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1. Introduction In this paper we consider min-max Convex Semi-Infinite Programming (CSIP)
problems. More precisely, let T1 and T2 be compact metric spaces, and let Q be a closed convex set in
Rn. Furthermore, let f : T1 × Rn → R ∪ {+∞} and g : T2 × Rn → R ∪ {+∞} be finite and continuous
functions on T1 ×Q and T2 ×Q, respectively, and such that for each t the functions ft(·) := f(t, ·) and
gt(·) := g(t, ·) are lower semicontinuous (lsc), convex on Rn, and at least C1 on Q.
We consider in this paper the following problem

(P ) v(P ) = inf{F (x)| x ∈ C}, (1)

where F (x) := sup{ft(x)| t ∈ T1}, G(x) := sup{gt(x)| t ∈ T2}, C := Q ∩D, and D := {x : G(x) ≤ 0}.
The optimal set of (P ) is denoted by SP .
In the particular case that T1 is a singleton set, (P ) is an ordinary CSIP problem. For solving CSIP, we
propose in this paper Remez-type algorithms and integral methods coupled with penalty and smoothing
methods.
Remez-type methods (or outer approximations) are inspired by the first algorithm of Remez [23],
proposed for approximating functions in the framework of Linear Semi-Infinite Programming (LSIP),
that can be described roughly as follows:

Let T k
1 and T k

2 be finite subsets of T1 and T2 and denote

F k(x) = sup{ft(x)| t ∈ T k
1 }, Ck = Q ∩Dk, Dk = {x : gt(x) ≤ 0 ∀t ∈ T k

2 }.
Initialization: Set k = 0 and start with T 0

1 , T 0
2 .

1
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Step 1 Compute xk ∈ argmin{F k(x)| x ∈ Ck}.
Step 2 Compute

tk+1
1 ∈ argmax{f(t, xk)| t ∈ T1}, tk+1

2 ∈ argmax{g(t, xk)| t ∈ T2}.
Step 3 Choose, for i = 1, 2, T k+1

i ⊂ Ti satisfying tk+1
i ∈ T k+1

i .
Set k ← k + 1; go to Step 1.

This numerical approach requires to solve nonconvex optimization problems in Step 2, which is certainly
the main difficulty in the general case. Indeed, from a computational point of view, actually this is
only possible for particular cases, mainly when the functions f(·, x) and g(·, x) are polynomial, with low
dimensional sets T1 and T2. But in this paper we focus on Step 1 and we try to propose a ”good”
approximation, (P̃ k), of the subproblem

(P k) inf{F k(x)| x ∈ Dk ∩Q},
in the sense that (P̃ k) can be solved efficiently by a classical gradient or Newton-type method. When
Q is polyhedral and when the functions ft and gt are affine, then (P k) is a linear subproblem which is
usually solved by the simplex dual method. But when the cardinality of T k

i ,
∣∣T k

i

∣∣, grows beyond a certain
limit, it is well-known that slow convergence arises and one way to overcome this drawback is to control∣∣T k

i

∣∣ by some constraint dropping schemes. The reader is referred to Section 3.1 and 3.2 of the survey of
Reemtsen-Gorner [22] for a review of the extensive literature on this particular subject.
Concerning CSIP, numerous known methods consist in solving an approximating convex problem (P̃ k).
Supposing that F is C1 (as it is generally the case in ordinary CSIP), we can use cutting plane methods of
Cheney-Goldstein [10], Kelley [14], Veinott [31], or Elzinga-Moore [11], and their variants (see, e.g., [22] for
more references). Applied to LSIP, especially [10] and [14] turn out to be identical or mere modifications
of the dual simplex method discussed above, so that they have similar properties and drawbacks. To avoid
slow convergence, again constraint dropping rules are given under some conditions as strict convexity on
F for [10] and [14]. We refer again the reader to Section 4 of [22] for more information on this subject.
In this paper we consider another type of approximation for (P k) :

