
Tree structured and combined methods for
comparing metered polyphonic music

David Rizo1, Kjell Lemström2, and José M. Iñesta1

1 Dept. Lenguajes y Sistemas Informáticos, Universidad de Alicante,
E-03080 Alicante, Spain

{drizo,inesta}@dlsi.ua.es
2 Dept. of Computer Science

University of Helsinki
FIN-00014 Helsinki, Finland
klemstro@cs.helsinki.fi

Abstract. Identifying copies or different versions of a same musical
work is a focal problem in maintaining large music databases. In this
paper we introduce novel ideas and methods that are applicable to me-
tered, symbolically encoded polyphonic music. We show how to represent
and compare polyphonic music using a tree structure. Moreover, we put
for trial various comparison methods and observe whether better compar-
ison results can be obtained by combining distinct similarity measures.
Our experiments show that the proposed representation is adequate for
the task with good quality results and processing times, and when com-
bined with other methods it becomes more robust against various types
of music.

1 Introduction

The recent dramatic increase in the number of music databases available in
the Internet has made the automatic music comparison/retrieval systems at-
tractable, not only to researchers working in the area, but also to music con-
sumers downloading midi files or new ringing tones, and organising personal
music databases.

In this paper we consider and develop methods comparing symbolically en-
coded (e.g. MIDI) musical works. A central problem in music information re-
trieval is to recognise copies/versions of a same musical work, although the ver-
sions may considerably differ from each other. A relevant, intrinsic feature of
music is that music presented in different keys (i.e., transposed in higher or lower
pitch) are perceived by human listeners as the same work. This phenomenon
also applies to differences in tempo.

In the literature, several methods have been developed for comparing mono-
phonic 3 musical works (see e.g., [11, 15, 13]). One possibility for comparing two

3 In monophonic music only one note is played at any time, while in polyphonic music
there are simultaneous notes.

2 David Rizo et al.

polyphonic works would be to use a monophonic reduction schema, such as the
skyline algorithm [20]. However, even though the two versions to be compared
may represent the same original work, because of differences in the accompa-
niments and harmonisations the reduction may produce two totally different
monophonic melodies in which resemblance cannot be found.

If the musical works in hand are not allowed to be transposed and, therefore,
the comparison algorithm does not have to be transposition invariant, one can
apply a string representation based algorithm for the problem [3, 6]. If trans-
position invariance is required, most of the string-based methods fail because
of the combinatorial explosion in the number of possible strings to be taken
into account. Doraisamy and Rüger [5] avoids the worst explosion by chopping
the possible strings in n-grams. Recently, various algorithms based on geometric
representation of music [9] which are capable of finding occurrences of both a
monophonic and a polyphonic pattern within a polyphonic musical work have
been introduced [4, 22, 21, 10].

A tree structured comparison method was introduced in [15] for the corre-
sponding monophonic task. Transposition and tempo invariances are obtained by
conducting a preprocessing phase that finds the rhythm structure and the tonic
of the music in hand [14]. In this paper we will elaborate this approach further
and introduce novel tree based methods for the polyphonic task. Moreover, as it
is well-known that by combining classifiers one can often achieve better results
in accuracy and robustness (when compared to the performance of the individ-
ual classifiers; see e.g., Moreno-Seco et al. [12]). We have also experimented on
whether one can achieve better comparison results when combining our novel
methods with some existing methods.

2 Tree representations

2.1 Tree representation for monodies

A melody has two main dimensions: time (duration) and pitch. In linear repre-
sentations, both pitches and note durations are coded by explicit symbols, but
trees are able to implicitly represent time in their structure, making use of the
fact that note durations are multiples of basic time units, mainly in a binary
(sometimes ternary) subdivision. This way, trees are less sensitive to the codes
used to represent melodies, since only pitch codes are needed to be established
and thus there are less degrees of freedom for coding.

Duration in western music notation is designed according to a logarithmic
scale: a whole note lasts twice than a half note, that is two times longer than a
quarter note, etc. (see Fig. 1). The time dimension of music is divided into beats,
and consecutive beats into bars.

