3rd International Workshop on Liquid Crystals for Photonics
LCP2010

September 8-10, 2010
Elx-Elche

Book of Abstracts
Organization

Universidad Miguel Hernández de Elche

Cooperating Organizations

We wish to thank the following for their contribution to the success of the conference:

European Office of Aerospace Research and Development,
Air Force Office of Scientific Research,
United States Air Force Research Laboratory

Sociedad Española de Óptica
SEDOPCTICA

International Society for Optics & Photonics - SPIE

European Optical Society - EOS

Optical Society of America
Organizing Committee

Ignacio Moreno (chair)
Universidad Miguel Hernández, Spain

Pascuala García-Martínez
Universidad de Valencia, Spain

David Mas
Universidad de Alicante, Spain

Julia Arias
Universidad Miguel Hernández, Spain

Andrés Márquez
Universidad de Alicante, Spain

María M. Sánchez-López
Universidad Miguel Hernández, Spain

Scientific Board / Programme Committee

Giancarlo Abbate
Università di Napoli Federico II, Italy

Neil Collings
University of Cambridge, UK

Antonio d'Alessandro
Sapienza University of Rome, Italy

Dick de Boer
Phillips Research Laboratory, The Netherlands

Jean-Pierre Huignard
Consultant in Photonics, France

Jean-Marc Buisine
Université Lille 1, France

Roman Dabrowski
Military Univ. Technology, Warsaw, Poland

Sally E.Day
University College, London, UK

Anibal Fernández
University College, London, UK

István Jánossy
Res. Inst. Solid State Physics and Optics, Hungary

Charles Y.Lee
Hong Kong Univ. Sci. & Technol., Hong Kong

Ignacio Moreno
Universidad Miguel Hernández, Spain

Tomasz Nasilowski
Vrije University, Brussel, Belgium

Kristiaan Neyts
Gent University, Belgium

Christopher J. P. Newton
Hewlett-Packard Labs., Bristol, UK

José Manuel Otón
Universidad Politécnica de Madrid, Spain

Peter Palfy-Muhoray
Kent University, USA

Peter Raynes
University of Oxford, UK

Victor Reshetnyak
University of Kyiv, Ukraine

Yuriv Reznikov
National Academy of Sciences of Ukraine

Blanca Ros
Universidad de Zaragoza, Spain

Tim Sluckin
University of Southampton, UK

María J. Yzuel
Universidad Autónoma de Barcelona, Spain
Compensation of the capacitance effects produced by a HPDLC cell on a voltage amplifier

Andrés Márquez, Fco. Javier Martínez, Manuel Ortuño, Sergi Gallego, Mariela L. Álvarez, Augusto Beléndez

1Dpto. Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, andres.marquez@ua.es

Keywords: liquid crystals, photopolymer, holography, voltage amplifier, capacitance

1. Abstract

Holographic polymer-dispersed liquid crystal (HPDLC) [1] is a composite electro-optic material, able to exhibit holographic volume regime and whose refraction index can be varied by the application of an electric field. This electrical tunability combined with volume regime offer the possibility of many interesting photonics applications such as in diffraction optics, reflection display, and in optical interfaces and interconnects [2-4].

In principle H-PDLC cells need high voltage AC signals, typically 1 kHz bipolar waveforms, to be tuned, therefore a high voltage amplifier in combination with a waveform generator is necessary. In this work we provide evidence of limitations in the voltage range applied with our voltage amplifier due to the capacitance of the HPDLC cell. The theoretical modelling, done using OrCAD-PSpice® software confirms the experimental results. Finally we show how this limitation can be overcome.

2. Experimental and results

In our experiment, a high-voltage amplifier (Newtons 4th Ltd., Model: LPA400) is used in combination with an arbitrary function generator (Tektronix, Model: AFG3022B) to generate the AC signal to be applied to the HPDLC cell. We consider a bipolar 1 kHz signal, which is very usual in the literature. Digital multimeters are used to measure the root mean square (rms) value of the intensity delivered by the amplifier and the applied voltage. The applied voltage is also monitored with a digital oscilloscope (Tektronix, Model: TDS1012B). The HPDLC cells used have a square shape with lateral dimension ranging from 2 to 5 cm, and a cell gap of about 15 μm. Different compositions such as in Ref. [5] have been tested.

We have found that typically the high voltage amplifier when connected to the ITO electrodes in the HPDLC cell automatically switches off with applied voltages as low as ±30 Volts. This is far lower than ±400 Volts, which is the maximum value deliverable by the LPA400 amplifier. Actually, values of 20 Volts/μm are normally necessary to switch the HPDLC cell. In a first step we substituted the HPDLC by discreet electrical components, trying to obtain the same values for the rms intensity and rms voltage measured with the multimeters, and the same temporal waveform measured with the digital oscilloscope. We obtained that the HPDLC cell is equivalent to a resistance with a value about 50 kΩ in parallel with a capacitor of about 10 nF. These values have been introduced in the OrCAD-PSpice® software (electrical modelling software) to calculate the applied voltage and the total intensity provided by the amplifier. In Fig. 1 we plot the intensity profile calculated for 30 V applied. The intensity
reaches values about 60 mA, whereas in the specifications the maximum AC output current enabled by the amplifier is 50 mA rms. High values activate a protective circuitry in the amplifier so that it does not get damaged. Using OrCAD-PSpice® software we have calculated the modifications to be introduced to be able to provide a value of about 400 V rms to the HPDLC cell without reaching high values of intensity. As a result we have obtained that a suitable combination is a resistance of about 5kΩ in series with an inductor of 0.4 H and in series with the HPDLC. This has been experimentally implemented with success, being able to apply more than 400 V rms to the HPDLC cell.

3. References


Acknowledgments: This work was supported by the “Ministerio de Ciencia e Innovación”, Spain (FIS2008-05856-C02-01, FIS2008-05856-C02-02).