(P̃ k) inf{F̃ k(x) + G̃k(x)| x ∈ Q}.
Here F̃ k approximates F k and G̃k approximates the indicator function of Dk, δDk (i.e. δDk(x) = 0 if
x ∈ Dk, δDk(x) = +∞ otherwise), so that the data which define (P̃ k) are C1. There are many ways
to smooth F k (see in particular [13] and [21]), but for the sake of simplicity we consider here only the
most important, and widely used in the literature in different fields. It is based on the smoothing of
max{λi : i = 1 . . . m} by the function log(

∑m
i=1 exp (λip))/p, with p > 0. More precisely, this smoothing

gives here

F̃ k(x) :=
log(

∑
t∈T k

1
exp (f(t, x)p))

p
, with p = [log

∣∣T k
1

∣∣]2. (2)

This type of smoothing has been proposed by many authors for solving convex finite minimax problems,
in particular by Bertsekas [7], Ben-Tal and Teboulle [6], Alvarez [1], and Nesterov [18]. This smoothing
approach has been also proposed by Polak-Royset-Womersley [20], by Sheu-Wu [27] for finite min-max
problems subject to infinitely many linear constraints and, more recently, by Sheu-Lin [26] for continuous
min-max problems, motivated by the global approach of Fang-Wu [12] using an integral analog. We
must also smooth the function δDk and to do that we consider the smoothing approach by penalty and
barrier functions introduced, for ordinary convex programs, by Auslender-Cominetti-Haddou [3]. These
authors exploited the notion of recession functions to provide a wide class of penalty and barrier methods
for usual convex programs, with a finite number of inequalities. In this paper we consider only penalty
methods. Indeed there are some drawbacks with barrier methods, in particular the choice at each Step k
of an interior point as a starting point. So we consider here two subclasses of penalty functions introduced
in [3] (not all can be used). They are composed by those functions θ : R → R+ which are C1, convex,
nondecreasing, and satisfy some additional properties, and we choose

G̃k(x) :=
γk

|T k
2 |

∑
t∈T k

2
θ(g(t, x)δk)

δk
, (3)

with appropriated sequences of positive scalars {γk} and {δk}.
To summarize, we propose in Section 3 the Remez-type algorithm described above, where in Step 1 xk
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is an approximate optimal solution of a suitable regularization of (P̃ k), with the smoothing and the
penalization given by (2) and (3), while in Step 3 we choose T k+1

i = T k
i ∪ {tk+1

i }. The efficiency of the
algorithm will depend on the subroutine used to compute xk. With these approximations, F̃ k and G̃k,
when Q is the whole space, the problem (P̃ k) becomes an unconstrained convex smooth problem for which
gradient or Newton-type methods can be used. The same holds when Q is “simple” (a box, the positive
orthant, a ball, a simplex, ...). Convergence is established under the following minimal assumption: “F
is level bounded on the feasible set” and not under the assumption that Q is bounded. Furthermore, in
Section 4 we associate with the sequence {xk} generated in Section 3 by the algorithm a dual sequence
of measures for which we prove convergence to optimal solutions of the classical dual problem associated
with (P ).
In this context, with Remez-type approximations (Step 2), Sheu-Lin [26] proposed the so-called entropic
smoothing method for the min-max program where T2 = ∅. Concerning ordinary CSIP (|T1| = 1), to the
best of our knowledge, Remez-type algorithms coupled with penalty methods have been only introduced
by Martinet [17]. Comparisons with these two works are established in Comment 1, Section 3. On the
other hand, particular penalty and smoothing functions and methods have been introduced for solving
semi-infinite programs in three other contexts. Special penalty functions appear in the context of local
reduction methods (see, e.g., Section 5.2 of [22] and references therein). In another context they are
coupled with adaptive grid methods (see for example Kaplan-Tichatschke [15], Polak-Royset [19], and
references therein) where the parameters of the procedures of discretization, smoothing, regularization,
and penalization are adjusted. The third context concerns penalty, barrier and smoothing methods cou-
pled with integral methods, and we investigate this field. This kind of integral methods has been studied
by many researchers (see, e.g., Auslender [2], Teboulle [28], Teo-Goh [29], Teo-Rehbock-Jennings [30],
Lin-Fang-Wu [16], Schattler [25], Polak-Higgins-Mayne [21]), and Fang-Wu [12]) and has the advantage to
avoid nonconvex global optimization in Step 2 of Remez-type methods, via integrals which convexify the
approximated functions. In this paper we do not consider barrier methods, and in Section 5 we propose
an algorithm for solving (P ) which consists of computing at Step k an optimal solution xk of the convex
C1 approximating problem

