Así pues, una definición operativa que recoja nuestras ideas cualitativas sobre trabajo y su relación con la energía debe tener en cuenta que:

- Una fuerza sólo realiza trabajo si tiene proyección tangencial sobre la trayectoria.
- El trabajo de una fuerza es mayor cuanto mayor sea su proyección tangencial.
- Cuando la proyección tiene el mismo sentido que el desplazamiento, disminuye la energía; el trabajo es negativo. Cuando la proyección tiene sentido opuesto al desplazamiento, aumenta la energía; el trabajo realizado por la fuerza es positivo.

Cuando la trayectoria es conocida de antemano, aunque sea curvilínea, podemos elaborar una definición operativa de trabajo que recoja todas estas consideraciones cualitativas utilizando las componentes intrínsecas de la fuerza (como hicimos en Dinámica) y definir el trabajo como:

\[
W = F_t \cdot \Delta e
\]

donde \(F_t \) es la componente tangencial del vector \(F \) (que será positiva o negativa, según corresponda) y \(\Delta e \) es el cambio de posición sobre la trayectoria (con el signo que le corresponda).

EJEMPLO

Se lanza un bloque de 2 kg por un plano inclinado de 30°.

- **a) Calcula el trabajo realizado por las fuerzas ejercidas sobre el bloque mientras asciende 5 m en línea recta. Considerad el rozamiento despreciable.**

- **b) Idem si se hubiera dejado caer desde lo alto del plano.**

- **a) Las fuerzas que se ejercen sobre el bloque son el peso, \(\vec{P} \), y la reacción del plano, \(\vec{R} \). Del análisis físico de la situación, antes de realizar cálculos, podemos advertir que el trabajo del peso mientras ocurre la transformación será negativo, porque se opone a ella: hace que la energía del bloque disminuya. Del mismo modo, según nuestra concepción cualitativa, \(\vec{R} \) no realiza trabajo porque es perpendicular al desplazamiento (no aumenta ni disminuye la energía del bloque, aunque sea necesaria para que describa la trayectoria que describe). Vamos a calcular ahora el trabajo de ambas fuerzas mientras el bloque pasa del punto A al B.

Como la trayectoria es conocida, podemos escoger un punto sobre ella como origen de posiciones, y un sentido positivo para el desplazamiento. El vector unitario, \(\vec{t} \), será tangente a la trayectoria y su sentido será el tomado como positivo para la posición. El vector unitario, \(\vec{n} \), es perpendicular a \(\vec{t} \).

Como se ve en la figura, con ese convenio, \(\Delta e = e_b - e_A = 5 \) m, y el trabajo realizado por \(\vec{R} \) y por \(\vec{P} \) será:

\[
W_R = R_t \cdot \Delta e = R \cdot \cos \alpha \cdot \Delta e = R \cdot \cos 90° \cdot 5 = 0,
\]
pues el ángulo, \(\alpha \), que forma \(\vec{R} \) con \(\vec{t} \), es 90°.

\[
W_P = P_t \cdot \Delta e = P \cdot \cos \alpha \cdot \Delta e = mg \cdot \cos (90° + 30°) \cdot 5 =
\]
\[
= 2 \cdot 9.8 \cdot (-0.5) \cdot 5 = -49 \text{ J},
\]
pues el ángulo, \(\alpha \), que forma \(\vec{P} \) con \(\vec{t} \), por el camino más corto, es 90° + 30° = 120°.
Hallar el trabajo realizado por dos fuerzas \overrightarrow{T}_1 y \overrightarrow{T}_2 que se ejercen sobre un trineo, al desplazarse 300 m sobre la nieve, sabiendo que la masa del trineo es de 50 kg, que $|\overrightarrow{T}_1| = 200$ N y forma un ángulo de 50° con la dirección y sentido del desplazamiento, y que $|\overrightarrow{T}_2| = 90$ N y forma un ángulo de 180° con la dirección y sentido del desplazamiento.

Resultado: $W_s = 0; W_h = 0; \ W_r = 38.567,26$ J; $W_t = -27,000$ J.

b) Cuando el cuerpo desciende 5 m, las fuerzas siguen siendo las mismas que antes, pero el desplazamiento es hacia abajo. Sin realizar cálculos, sabemos, por el significado físico de trabajo, que \overrightarrow{R} no realiza trabajo, y que el trabajo realizado ahora por \overrightarrow{P} es positivo, pues apoya la transformación, aumentando la energía del bloque.