In our tree model, each melody bar is represented by a tree, τ . Each note or
rest resides in a leaf node. The left to right ordering of the leaves preserves the
time order of the notes in the melody. The level of a leaf in the tree determines
the duration of the note it represents, as displayed in Fig. 1: the root (level

Comparing metered polyphonic music 3

!!!!!!!!!

"""""""""

!!!!!
"""""

!!! """ !!! """

!!!!!
"""""

!!! """ !!! """

Fig. 1. Duration hierarchy for note figures. From top to bottom: whole (4 beats), half
(2 beats), quarter (1 beat), and eighth (1/2 beat) notes.

1) represents duration of the whole bar (a whole note), the two nodes in level
2 duration of a half note. In general, nodes in level i represent duration of a
1/2i−1 of a bar.

During the tree construction, internal nodes are created on demand to reach
the appropriate leaf level. Initially, only the leaf nodes contain a label value.
Once the tree is built, a bottom-up propagation of these labels is performed to
fully label all the nodes. The rules for this propagation are described below.

The tree labels represent the corresponding pitch information. In order to
have a transposition invariant representation, in this paper we use the interval
from the main key of the song obtained using the algorithm introduced in [14].
This way, the labels of the tree use the alphabet {0..11} corresponding to pitch
classes relative to the tonality. This way, in ‘G Major’, pitch class ‘G’ is mapped
to 0. Nodes representing rests have an empty label.

An example of this schema is presented in Fig. 2. In the tree, the left child of
the root has been split into two subtrees to reach level 3 that corresponds to the
first note duration (as eighth note lasts 1/22 of the bar, pitch B coded as 11).
In order to represent the durations of the rest and note G, coded as 7 (both last
1/8 of the bar), a new subtree is needed for the right child in level 3, providing
two new leaves for representing the rest (empty label) and the note G (7). The
quarter note C (0) onsets at the third beat of the bar, so it is represented in
level 2 according to its duration.

Fig. 2 depicts how the time order of the notes in the score is preserved by
traversing the tree from left to right. Note also how onset times and durations
are implicitly represented in the tree, compared to the explicit encoding of time
when using strings. This representation is invariant under time scalings, as for
instance, different meter representations of the same melody (e.g. 2/2, 4/4, or
8/8).

Processing non binary durations. In some occasions the situation can be
more complicated. There are note durations that do not match a binary divi-
sion of the whole bar. This happens, for example, for dotted notes (duration is
extended in an additional 50%) or tied notes whose durations are summed. (see
Fig. 3). In such a case, a note cannot be represented just by one leaf in the pro-
posed schema. However, it is well-known [11] that our auditory system perceives

4 David Rizo et al.

�
11

� � �
7

�
4
2

� �
0

 0

11

 7

Fig. 2. Simple example of tree construction.

a note of a given duration the same way as two notes of the same pitch, played
one after the other, whose durations sum to that of the single one. Therefore,
when a note exceeds the considered duration, in terms of binary divisions of
time, it is subdivided into notes of binary durations, and the resulting notes are
coded in their proper tree levels. Fig. 3 depicts such an example and how it is
handled by the schema.

�
0

�
4

� �
2

��
4
2 �

0 4

0 2 4

Fig. 3. Tree representation of notes exceeding their notation duration: dotted and tied
notes. Both 0 leaves correspond to the same dotted quarter note. The two 4 leaves
represent the two tied notes.

Other frequently used non binary divisions are ternary rhythms. In that case,
the length of one bar is usually 3 beats and it is split into 3 quarter notes, etc.
This is not a problem, since neither the tree construction method nor the metrics
used to compare trees need to be binary; there can be any arbitrary number of
children for a node. So, in ternary meters or ternary divisions, the number of
children for a node is three. This can be generalized to other more complicated
cases that can appear in musical notations, like tuplets or compound meters.
Fig. 4 gives an example of compound meter based on ternary divisions and the
corresponding tree.

