1. Find the eigenvalues and eigenspaces of the following matrices and determine if they are diagonalizable:

 (a) \[
 \begin{pmatrix}
 4 & 5 \\
 -1 & -2
 \end{pmatrix}
 \]

 (b) \[
 \begin{pmatrix}
 1 & 0 \\
 1 & -2
 \end{pmatrix}
 \]

2. Let \(A \) be invertible. Show that \(\lambda \) is an eigenvalue of \(T \) if and only if \(\lambda \neq 0 \) and \(\lambda^{-1} \) is an eigenvalue of \(A^{-1} \).

3. Find the minimal polynomials of

 \[A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\]

 \[B = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}\]

 \[C = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}\]

4. Find an \(n \times n \) matrix with fundamental polynomial \(x^2 \).

5. Prove that \(A \) is invertible if and only if its fundamental polynomial has a nonzero constant term.

6. Let \(A \in \mathbb{R}^{n \times n} \) have \(n \) distinct eigenvalues. Show that \(A \) is diagonalizable.

7. Find the possible eigenvalues of a matrix \(A \) such that \(A^2 = A \).

8. Show that a \(2 \times 2 \) real symmetric matrix is diagonalizable.