Problem 3: solution

By combining the molar balance for each component j, the rate law for each reaction i, and the ideal gas law, we obtain six differential equations where the independent variables is the volume V and the dependent variables are the molar flux of each component, n_j:

$$\frac{dn_j}{dV} = f(V, n_j) = \frac{dn_j}{dV} = \sum_i \alpha_{ij} r_i$$

where:

$$r_i = k_i(T) \prod_j C_j^{\nu_{ij}}$$

$$C_j = \frac{n_j}{Q_v}$$

$$Q_v = \frac{RT}{p} \sum_j n_j$$

The following figure shows the evolution of the concentration of each component with the size (volume) of the reactor.