�
0

�
�
4

���
711

�

2

��
59

��
8
9�

 0

 4 2

11 9 7 5

Fig. 4. The meter 9/8 is a compound one based on ternary divisions. The tree con-
struction method can also represent this melody.

Comparing metered polyphonic music 5

There are other subtle situations that may appear in a score, like for example
grace notes4, that are not included in the cases described above. Nevertheless, in
digital scores (e.g. MIDI files) these special notes are represented by short notes
that are subsequently coded in the level corresponding to their written duration
by our schema.

Representation of complete melodies. The method described above is able
to represent a single bar as a tree, τ . A bar (or a measure) is the basic unit of
rhythm in music, but a melody is composed of a series of M bars. Let us now
describe how to combine the set of trees {τi}Mi=1 representing the bars.

To build a tree, T , for a complete melody, the computed bar trees are joined
in a particular order. For instance, the sub-trees can be grouped two by two,
using always adjacent pairs. This operation is repeated hierarchically, bottom-
up, with the new nodes until a single tree is obtained. Let us denote the depth
(or height) of a tree T by h(T). With this grouping method, the trees grow in
depth quickly:

h(T) = log2M + 1 + max
i

h(τi),

making the tree edit distance computation very time consuming, as discussed in
Section 4. The best choice is to build a tree with a root for the whole melody,
whose children are the bar sub-trees. This way, the depth of a tree corresponding
to a whole melody becomes

h(T) = 1 + max
i

h(τi).

The smaller depth of the tree of the latter approach makes it the choice to be
taken. Fig. 5 (to the left) displays an example of a simple melody, composed of
three bars, and how it is represented by a tree composed of three sub-trees.

11

4
2� � �

0

�
2

� �
�

�
54

� �

 5

11 5

2 4 0

 0

Fig. 5. Melody and the corresponding tree. The root of the tree connects all the bar
sub-trees.

4 A grace note is a very short note or a series or notes to achieve musical effects
that occupies no time in the duration notation in a score. They are also known as
acciaccatura.

6 David Rizo et al.

Tree representation of polyphonic music. To represent polyphonic music
all voices are inserted in the same tree following the rules of the monophonic
music representation. Node labels now represent sets of pitch classes. Under this
approach, each leaf will contain all the notes played at a given time (whose depth
is conditioned by the shortest one). A node representing only rests has an empty
set as the label.

Fig. 6 contains a polyphonic example and its tree representation.

�
5

4

�
{7,0}

��

0

��

�

7

�0
�

��

��

{} {}

{7} {0,4,7} {} {0}

{0} {5}

Fig. 6. An example of a polyphonic music and the corresponding tree. Note that in
polyphonic trees empty labels are explicitly represented by the empty set.

Bottom-up propagation of labels. Once the tree is constructed, a label
propagation step is performed. The propagation process is performed recursively
in a post-order traversal of the tree. Labels are propagated using set algebra. Let
L(τ) be the label of the root node of the subtree τ expressed as a set of pitch
classes. When the label of the node is a rest, the label set is empty: L(τ) = ∅.
Then, given a subtree τ with children ci, the upwards propagation of labels is
performed as L(τ) =

⋃
i L(ci). The upwards propagation goes until level two,

that is, the root representing the whole piece of music always remains empty.
Fig. 7 shows the tree in Fig. 6 after propagating its labels.

{0,4,5,7} {0}

{0,5,7} {0,4,7} {} {0}

{0} {5}

Fig. 7. Tree of Fig. 6 after bottom-up label propagation.