(P k
ips) inf{F̃ k(x) + G̃k(x) |x ∈ Q}, (4)

where

F̃ k(x) =
1
pk

log
(∫

T1

exp(f(t, x)pk)dt

)
, G̃k(x) = γk

∫

T2

θ(g(t, x)δk)
δk

dt.

In this formula the parameters γk, δk, and pk will be adjusted for obtaining convergence. In fact, and also
in Section 3, we regularize the objective function by adding a term εk||x||2 with εk > 0 and we compute an
εk-optimal solution of the regularized problem. This regularization stabilizes the algorithm and provides
an implementable subroutine. Without this regularization (εk = 0 ∀k), this unified framework contains
in particular the classical penalty and smoothing methods introduced in [2], [12], [16], and [30] but also
provides new penalty and smoothing methods. Again, convergence is shown under the following minimal
assumption: “F is level bounded on the feasible set” and not under the assumption that Q is bounded.
This requires, as for Remez-type algorithms, an analysis more subtle than usual, which is built on the use
of the theory of recession functions developed in [4]. Convergence, also for the dual sequence of measures
associated to the primal sequence, is established under the additional Slater’s condition. As pointed out
in Comment 2, Section 5, our assumptions are weaker than those used in [2], [12], [16], and [30]. Finally,
since the algorithms as well as the convergence analysis are built on the use of the theory of the recession
functions, we recall in the next section the material from this theory which is needed in the sequel.

2. Preliminaries Given a set Q ⊂ Rn, we denote by cl Q, intQ, conv Q, and cone Q the closure,
the interior, the convex hull, and the conical convex hull of Q, respectively. We associate with f : Rn →
R ∪ {+∞} its domain dom f := {x : f(x) < +∞} and its epigraph epi f := {(x, r) : f(x) ≤ r}.

We recall here some basic notions about asymptotic cones and functions (for more details see, for
instance, the books of Auslender and Teboulle [4] and of Rockafellar [24]).
The asymptotic cone of a set Q ⊆ Rn is defined to be

Q∞ =
{

d : ∃λk → +∞, xk ∈ Q with d = lim
k→∞

xk

λk

}
. (5)

When Q is convex and closed, it coincides with its recession cone

0+(Q) := {d : x + λd ∈ Q ∀λ > 0, ∀x ∈ Q}. (6)
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Let f : Rn → R∪ {+∞} be lsc and proper (i.e., dom f 6= ∅). We recall that the asymptotic function f∞
of f is defined through the relation

epi f∞ = (epi f)∞ .

As a straightforward consequence, we get (cf. [4, Theorem 2.5.1])

f∞(d) = inf
{

lim inf
k→+∞

f(λkxk)
λk

: λk → +∞, xk → d

}
, (7)

where {λk} ⊂ R and {xk} ⊂ Rn. Note that f∞ is positively homogeneous, that is

f∞(λd) = λf∞(d) ∀d, ∀λ > 0. (8)

Remark 2.1 (7) is fundamental in the convergence analysis of unbounded sequences and it is often used
in the following way: Let {xk} be a sequence satisfying

lim
k→∞

‖xk‖ = +∞, lim
k→∞

xk

‖xk‖ = d,

and let α ∈ R so that f∞(d) > α. Then it follows from (7) that for all k sufficiently large we have

f(xk) = f

(
‖xk‖ xk

‖xk‖
)
≥ α‖xk‖.