Como la trayectoria es conocida, si mantenemos el mismo convenio que en el dibujo anterior ahora $\Delta e = -5$ m, la componente tangencial del peso sigue siendo la misma que antes:

$$W_P = P \cdot \Delta e = P \cdot \cos \alpha \cdot \Delta e =$$

$$= mg \cdot \cos (90^o + 30^o) \cdot (-5) =$$

$$= 2 \cdot 9.8 \cdot (-0.5) \cdot (-5) = 49 \text{ J}$$

Trabajo realizado cuando se ejercen varias fuerzas sobre cuerpos extensos y deformables.

Si los objetos fueran «puntuales» o perfectamente rígidos con movimiento de traslación, la definición operativa de trabajo que hemos inventado sería precisa, sin ambigüedades. En ese caso, aunque las fuerzas estén realmente aplicadas en distintos puntos del cuerpo, el desplazamiento del objeto coincidiría con el desplazamiento de los puntos de aplicación de las fuerzas que se ejercen sobre él.

Pero en muchas ocasiones, los objetos reales, los sistemas que estamos utilizando, no pueden ser considerados ni puntuales ni perfectamente rígidos. Pensemos en un muelle o un arco, en el sistema libro/Tierra, en una persona... En estos casos, las fuerzas están aplicadas en distintos puntos o partes del sistema y el desplazamiento del objeto «como un todo» puede no coincidir con el desplazamiento del punto o la parte del sistema en la que está aplicada la fuerza.

¿Cómo podemos hallar el trabajo realizado sobre el arco y sobre el muelle?

Podríamos hallar la componente tangencial de la fuerza resultante $\overrightarrow{F}_1 + \overrightarrow{F}_2$ y multiplicarla por el desplazamiento (¿por cuál?). Pero, si tensamos o estiramos con rapidez constante, \overrightarrow{F}_1 y \overrightarrow{F}_2 tienen el mismo módulo; si evaluamos el trabajo de la fuerza resultante será cero (sin importar cuál sea su desplazamiento). Pero ¡el cambio de energía del arco y del muelle no es cero, sino que aumenta en ambos casos!
En cambio, si calculamos el trabajo total sobre el sistema hallando el trabajo de cada fuerza por separado, tomando como desplazamiento el de su punto de aplicación, y luego los sumamos, el resultado coincidirá con la interpretación física:

- El trabajo de \(\bar{F} \), será cero porque no se desplaza su punto de aplicación. (No influye en el cambio de energía, aunque su existencia sea necesaria para que el arco se tense o el muelle se estire.)
- El trabajo de \(\bar{F}_1 \), en cambio, es positivo. La suma de ambos trabajos será, pues, positiva: la energía del arco o del resorte aumenta.

Esto obliga a que precisemos aún más la definición operativa de trabajo:

El trabajo realizado por una fuerza es el producto de su componente tangencial sobre la trayectoria de su punto de aplicación por el desplazamiento de dicho punto.

\[
W = \bar{F} \cdot \Delta e
\]

donde \(\Delta e \) es el desplazamiento del punto de aplicación de \(\bar{F} \).

Cuando sobre un objeto se ejercen varias fuerzas, el trabajo total realizado sobre el objeto es la suma de los trabajos de cada una de las fuerzas.

Sólo si el objeto es puntual o perfectamente rígido con movimiento de traslación, el desplazamiento del punto de aplicación de cada una de las fuerzas es el mismo, y entonces el trabajo total realizado sobre el objeto coincide con el trabajo que realizaría la resultante de todas las fuerzas en ese desplazamiento. En ese caso podemos dibujar las fuerzas como si estuvieran aplicadas en un mismo punto del cuerpo, que es lo que hemos hecho hasta aquí y haremos siempre que se cumplan las condiciones anteriores.

Es el momento de reflexionar sobre las diferencias entre el concepto físico de trabajo y los significados que tiene en la vida cotidiana, de manera que se eviten confusiones.