In Fig. 7, the half note C (pitch class 0) in the second bar, which shared a
parent with the rest, is promoted (∅ ∪ {0} = {0}). In the first bar, the node

Comparing metered polyphonic music 7

{{C,E,F,G},{3,2,1,4}} {{C},{2}}

{{C,F,G}, {1,1,2}} {{C,E,G},{2,2,2}} {{},{}} {{C},{2}}

{{C},{1}} {{F},{1}}

Fig. 8. Multiset label version of the tree in Fig. 7. Pitch names are used instead of
pitch classes to avoid confusion with cardinalities. The labels contain multisets (B, f).

containing label {0, 5, 7} contained only the quarter note F (pitch class 5) before
propagation. The propagation operation merges all pitches in that branch ({0}∪
{5} ∪ {7} = {0, 5, 7}).

Multiset labels. The current polyphonic representation may have a drawback
after the propagation step: if the lower levels of the tree contain scales covering
a whole octave, the sets of propagated inner nodes would contain all the pitch
classes. This way, the inner nodes representing two distinct musical works would
be the same and the comparison methods would always consider the two similar
to each other.

To overcome this problem the set label is replaced with a multiset, where
longer notes have higher cardinality than short ones, i.e., giving lower importance
to those pitch classes propagated from deeper levels of the tree.

A multiset (aka. a bag) is a pair (X, f), where X is an ordered set, and f is
a function mapping f : X → N. For any x ∈ X, f(x) is called the multiplicity
of x. Using this definition and expressing f as an ordered set, we see that the
multiset {1, 1, 3} = ({1, 3}, {2, 1}) meaning that f(1) = 2 and f(3) = 1.

Now, all the node labels in a tree are represented by an assigned multiset
(B, f). Once again, we start from the leaves by setting:

B = {p | 0 ≤ p ≤ 11}, (1)

f(p) =
{

2h−l, if p ∈ L(τ)
0, otherwise (2)

where l gives the level of the node in the tree. Then the propagation is performed
analogously to that of above, using the multiset union operation instead of that
of sets.

Fig. 8 illustrates this representation. It can be noticed that the note ’F’ has
a low weight at root level as compared to the other longer notes.

Prunning. Due to the presence of very short notes that eventually will have a
low weight in the final node labels, the pruning of the trees has been considered
thus making trees smaller and tree edit algorithms faster.

8 David Rizo et al.

3 Geometric algorithms for polyphonic pattern matching

Clausen et al. [4] used inverted file indices with the geometric representation.
The onset times of the notes are quantized to a pre-selected resolution so that
both the pitch and time dimensions are discrete. Moreover, onset times are repre-
sented relatively to their metrical position within the measure. The information
within a measure constitutes one unit for the query. The retrieval method finds
occurrences (total and partial) that have a similar metrical positions as the
query; local time and pitch fluctuations cannot be dealt with. Tempo invariance
can be obtained by conducting a metrical structure analysis phase, transposi-
tion invariance by using a mathematical trick that outperforms the brute-force
solution.

Wiggins et al. [22] suggested to use the piano-roll representation and work
on the translation vectors between the points in the piano-rolls. In this way,
finding a transposition invariant exact occurrence of a query pattern becomes
straightforward: find a translation vector that translates each point in the pattern
to some point within the studied musical work. Ukkonen et al. [21] showed how
to process the translation vectors in a suitable order to obtain an algorithm of
a linear expected and a quadratic worst case time complexity (algorithm P1).
Their method is also modified to the case of finding all partial occurrences of the
pattern. This is doable in O(nm logm) time, where n and m refer to the length
of the musical work and the pattern, respectively (algorithm P2). Moreover,
they also suggested to replace the points in the piano-rolls by horizontal line
segments (thus considering the length of the notes instead of the bare note-on
information) and modified their algorithm to solve the problem of the longest
common total length. For this problem, their P3 algorithm requires some extra
data structures but runs also in O(nm logm) time (with discrete input). This
setting takes into account tempo fluctuations but not pitch fluctuations. One
attempt in this direction was presented by Lubiw and Tanur [10]. More recently,
Lemström et al. [8] have developed more efficient versions of the P2 algorithm
using indexing. In our experiments we have used one of their novel algorithms
called P2v6.