When f is a proper lsc convex function its asymptotic function is also a proper lsc convex function
that coincides with the recession function

0+f(d) = lim
λ→+∞

f(x + λd)− f(x)
λ

∀x ∈ dom f, (9)

which implies that

f∞(d) = lim
λ→+∞

f(λd)
λ

∀d ∈ dom f. (10)

Furthermore,
(δQ)∞ = δQ∞ . (11)

If f, g : Rn → R ∪ {+∞} are proper lsc convex functions, and dom(f + g) 6= ∅, then

(f + g)∞(d) = f∞(d) + g∞(d). (12)

Furthermore when {fi}i∈I is a family of proper lsc convex functions defined on Rn with values in R∪{+∞}
and the function f = supi∈I fi is proper, then we have

f∞ = sup
i∈I

(fi)∞. (13)

When f is a proper lsc convex function, a useful consequence of (6) and (9) is the equation

{x : f(x) ≤ λ}∞ = {d : f∞(d) ≤ 0}∞, (14)

for any λ such that {x : f(x) ≤ λ}6= ∅.
The following proposition is crucial in the convergence analysis. The reader can find a proof in [4, Chapter
3].

Proposition 2.1 Let Q be a closed convex set in Rn and let f : Rn → R∪{+∞} be a proper lsc convex
function such that Q ∩ dom f 6= ∅. Consider the optimization problem

(P ) f∗ = inf{f(x) | x ∈ Q}.
Then a necessary and sufficient condition for the optimal set of (P ) to be nonempty and compact is given
by

f∞(d) ≤ 0 and d ∈ Q∞ ⇒ d = 0,

or equivalently f is level-bounded on Q, i.e., for every λ, {x ∈ Q : f (x) ≤ λ} is compact when nonempty.
This is equivalent to

lim
||x||→∞, x∈Q

f(x) = +∞.
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In our analysis, the composite function is of a particular interest. More precisely, we consider the
composition between a penalty function θ ∈ F and a convex function f , where

F =
{

θ : R→ R+ convex, nondecreasing, nonconstant,
C1, and such that limu→−∞ θ(u) = 0

}
. (15)

Since θ ∈ F takes nonnegative values and it is nondecreasing, we have θ∞(−1) = 0. Then, since it is
nonconstant, θ∞(1) > 0. The following result was proved in [3] in a more general setting.

Proposition 2.2 Let θ ∈ F , and let f be a proper lsc convex function, and consider the composite
function

g(x) =
{

θ(f(x)), if x ∈ dom f,
+∞, otherwise.

Then g is a proper lsc convex function.

In the rest of this paper we consider the following two subsets of F :

F1 = {θ ∈ F : θ∞(1) < +∞} and F2 = {θ ∈ F : θ∞(1) = +∞}. (16)

Obviously the function θ (u) =u+ := max{u, 0} which has been used in the literature is not C1, but
satisfies all the other properties required for F1. However this function, for which our convergence
analysis holds, is out of interest for our purpose since it is not smooth.

In [9], Chen and Mangasarian provided a systematic way to generate elements of F1. These are smooth
approximations of the function u+ and are built as follows. Let p be a positive piecewise continuous
probability density function, with a finite number of pieces. Let F (t) =

∫ t

−∞ p(s)ds be the associated
distribution function and suppose that θ(u) =

∫ u

−∞ F (t)dt is well defined. Then we have ([9, Proposition
2.2]) that θ is a strictly convex C1 function from R to R+, strictly increasing, with

0 < θ′(u) < 1, −M2 ≤ θ(u)− u+ ≤ M1 ∀u ∈ R, (17)

where M1 :=
∫ 0

−∞ |s|p(s)ds and M2 := [
∫ +∞
−∞ sp(s)ds]+, provided that Mi < +∞, i = 1, 2. From these

inequalities and the definition of θ, it follows that
∣∣∣∣
θ(λu)