1.4. Concepción espontánea y física del trabajo

Escribí varias frases en las que aparezca el término «trabajo» y analiza si su significado coincide con el significado físico.

Una persona dice que no puede estar bien una definición de trabajo que dé como resultado que alguien que trabaja en una estación transportando maletas desde un lugar a otro situado a 100 m de distancia realice un trabajo nulo (o, en todo caso, que sólo trabaja mientras eleva la maleta del suelo o la deja en el, pero no mientras está trasladándola).

Efectivamente, a lo largo del curso hemos visto palabras como velocidad, fuerza, etc., cuyo significado cotidiano es distinto de su significado en Física. Lo mismo ocurre con la idea de trabajo. No es posible negar que la persona que transporta maletas se cansa, y que le pagan por hacer ese trabajo. O que una persona que estuda realiza un trabajo intelectual. O que se puede o no «tener un trabajo». La confusión proviene de que no significa lo mismo el término «trabajo» en el contexto cotidiano que en el contexto de la Física.

Desde el punto de vista de la Física, la persona sólo realiza trabajo sobre la maleta cuando la fuerza que ejerce sobre ella produce algún cambio en su energía, y ya hemos visto que eso no sucede cuando la fuerza y el desplazamiento son perpendiculares (cuando la está trasladando de un lugar a otro).
Otra cuestión es lo que le ocurre a la persona: se cansa, su organismo sufre transformaciones (lo mismo que le ocurriría si estuviera empujando una pared) y en su interior habrá fuerzas que realizarán trabajo, pero no realiza trabajo sobre la maleta (o sobre la pared). No es necesario, por supuesto, que cambiemos nuestra forma de hablar, sino que seamos conscientes de cuándo estamos en un ambiente cotidiano y cuándo estamos en un contexto científico.

1.5. Rapidez con que se realiza un trabajo: potencia

En ocasiones, más que estar interesados en realizar una determinada cantidad de trabajo nos preocupa la rapidez con que es realizado. Si deseamos comparar dos motores que sirven para elevar un ascensor, no nos interesa sólo la cantidad de trabajo que pueden realizar sobre el ascensor, sino la rapidez con que pueden realizarlo. No es lo mismo, por ejemplo, cargar en dos horas que en dos días un tren con alimentos y medicinas para llevarlos a personas que los necesitan, aunque la transformación producida sobre los paquetes sea la misma. Tiene interés, por tanto, que inventemos una magnitud que nos cuantifique la rapidez con que se realiza un trabajo.

Propuesta de definición operativa de una magnitud que nos pueda servir para medir la mayor o menor rapidez con la que se ha realizado un determinado trabajo.

Una magnitud que cumpla con lo que buscamos debe tener en cuenta la cantidad de trabajo realizado y el tiempo que se ha tardado en realizarlo, de manera que su valor sea mayor cuanto mayor sea el trabajo realizado y menor el tiempo empleado.

Es decir, una magnitud que nos indique lo rápidamente que se realiza trabajo sería $W/\Delta t$. Esta magnitud recibe el nombre de potencia, y su símbolo es P.

$$P = \frac{W}{\Delta t}$$

La potencia es una magnitud que nos indica la rapidez con que se realiza un trabajo, es decir, el trabajo realizado por unidad de tiempo.

¿Qué cantidad de potencia deberíamos tomar como unidad de esta magnitud en el Sistema Internacional (SI)?

Puesto que la unidad de trabajo es el joule (julio) y la unidad de tiempo el segundo, diremos que cuando se realiza el trabajo de 1 J en el tiempo de 1 s, la potencia con que se ha realizado ese trabajo (se suele utilizar la expresión «la potencia desarrollada») es la unidad de potencia.

Esta unidad recibe el nombre de watt (en castellano se dice vatio), y su símbolo es W. De este modo, si en la definición operativa utilizamos el valor del trabajo en J y el del tiempo en s, obtendremos el valor de la potencia en W. Un múltiplo muy utilizado es el kilowatt (kW), $1 \, \text{kW} = 1,000 \, \text{W}$.