4 Tree comparison methods

The edit distance between two trees is defined accordingly to the string edit
distance: it is the minimum cost sequence of all possible sequences of operations
that transforms one tree into another [18]. The standard editing operations are
deletion, insertion, and substitution of a node label. Thus, in the straightforward
case where the operations are assigned with unit costs, the distance of the trees
is obtained by counting the number of required operations.

Shasha & Zhang tree edit distance. As the starting point, we use Shasha
and Zhang’s method to compute the edit distance between two trees, TA and TB .
Their method runs in time O(|TA| × |TB | × h(TA)× h(TB)), where |Ti| denotes

Comparing metered polyphonic music 9

the number of nodes in tree Ti and h(Ti) its depth. Although, it is allowable to
assign individual costs to the editing operations, in our experiments we obtained
best results with unit costs.

Selkow tree edit distance. Because of the rather high time complexity of the
Shasha and Zhang’s method we wanted to experiment also with an alternative
method introduced by Selkow [17]. The main functional difference is that node
insertions and deletions can be done only at the level of the leaves. If an inner
node needs to be deleted, all the subtrees rooted by it have to be deleted first.
Naturally, these restrictions make the algorithm simpler but less accurate.

Having joined all the bar sub-trees in the root in the construction method, the
Selkow method runs in time O(nAnBh) where nA, nB and h are the maximum
arities of the trees TA and TB , and their maximum depth, respectively.

Multiset substitution cost. For computing the distances, some approaches
like the Euclidean distance between vectors has been tested. Finally, the distance
that performed the best has been a bounded Manhattan distance.

LetM = (B, f) be a multiset that corresponds to a node label. We represent
it by using a vector vM ∈ N12, such that vM[p] = f(p),∀p ∈ B according
to definition in eq. (2). Then, the substitution cost csbn between two multisets
Ma = (Ba, fa) and Mb = (Bb, fb) is defined as the following distance between
the corresponding vectors:

csbn(Ma,Mb) , deq(vMa
,vMb

) =

∑11
p=0min(1, (vMa

[p]− vMb
[p])2)

12
. (3)

Note that the maximum difference between two components of the multiset
has been limited to 1. Unit cost has been assigned to insertion and deletion
operations.

Roots’ edit distance. As the nodes in level two represent all the bars, an
overview of the whole musical work can be obtained by only observing this level.
In this way we compute the roots’ edit distance.

To this end, let T be a tree representing a polyphonic musical work of M bars,
and {T k2 }Mk=1 the siblings in level one of the tree rooted by T . The label function
l(T k2) returns the vector vM corresponding to the node T k2 . The roots’ edit
distance RootED(T, T ′) between two trees T and T ′ is the unit cost string edit
distance between strings S(T) and S(T ′), such that for a tree τ , S(τ) ∈ (N12)∗, is
constructed using the sequence of labels of {τ i2}: S(τ) = l(τ1

2), l(τ2
2), . . . , l(τM2).

The algorithm is not dependent on the depth of the tree, as the Selkow tree
distance; it works in time O(MTMT ′), where MT and MT ′ are the number of
bars of the musical works represented by trees T and T ′, respectively.

10 David Rizo et al.

Longest common root subsequence. Accordingly to that of previous section,
we also apply the classical longest common subsequence (LCS) measure [2] to
the strings obtained from level one of the trees to be compared. We call this
similarity measure the longest common root subsequence, or Lcrs for short.

For the LCS computation we need a function that checks the equality of
given two symbols that in our case are multisets. To this end, let Ma and Mb

be multisets as detailed above. For an item-wise similarity of Ma and Mb,
denoted Ma +Mb, we require:

Ma +Mb ⇔ ∀11p=0{vMa
[p] = vMb

[p]}.

To solve the problem, we have applied a classical dynamic programming
algorithm that runs in time O(MaMb), where Ma and Mb represent the number
of bars in the corresponding musical works. We are considering to improve the
performance of this process by using bit-parallelism thus obtaining a speedup of
a factor w denoting the size of the computer word in bits [7].