λ
− u+

∣∣∣∣ ≤
max {M1,M2}

λ
∀λ > 0, ∀u ∈ R, θ∞(1) = 1, lim

u→−∞
θ(u) = 0, (18)

so that θ ∈ F1. Specific cases of interest are

θ1(u) = log(1 + exp(u)), with p1(s) =
exp(−s)

(1 + exp(−s))2
,

θ2(u) = 2−1(u +
√

u2 + 4), with p2(s) =
2

(s2 + 4)
3
2
,

and

θ3(u) =





0, u ≤ −1,
1
4 (u + 1)2 , −1 < u < 1,
u, u ≥ 1,

with p3(s) =
{

1
2 , −1 ≤ s ≤ 1,
0, otherwise.

Finally, as well-known penalty functions which belong to F2 we have the classical penalty functions
and the exponential function:

θ4(u) =
1
2
(u+)2, θ5(u) = (u+)3, and θ6(u) = exp(u).
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3. Remez-type algorithm coupled with penalty and smoothing methods In this section we
consider the optimization problem (P ) described in (1), satisfying the given assumptions on the data,
and the Remez-type algorithm described in the introduction. For the sake of simplicity we choose

T k+1
i = T k

i ∪
{
tk+1
i

}
, i = 1, 2, (19)

where tk+1
1 ∈ T1 and tk+1

2 ∈ T2 solve approximately the auxiliary problems in Step 2, i.e.,
{

f(tk+1
1 , xk) ≥ max{f(t, xk) | t ∈ T1} − µk,

g(tk+1
2 , xk) ≥ max{g(t, xk) | t ∈ T2} − µk,

(20)

with
µk ≥ 0 ∀k and lim

k→+∞
µk = 0. (21)

From now on in this section we consider the following assumption:

(A1) F is level bounded on C,

and sometimes we shall assume also:

(A2) Slater’s condition holds; i.e., there exists u ∈ Q such that G(u) < 0.

Following Proposition 2.1 we remark that Assumption (A1) is equivalent to the implication

F∞(d) ≤ 0, G∞(d) ≤ 0 and d ∈ Q∞ ⇒ d = 0. (22)

The following lemma shows that the existence of starting sets for the first algorithm of Remez with
nice properties, is a consequence of Assumption (A1). It was proved in [22, Lemma 2.4] when |T1| = 1
and Q = Rn. Here we give a completely new and different proof for the general case, more concise and
based on the properties of the recession functions.

Lemma 3.1 Assume that (A1) holds. Then, there exist finite nonempty subsets T 0
1 ⊂ T1 and T 0

2 ⊂ T2

such that F 0 is level bounded on C0.

Proof. Since F∞ = supt∈T1
(ft)∞ and G∞ = supt∈T2

(gt)∞ , by (A1) and Proposition 2.1,

{d : (ft)∞ (d) ≤ 0 ∀t ∈ T1; (gt)∞ (d) ≤ 0 ∀t ∈ T2; δQ∞ (d) ≤ 0} = {0} . (23)

Let d 7→ 〈ai, d〉 , i ∈ I, be the family of all the linear minorants of all the functions in (23), which are
positively homogeneous, proper, lsc, and convex. Then (23) holds if and only if {d : 〈ai, d〉 ≤ 0, i ∈ I} =
{0} , i.e., cone {ai, i ∈ I} = Rn (or, equivalently, 0 ∈ int conv {ai, i ∈ I}). This happens if and only if there
exists J ⊂ I, |J | = n + 1, such that cone {ai, i ∈ J} = Rn (or, equivalently, 0 ∈ int conv {ai, i ∈ J}). In
that case {d : 〈ai, d〉 ≤ 0, i ∈ J} = {0} . Replacing in (23) each linear function d 7→ 〈ai, d〉 , i ∈ J, by one of
the minorized constraint functions, we conclude the existence of T 0