En el próximo tema, cuando tratemos de sistemas que experimentan cambios no mecánicos, generalizaremos el concepto de potencia y analizaremos, por ejemplo, utensilios que funcionan a partir de la electricidad (una bombilla, un frigorífico...), en los que se suele indicar la potencia que «consumen».
¿CUÁNTO CAMBIA LA ENERGÍA DE UN SISTEMA CUANDO SE REALIZA TRABAJO? ¿CUÁNTO CAMBIA SUS PROPIEDADES?

Saber si existen límites en los cambios que puede experimentar un sistema o en los cambios que un sistema puede producir sobre otros era uno de los problemas que nos planteamos en el comienzo del tema. Podemos utilizar lo hecho hasta aquí para avanzar en esta cuestión. Según nuestras ideas, cuando sobre un sistema se realiza trabajo, su energía cambiará y, como la energía de un sistema depende de las propiedades del mismo (de la separación entre sus partes, temperatura, rapidez, carga eléctrica...), también cambiarán algunas de sus propiedades. Como ya podemos hallar el trabajo realizado sobre un sistema, vamos a plantearnos ahora cuánto cambia su energía y cuánto cambian sus propiedades cuando se realiza trabajo sobre él.

2.1. Relación cuantitativa entre trabajo realizado sobre un sistema (trabajo exterior) y su energía

Como hemos hecho hasta aquí, para simplificar el problema nos ocuparemos de procesos en que sólo cambian propiedades mecánicas y dejaremos fuera, en principio, procesos en que ocurran cambios de temperatura, cambios químicos, absorción o emisión de radiación, etc.

Formulad hipótesis sobre la relación cuantitativa que existirá entre la energía de un sistema y el trabajo que se realiza sobre él.

Según las ideas cualitativas que hemos desarrollado a lo largo del tema, si desde el exterior se realiza un trabajo sobre el sistema, su energía variará. Dicho trabajo producirá un aumento o disminución de la energía del sistema según sea positivo o negativo. A título de hipótesis, podemos pensar que la variación de energía coincidirá con el valor del trabajo que se realiza sobre el sistema, es decir:

\[W_{\text{ext}} = \Delta E \]

La importancia de esta hipótesis es enorme para cuantificar los cambios, porque **no es una mera igualdad matemática**. No sólo nos dice que si realizamos un trabajo de 1.000 J sobre un sistema, su energía aumentará en 1.000 J. **Lo fundamental de esta hipótesis es que relaciona cuantitativamente «algo» que se le hace al sistema por el exterior (por otros sistemas), cuyo valor podemos calcular mediante la expresión** \(W_{\text{ext}} = F_{\text{ext}} \cdot \Delta s \)**, con la variación de «algo» que tiene el sistema (la energía) que sólo depende de propiedades del sistema (y no del exterior).

Esta relación nos permite afirmar, por ejemplo, que si un sistema cambia de un estado inicial a un estado final (caracterizados ambos por unos valores distintos de las propiedades del sistema) debido únicamente a la realización de trabajo por el exterior, el valor de dicho trabajo es el mismo, independientemente de cómo se haya realizado.

Además, con dicha hipótesis podemos encontrar la expresión que relacione la energía del sistema en un estado con el valor de las propiedades en ese estado (con su masa, su estiramiento, su rapidez...) ¡Algo muy importante para estudiar los cambios y sus límites!
2.2. Expresión de la energía mecánica de un sistema en función de sus propiedades

Vamos a tratar de hallar una expresión de la energía cinética, potencial gravitatoria y elástica en función de propiedades del sistema por separado. Como la energía mecánica es la suma de esas energías, tendremos también una expresión para la energía mecánica en función de las propiedades del sistema.

Energía cinética

Hemos dicho que la energía cinética es la capacidad que tiene un sistema para producir cambios a causa de su movimiento. Con esta idea cualitativa podemos pensar —antes de iniciar el proceso de cálculo que acabamos de describir— de qué factores dependerá que un objeto tenga mayor o menor energía cinética.

Indicad, a título de hipótesis, de qué factores dependerá la energía cinética de un objeto que se encuentra en movimiento respecto de otros con los cuales puede chocar.

Según nuestra concepción cualitativa, la energía cinética de un sistema dependerá de su masa y de su velocidad, aumentando con ambas. Vamos a ver en qué medida estas ideas se ven apoyadas mediante la utilización cuantitativa de la relación entre trabajo exterior y energía.