5 Classifier combination

The similarity results for different similarity models may differ substantially
from each other. As exemplified by Moreno-Seco et al. [12], this feature can be
exploited: by combining classifiers a better result is often obtained than when
applying the same classifiers (similarity measures) individually. In this paper,
we have tested some straightforward combinations. The combinations are always
built in the same way: they accumulate the normalised similarity values from
the included individual classifiers. The normalisation is necessary because of the
distinct result spaces of the individual measures.

Given a collection GN of N musical works, let dα(Gx, Gy) be the similarity
value between two musical works Gx and Gy (1 ≤ x, y ≤ N) using the algorithm
α. The normalized distance d̃α is computed as:

d̃α(Gx, Gy) =
dα(Gx, Gy)−min{dα(Gi, Gj)}

max{dα(Gi, Gj)} −min{dα(Gi, Gj)}
,

where 1 ≤ i, j ≤ N and i 6= j. Finally, the combination C of the similarity
measures of a set of αm algorithms (m ∈ N) is performed as follows:

C(αm, Gx, Gy) =
m∑
a=1

d̃αa(Gx, Gy)

6 Experiments

In order to evaluate the algorithms, two corpora with different styles of poly-
phonic music has been built. The first one, called ICPS, has 68 MIDI files corre-
sponding to covers of the incipits of seven musical works: Schubert’s Ave Maria,

Comparing metered polyphonic music 11

Ravel’s Bolero, the children songs Alouette, Happy Birthday and Frère Jacques,
the Carol Jingle Bells and the jazz standard When The Saints Go Marching In.
All the works in this corpus have a similar kind of accompaniment tracks.

The second corpus, called VAR, consists of 78 classical works representing
variations of 17 different themes as written by the composer: Tchaikovsky vari-
ations on a rococo theme op.33, Bach English suites BWV 806-808 (suite 1
courante II, suite 2, 3, and 6 sarabande), and Bach Goldberg variations.

To evaluate the methods, we have used the leave-one-out, all-against-all
schema: for each work in the corpus we compute the similarity value against
all the others providing 5281 comparisons in the whole experiment.

Four combinations of the individual similarity measures have been built. (see
Figs. 9–12). They are named according to the measures they include: ‘CombALL’
includes all the measures, ‘CombGeom’ consists of all the geometric algorithms,
‘CombTree’ use all classifiers involving trees, and ‘CombFast’ include the meth-
ods G-P2v6, Selkow with trees pruned at level 2, RootED, and Lcrs.

In all the cases, given an algorithm and a corpus, the reported results are
averages calculated from a corresponding trial. The reported execution times
exclude all preprocessing. This is because preprocessings are executed only once,
not when the actual comparison is carried out.

In order to be able to measure the accuracy of the algorithms, they return a
list containing the candidates in a decreasing order in the similarity score. The
observed accuracy measures are the following: The top-n recognition rate (de-
noted by Trrn) indicates the presence percentage of the correct answer among
the top n slots within the list in a trial. Finally, the precision-at-n is computed
as the number of relevant hits among the first n elements in the result list.

In the plots, ‘Precision at |class|’ reveals the precision-at-n, and it is com-
puted as the weighted average of the precision-at-n for each class, taking for n
the number of prototypes for each class, or number of versions of each song.

6.1 Results

Figs.9 and 10 show the results for the corpus ICPS and VAR, respectively. The
horizontal axis gives the considered algorithms: ‘G-P2’ and ‘G-P3’ stand for
the geometric algorithms P2 and P3 (recall Section 3), the ‘G-P2v6’ the new
version of G-P2. The notation for the tree algorithms have been appended with
a suffix; for instance, an ‘Lh’ means that the trees have been pruned at level h
before computing the distances. Recall the names for the combinations from the
previous subsection.

