Organization

Universidad Miguel Hernández de Elche

Cooperating Organizations

We wish to thank the following for their contribution to the success of the conference:

European Office of Aerospace Research and Development,
Air Force Office of Scientific Research,
United States Air Force Research Laboratory

Sociedad Española de Óptica
SEDOPTICA

International Society for Optics & Photonics - SPIE

European Optical Society - EOS

Optical Society of America
Organizing Committee

Ignacio Moreno (chair)
Universidad Miguel Hernández, Spain

Julia Arias
Universidad Miguel Hernández, Spain

Pascuala García-Martínez
Universidad de Valencia, Spain

Andrés Márquez
Universidad de Alicante, Spain

David Mas
Universidad de Alicante, Spain

María M. Sánchez-López
Universidad Miguel Hernández, Spain

Scientific Board / Programme Committee

Giancarlo Abbate
Università di Napoli Federico II, Italy

Jean-Marc Buisine
Université Lille 1, France

Neil Collings
University of Cambridge, UK

Roman Dabrowski
Military Univ. Technology, Warsaw, Poland

Antonio d'Allessandro
Sapienza University of Rome, Italy

Sally E. Day
University College, London, UK

Dick de Boer
Phillips Research Laboratory, The Netherlands

Aníbal Fernández
University College, London, UK

Jean-Pierre Huignard
Consultant in Photonics, France

István Jánossy
Res. Inst. Solid State Physics and Optics, Hungary

Charles Y. Lee
Hong Kong Univ. Sci. & Technol., Hong Kong

Ignacio Moreno
Universidad Miguel Hernández, Spain

Tomasz Nasilowski
Vrije University, Brussel, Belgium

Kristiaan Neyts
Gent University, Belgium

Christopher J. P. Newton
Hewlett-Packard Labs., Bristol, UK

José Manuel Otón
Universidad Politécnica de Madrid, Spain

Peter Palffy-Muhoray
Kent University, USA

Peter Raynes
University of Oxford, UK

Victor Reshetnyak
University of Kyiv, Ukraine

Yuriv Reznikov
National Academy of Sciences of Ukraine

Blanca Ros
Universidad de Zaragoza, Spain

Tim Sluckin
University of Southampton, UK

María J. Yzuel
Universidad Autónoma de Barcelona, Spain
Photopolymer with nematic liquid crystals: preparation and electro-optical properties

Manuel Ortuño¹, Andrés Márquez¹, Sergi Gallego¹, Elena Fernández², Augusto Beléndez¹, Inmaculada Pascual²

¹Dpto. Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante
²Dpto. de Óptica, Farmacología y Anatomía, Universidad de Alicante
mos@ua.es

Keywords: liquid crystals, photopolymer, holography

1. Abstract

Holographic polymer dispersed liquid crystals are known as HPDLC. They are made by holographic recording in a photo-initiated polymerization-induced phase separation process in which the liquid crystal molecules diffuse to dark zones in the diffraction grating and they can be oriented by means of an electric field. The orientation of the liquid crystal produces a refraction index variation which changes the diffraction efficiency and therefore the grating develops a dynamic behavior that could be modified by means of an electronic device.

2. Experimental

Nowadays, photopolymers are used in holographic applications due to their properties: higher diffraction efficiency with an acceptable energetic sensitivity, they are made easily with a reduced cost [1]. The incorporation of liquid crystals add a special characteristic, the capacity of variation of the electro optical properties by means of an electric field. The liquid crystal molecules add optical anisotropy to the photopolymer and therefore it is possible to change the photopolymer response modifying the electric field applied [2]. In this work we use the liquid crystal licristal® BL087 from Merck. We develop a photopolymer compatible with this liquid crystal that could be used as holographic recording material. The photopolymer is composed of dipentaerythritol penta/hexa-acrylate (DHPHA) as monomer and binder. N-vinyl pirrolidone (NVP) as crosslinker [3]. Ethyl eosin (YEt) is used as dye and N-methyl diethanolamine (NMDETA) as radical generator. A mix with these components is made under red light where the material is not sensitive. The solution has these proportions (% weight) for each component: DHPHA = 54.84%, NMDETA = 15.18%, NVP 3.82%, YEt 0.37%. BL087 = 25.80%. The solution (100 mL) is sonicated in an ultrasonic bath and deposited between two conductive glass plates with 1 mm thickness and separated 15 μm using glass microspheres. This material is exposed to the laser recording (λ=532 nm) in a holographic set-up in order to record a diffraction grating. After recording, the reconstruction (λ=633 nm) of the diffraction grating in the HPDLC is made and a variable electric field is applied to check the new properties that introduces the liquid crystal in the photopolymer. We consider a bipolar square waveform, which is generated by a waveform generator connected to a voltage amplifier.

3. Results

Fig. 1 shows the diffracted intensity versus RMS voltage (Vrms). When Vrms increases the diffracted intensity (Id) decreases towards zero due to the reordering of liquid crystal molecules.
inside the non-exposed zones. The incident light is linearly polarized along the vertical of the lab and there is no analyzer at the output.

![Graph showing the electro-optical response for the HPDLC.](image)

Fig. 1. Electro-optical response for the HPDLC.

The minimum and maximum values for the diffracted intensity and their ratio is respectively $I_{\text{min}} = 0.076$, $I_{\text{max}} = 0.221$, $I_{\text{max}}/I_{\text{min}} \approx 3$ at $V_{\text{rms}} = 170$ V. The HPDLC response is reversible although the velocity of response is limited by the viscosity of the binder. At potentials higher than 100 V the material suffers a degradation process decreasing its effective impedance, which could affect to the number of effective operational cycles.

4. References

Acknowledgments: This work was supported by the “Ministerio de Ciencia e Innovación”, Spain under projects FIS2008-05856-C02-01 and FIS2008-05856-C02-02.