Γ α1

2 +1( )
πΓ α1

2 + 3
2( ) 2F1

α1

2 +1,α2;α1

2 + 3
2 ;−α3 A2( ) (24) 

where 

  
    

€ 

2 F1(a, b;c; z) =
(a)n(b)n

(c)n n!n=0

∞

∑ zn  (25) 

is the Gauss hypergeometric function. Substituting Eq. (24) into Eq. (12), the final expression 

for the approximate frequency reads 

  

    

€ 

ωHBM ( A) = λ1 +
2λ2 Aα1−1Γ α1

2 +1( )
πΓ α1

2 + 3
2( ) 2F1

α1

2 +1,α2;α1

2 + 3
2 ;−α3 A2( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/2

  (26) 

 Table I shows the values for the first-order analytical approximate frequency given in 

Eq. (26) for the most common conservative nonlinear oscillators which can be found in the 

bibliography [3-15]. From Table I we can conclude that it is not necessary to publish any 

paper related to the application of the HA –such as it is presented in [1]– to the oscillators 

included in Table I and, in general, for those oscillators which can be derived from equation 

(21).  

 

5. Conclusions 

 It has been demonstrated that the HA considered by Yildirim et al. [1] can be derived 

by applying the first-order HBM. This means that the analytical approximate frequency and 

the approximate periodic solution for conservative nonlinear oscillators obtained using this 

HA are the same as those obtained using the first-order HBM. This implies that, if the trial 

function u(t) = Acosωt is considered, it is not necessary to apply this HA to conservative 

nonlinear oscillators such as those analyzed in [1], because they have already been analyzed 

by different authors using the HBM. However, this HA could provide useful results if other 

more complex trial functions were used. Using the HBM (or HA) a general expression for the 

first-order analytical approximate frequency for the most common conservative nonlinear 

oscillators has been derived. Finally, it is important to point out that these methods -as other 

approaches- use trial functions and sometimes allow us to obtain suitable frequencies. In fact, 
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these methods are usually based on variational and Ritz methods [16-17] and all of them give 

the same first-order approximate frequency [18-20]. However, in order to prove the 

effectiveness of all of these methods, higher-order approximations would have to be used and 

the results obtained compared with the exact ones and with those obtained using other 

methods.  
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Tables 

Table I.-  First-order analytical approximate frequencies obtained using Eq. (26) for the most 

common conservative nonlinear oscillators which can be found in the bibliography. 



TABLE I 
 
λ1 λ2 α1 α2 α3 Nonlinear equation Name First order approximate frequency, ωHBM (Eq. (26)) 

1 ε 3 0 0 
    

€ 

d2u
dt2

+ u +εu3 = 0 Duffing oscillator [3] 
    

€ 

1+
3
4
ε A2  

1 ε 5 0 0 
    

€ 

d2u
dt2

+ u +εu5 = 0 Quintic-Duffing oscillator [6] 
    

€ 

1+
5
8
ε A2  

0 1 0 0 0 
    

€ 

d2u
dt2

+ sgn(u) = 0  Antisymmetric, constant force oscillator [3] 
    

€ 

2

πA
≈

1.12838
A

 

1 x0 0 0 0 
    

€ 

d2u
dt2

+ u + x0 sgn(u) = 0  Dynamically shifted oscillator [7] 
    

€ 

1+
4x0

πA
 

0 1 2 0 0 
    

€ 

d2u
dt2

+ sgn(u) u
2

= 0 Antisymmetric quadratic oscillator [4,8] 
    

€ 

8A
3π

≈ 0.921318 A  

0 1 3 1 0 
    

€ 

d2u
dt2

+
u3

1+ u2
= 0 Duffing-harmonic oscillator [9] 

    

€ 

1− 2
A2

1

1+ A2
−1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

0 1 1 1 0 
    

€ 

d2u
dt2

+
u

1+ u2
= 0 [10] 

    

€ 

2
A2

1− 1

1+ A2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

0 1 1/3 0 0 
    

€ 

d2u
dt2

+ sgn(u) u
1/ 3

= 0  “Cube-root” oscillator [11] 
    

€ 

2Γ(7 / 6)
π1/ 2 A2 / 3Γ(5/ 3)

≈
1.07685

A1/ 3
 

1 −γ 1 1/2 0 
    

€ 

d2u
dt2

+ u− γ u

1+ u2
= 0 Mass attached to a stretched wire [3, 12] 

    

€ 

1− 4γ
πA2

E(−A2) −K (−A2)( )  

0 1 1 1/2 0 
    

€ 

d2u
dt2

+
u

1+ u2
= 0  Relativistic oscillator [13] 

    

€ 

2

π A
E(−A2) −K (−A2)  

0 1 1 3/2 0 
    

€ 

d2u
dt2

+
u

(1+ u2)3 / 2
= 0  Nonlinear oscillations of a punctual charge in 

the electric field of charged ring [14] 
    

€ 

2

A π
K (−A2) − E(−A2)

1+ A2
 

0 1 1 1 -1 
    

€ 

d2u
dt2

+
u

1− u2
= 0 Finite extensibility nonlinear oscillator [15] 

    

€ 

2
A2

1

1− A2
−1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  