The accuracy of the geometric methods G-P2 and G-P2v6 is high with the
classical themes (Fig. 10) but seems to get confused by the accompaniments in
the ICPS corpus. The tree methods behave in a complementary way, performing
the best with ICPS and worse with the VAR corpus. One possible explanation for
this is that our multiset approach may not suffice in a case of many distinct notes
(or more specifically, pitch classes) appearing in a musical bar. The best running
times are obtained with Lcrs and RootED, but with the cost of accuracy. The
best tradeoff between time and precision seems to be obtained by the Selkow edit

12 David Rizo et al.

 0

 20

 40

 60

 80

 100

G-P2
G-P2v6

G-P3
SelkowL2

SelkowL3

SelkowL4

SelkowL5

ShashaL3

RootED

LCRS
Com

bALL

Com
bGeom

Com
bTree

Com
bFast

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

R
at

e

T
im

es
 (

se
co

nd
s

-
lo

g1
0)

Precision at |class| Running time

Fig. 9. Times and accuracy for corpus ICPS.

distance working with only two levels. The main difference between RootED
and Selkow with two level trees, is that Selkow is able to identify the same song
coded with two different meters, e.g. a 4/4 vs. two 2/4.

The plots in Figs. 11 and 12 depict the top-n recognition rates for the algo-
rithms as a function of n. Only the best method of each family (geometric, trees,
combination) is shown. A high recognition rate at a low n would be ideal. Trr1

gives the percentage of times the returned prototype belongs to the same class
as the query. Recall that the geometric methods used here were not developed
for comparing whole musical works, but for musical pattern matching.

In terms of accuracy over both corpora, the combined method gives the best
result. This is due to the complementary effect of joining the geometric and tree
measures.

7 Conclusion

We have introduced a new paradigm to represent and compare polyphonic musi-
cal works. In our experiments, the method obtained promising results with two
corpora, being comparable in accuracy to those obtained with geometric meth-
ods and faster in processing time. The simple combination of both paradigms
has lead to overall better precisions behaving well with both corpora.

We carried out further experiments with monophonic corpora and with pop-
rock MIDI files downloaded from the Internet. In both cases the combined

Comparing metered polyphonic music 13

 0

 20

 40

 60

 80

 100

G-P2
G-P2v6

G-P3
SelkowL2

SelkowL3

SelkowL4

SelkowL5

ShashaL3

RootED

LCRS
Com

bALL

Com
bGeom

Com
bTree

Com
bFast

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

R
at

e

T
im

es
 (

se
co

nd
s

-
lo

g1
0)

Precision at |class| Running time

Fig. 10. Times and accuracy for corpus VAR.

method obtained the highest precision. However, with the pop-rock MIDI files
the results were poor in average. This is unsurprising because in the MIDI files
all the note information reside on a single track. As we played back the files, it
was difficult even to a human to distinguish the songs because of the merged
tracks and removed timbre. So, to preprocess the music by removing any accom-
paniment and ornament notes that represent noise to the comparing algorithms
seems to be an appropriate task [16].

We have not yet done any fine-tunings to the Lcrs and RootED methods.
A better exploration of the representation space, and summarization at the top
levels of the trees may conduce to better results in accuracy. Moreover, the
processing times of Lcrs can easily be improved by the substitution of the
classical LCS algorithm with a faster implementation. Some experiments about
including harmonic profiles, as described in [19], to refine that summarization
have been done, but no successful results have been achieved so far.

An in depth study of the classification schemes and, hopefully, the inclusion
of other paradigms of musical work comparison methods are to be tackled in
the near future. In this way we expect that the precision results may still be
improved considerably.

Finally, as the tree representation requires a metered input, we plan to include
some existing methods, such as the ones described in [1, 19], in the preprocessor
of our tree algorithm.

14 David Rizo et al.

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10

T
rr

n

n

P2v6 SelkowL5 CombALL

Fig. 11. Trrn for corpus ICPS.

References

1. B. Meudic, E. Staint-James. Automatic Extraction of Approximate Repetitions in
Polyphonic Midi Files Based on Perceptive Criteria In Proc. Int. Symp. Computer
Music Modeling and Retrieval, 2003, pages 124–142, 2003.