Para hallar la expresión de la energía cinética, haremos lo siguiente:
1. Imaginar un proceso en el cual un sistema varía únicamente su energía cinética mediante la realización de trabajo por fuerzas exteriores.
2. Intentar expresar el trabajo realizado sobre él en función de propiedades del sistema (según nuestra concepción cualitativa, en función de la masa y la rapidez).
3. Usar la relación entre \(W_{\text{ext}} \) y \(\Delta E \) para relacionar la energía cinética \((E_c) \) con las propiedades del sistema.

Ese es el caso de un objeto, inicialmente en reposo, que es arrastrado sobre una superficie horizontal (sin rozamiento, para que no se produzca calentamiento) por medio de una fuerza constante.

Como vemos, debido a la realización de un trabajo (cuyo valor es \(W_{\text{ext}} = F_i \cdot \Delta e \)) el cuerpo pasa de un estado A (en el que tiene una energía \(E_{CA} \)) a un estado B (en el que tiene una \(E_{CB} \)).

El cambio de energía del sistema, \(\Delta E_R = E_B - E_A \) (que en este caso coincide con \(\Delta E_{CA} \)) será igual al trabajo que se ha realizado por el exterior mientras el sistema pasa del estado A al estado B, \(W_{\text{ext},A\rightarrow B} \):

\[
W_{\text{ext},A\rightarrow B} = \Delta E_R = \Delta E_{CA} \rightarrow F_i \cdot \Delta e = E_{CB} - E_{CA}
\]

Vamos a expresar el trabajo realizado (el primer miembro de la igualdad) en función de esas propiedades (la masa y la rapidez) del sistema.
Como \(F_i = m \cdot a_i \) y \(a_i = \frac{\Delta v}{\Delta t} \rightarrow F_i = m \cdot \frac{\Delta v}{\Delta t} \).

Por otro lado, \(\Delta v \) es el desplazamiento de un cuerpo con movimiento uniformemente acelerado que ha partido del reposo, es decir: \(\Delta v = \frac{1}{2} a_i \cdot (\Delta t)^2 \).

Así, el \(W_{ext} \) realizado, expresado en función de las propiedades del sistema, será:

\[
W_{ext, A \rightarrow B} = F_i \cdot \Delta v = \left(m \cdot \frac{\Delta v}{\Delta t} \right) \cdot \frac{1}{2} \cdot \left(\frac{\Delta v}{\Delta t} \right) \cdot (\Delta t) = \frac{1}{2} m \cdot (\Delta v)^2 = \frac{1}{2} m \cdot v_B^2
\]

siendo \(v_B \) la rapidez del cuerpo en el estado B (en el estado A es \(v_A = 0 \)). Por tanto:

\[
E_{CB} - E_{CA} = \frac{1}{2} m \cdot v_B^2
\]

Y si tomamos como convenio que la \(E_C \) de un objeto es cero cuando está en reposo, podemos escribir:

\[
E_{CB} = \frac{1}{2} m \cdot v_B^2
\]

siendo \(v \) la rapidez del cuerpo en el estado B. Es decir, la energía cinética de un objeto en movimiento vale \(E_C = \frac{1}{2} m \cdot v^2 \), si tomamos como convenio que su valor es cero cuando el objeto está parado.

¿Qué significa que la energía cinética de un objeto es de 750 J?

Podemos interpretarlo de dos modos:

- Que el cambio de \(E_C \) que experimentaría el objeto si se quedara en reposo, en el mismo sistema de referencia, sería de 750 J (en este caso, disminuiría en 750 J).

- Que puede realizar sobre el exterior un trabajo de 750 J (hasta que se quedara en reposo, y siempre que no hubiera «pérdidas» por calentamiento o deformación, pues, en este caso, podría realizar un trabajo menor).

Una persona de 60 kg viaja en un autobús que se desplaza a 72 km/h.

Determina la energía cinética del pasajero:

a) Respecto del conductor.

b) Respecto de una persona que está sentada esperando en la parada.