2. L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proc. 7th Int. Symp. on String Processing Inf. Retrieval, page 39–48,
2000.

3. J.J. Bloch and R.B. Dannenberg. Real-time accompaniment of polyphonic keyboard
performance. In Proc. Int. Comp. Music Conference, pages 279–290, 1985.

4. M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz. Proms: A web-based tool for
searching in polyphonic music. In Proc. Int. Symp. on Music Inf. Retrieval, 2000.

5. S. Doraisamy and S.M. Rüger. A polyphonic music retrieval system using n-grams.
In Proc. Int. Symp. on Music Inf. Retrieval, 2004.

6. M.J. Dovey. A technique for “regular expression” style searching in polyphonic
music. In Proc. Int. Symp. on Music Inf. Retrieval, pages 179–185, 2001.

7. H. Hyyrö. Bit-parallel LCS-length computation revisited. In Proc. 15th Australasian
Workshop on Combinatorial Algorithms, pages 16–27, 2004.

8. K. Lemström, V. Mäkinen, and N. Mikkilä. Sublinear time filters using linear size
index for content-based music retrieval. Submitted.

9. K. Lemström and A. Pienimäki. On comparing edit distance and geometric frame-
works in content-based retrieval of symbolically encoded polyphonic music. Musicae
Scientiae, 4A:135–152, 2007.

10. A. Lubiw and L. Tanur. Pattern matching in polyphonic music as a weighted
geometric translation problem. In Proc. Int. Symp. on Music Inf. Retrieval, pages
289–296, 2004.

Comparing metered polyphonic music 15

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10

T
rr

n

n

P2v6 SelkowL5 CombALL

Fig. 12. Trrn for corpus VAR.

11. M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and
the Humanities, 24:161–175, 1990.

12. F. Moreno-Seco, J.M. Iñesta, P. Ponce de León, and L. Micó. Comparison of
classifier fusion methods for classification in pattern recognition tasks. Lecture Notes
in Comp. Science, 4109:705–713, 2006.

13. A. Pienimäki and K. Lemström. Clustering symbolic music using paradigmatic and
surface level analyses. In Proc. Int. Symp. on Music Inf. Retrieval, pages 262–265,
2004.

14. D. Rizo, and J.M. Iñesta, P.J. Ponce de León. Tree model of symbolic music
for tonality guessing. In Proc. IASTED Int. Conf. on Artificial Intelligence and
Applications, pages 299–304, 2006.

15. D. Rizo and J.M. Iñesta. Tree-structured representation of melodies for comparison
and retrieval. In Proc. 2nd Int. Conf. on Pattern Recognition in Inf. Systems, 140–
155, 2002.

16. D. Rizo, P.J. Ponce de León, and J.M. Iñesta. Towards a human-friendly melody
characterization by automatically induced rules. In Proc. Int. Symp. on Music Inf.
Retrieval (to appear), 2007.

17. S.M. Selkow. The tree-to-tree editing problem. Inf. Proc. Letters, 6(6):184–186,
1977.

18. S. Shasha and K. Zhang. Approximate Tree Pattern Matching. Pattern Matching
Algorithms, chapter 11, pages 341–371. Oxford Press, 1997.

19. D. Temperley. An evaluation system for metrical models. Comp.Music J., 28(3):28–
44, 2004.

20. A.L. Uitdenbogerd and J. Zobel. Melodic matching techniques for large music
databases. In Proc. ACM Multimedia , 1999.

16 David Rizo et al.

21. E. Ukkonen, K. Lemström, and V. Mäkinen. Sweepline the music! In Comp.
Science in Perspective — Essays dedicated to Thomas Ottmann, volume 2598 of
Lecture Notes in Comp. Science, pages 330–342. Springer-Verlag, 2003.

22. G.A. Wiggins, K. Lemström, and D. Meredith. SIA(M)ESE: An algorithm for
transposition invariant, polyphonic content-based music retrieval. In Proc. Int.
Symp. on Music Inf. Retrieval, 283–284, 2002.