La expresión \(E_C = \frac{1}{2} m \cdot v^2 \) nos puede hacer pensar que podemos determinar, de una manera absoluta, la energía cinética de un sistema. La situación planteada en la actividad anterior permite constatar que esto no es así y que mientras que para la persona sentada en la acera la energía cinética sería de 12,000 J, para el conductor sería 0. Vemos, pues, que el valor de \(E_C \) de un sistema depende del observador que lo determine. No obstante, la igualdad se cumple para cualquier sistema de referencia, porque el trabajo depende en igual medida del observador.

Lo que hemos avanzado nos permite ya realizar predicciones sobre situaciones de interés que hemos abordado en cinematografía, pues si podemos calcular el trabajo realizado por las fuerzas que actúan sobre un cuerpo cuando sólo cambia su \(E_C \), podemos relacionar el desplazamiento con la rapidez del objeto al final del mismo.
Energía potencial

Sabemos que la energía potencial es la energía que tiene un sistema debido a que entre las partes que lo forman, en su interior, existen fuerzas que hacen que, cuando varía la separación entre ellas, varíe su capacidad para producir transformaciones.

Vamos, ahora, a tratar de encontrar—siguiendo un proceso análogo—una expresión que nos permita conocer la energía potencial gravitatoria y la energía potencial elástica que tiene un sistema a partir de propiedades del mismo. Seguiremos la misma estrategia que en el caso de E_c, es decir:

1. Imaginar un proceso en el cual un sistema varíe únicamente su E_p (gravitatoria o elástica, según nos interese) debido a la realización de trabajo por fuerzas exteriores.
2. Intentar expresar el trabajo realizado sobre él en función de propiedades del sistema.
3. Utilizar la relación entre W_{ext} y ΔE para asociarla con las propiedades del sistema.

Energía potencial gravitatoria

Al igual que hemos hecho con E_c, pensaremos primero en propiedades del sistema de las que puede depender su E_p gravitatoria.

Dibujad un sistema formado por un objeto y la Tierra3 y distintos estados del mismo que tengan distinta E_p. Formulad hipótesis sobre las propiedades de las que dependerá la energía potencial.

Para hallar una expresión cuantitativa de E_p elegiremos una transformación en la que sólo cambie la energía potencial gravitatoria de un sistema debido a la realización de trabajo por el exterior (por una persona o una máquina…), aplicaremos la relación entre trabajo y cambio de energía, y trataremos de expresar el trabajo en función de propiedades del sistema.

Eso es lo que sucede cuando elevamos un cuerpo verticalmente con velocidad constante, como se indica en el dibujo del margen. Al pasar el sistema del estado A al estado B, sólo varía su energía potencial y, según nuestra hipótesis fundamental, se cumplirá que: $W_{ext A \rightarrow B} = \Delta E^p_a = E^p_B - E^p_A$.

La única fuerza exterior que actúa sobre el sistema es la que se ejerce sobre el objeto, cuyo módulo es igual al del peso del objeto (una propiedad del sistema: la fuerza de atracción gravitatoria entre el cuerpo y la Tierra). El desplazamiento de la fuerza externa coincide con lo que varía la altura sobre el suelo (es decir, lo que varía la separación entre el cuerpo y la Tierra, otra propiedad del sistema-cuerpo-Tierra). Así, el trabajo exterior será: $W_{ext A \rightarrow B} = F_{ext} \cdot \Delta h$, que, expresado en función de propiedades del sistema, queda: $W_{ext A \rightarrow B} = mg \cdot (h_B - h_A)$, y relacionándolo con el cambio de energía:

$$mgh_B - mgh_A = E_{B} - E_{A}$$

Para poder asignar una expresión cuantitativa a la E_p es necesario que tomemos un acuerdo sobre cuál sería su valor en un determinado estado del sistema4. Todos los cálculos se facilitan mucho si adoptamos el convenio de que, cuando la altura sobre el suelo sea 0, la E_p valga cero. Con dicho convenio, cuando h_A sea 0, $E_{A} = 0$, y por tanto, la E_p gravitatoria en cualquier estado, valdrá:

$$E_{p, gravitatoria} = mgh$$

Expresión que confirma la validez de las hipótesis hechas en actividades anteriores.

3 Si el sistema estuviera constituido exclusivamente por el objeto, no experimentaría ΔE_p.

4 $7 - 2 = 8 - 3$, pero de ahí no podemos concluir que $7 = 8$ y que $2 = 3$.