1 ⊂ T1 and T 0
2 ⊂ T2,

∣∣T 0
1 ∪ T 0

2

∣∣ ≤ n+1,
such that

{
d : (ft)∞ (d) ≤ 0 ∀t ∈ T 0

1 ; (gt)∞ (d) ≤ 0 ∀t ∈ T 0
2 ; δQ∞ (d) ≤ 0

}
= {0} . (24)

Thus F 0 is level bounded on C0, again by Proposition 2.1. Finally, if T 0
i = ∅, replacing it with T 0

i = {ti}
for an arbitrary ti ∈ Ti, i = 1, 2, we get the aimed conclusion. ¤

Remark 3.1 There are some particular cases where the sets T 0
i are easily obtainable:

(a) If Q is bounded, we can take T 0
1 = {t1} and T 0

2 = {t2} for any ti ∈ Ti, i = 1, 2.
(b) If for some t01 ∈ T1, ft01

(resp., t02 ∈ T2, ft02
) is level bounded on Q, we can take T 0

1 =
{
t01

}
and

T 0
2 = {t2} , with t2 arbitrary in T2 (resp., T 0

2 =
{
t02

}
and T 0

1 = {t1} , with t1 arbitrary in T1).
(c) In LSIP, Q = Rn, f (t, x) = 〈a (t) , x〉 − b (t) ∀t ∈ T1, and g (t, x) = 〈a (t) , x〉 − b (t) ∀t ∈ T2. In that
case, if Ti = cl intTi ⊂ Rni , i = 1, 2, (as it happens in practice) taking a sequence of real numbers βr ↘ 0,
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then dist (Ti ∩ βrZni , Ti) → 0, i = 1, 2. Since (24) becomes
{
d : 〈a (t) , d〉 ≤ 0, t ∈ T 0

1 ∪ T 0
2

}
= {0} , i.e.,

0 ∈ int conv
{
a (t) , t ∈ T 0

1 ∪ T 0
2

}
, we can take the regular grids T 0

i = Ti ∩ βrZni , i = 1, 2, for sufficiently
large r.
(d) In ordinary CSIP (with T1 = {t1}), if T2 = cl intT2 ⊂ Rm and βr ↘ 0, since dist (T2 ∩ βrZm, T2)
→ 0, it is possible to take the regular grid T 0

2 = T2 ∩ βrZm for sufficiently large r by the argument of [22,
Lemma 2.4].

Denote ri =
∣∣T 0

i

∣∣, the cardinality of T 0
i . Then rk

i :=
∣∣T k

i

∣∣ ≤ ri + k, i = 1, 2. As it was said in the
Introduction, we can use for approximating F k the function

F̃ k
p (x) :=

log(
∑

t∈T k
1

exp (f(t, x)p))

p
,

with p > 0. It is well known that this function is convex (sum of log-convex functions) and that we have
the uniform estimate (see, for example, [27])

0 ≤ F̃ k
p (x)− F k(x) ≤ log(|T k

1 |)
p

, ∀x ∈ Rn.

If T1 is reduced to a single point, it is worthwhile to note that F̃ k
p (x) = F k(x) = F (x) and that in Step 2

the computation of tk+1
1 is unnecessary. From now on for each k we set pk = [log(r1 + k)]2, and use the

approximating function
F̃ k := F̃ k

pk
, (25)

so that

0 ≤ F̃ k(x)− F k(x) ≤ 1
log(r1 + k)

, ∀x ∈ Rn. (26)

Let now {εk} be a sequence of real numbers such that

εk > 0 and lim
k→∞

εk = 0. (27)

Let θ ∈ F and let {δk}, {γk} be sequences of positive real numbers. Recalling (3), we define for k = 1, 2, ...,
the approximating functions

G̃k(x) :=
γk

|T k
2 |

∑

t∈T k
2

θ(g(t, x)δk)
δk

, H̃k(x) := F̃ k(x) + G̃k(x).

which are convex by Proposition 2.2. Associated with these functions we introduce the regularized
subproblem

(P̃ k
re) inf{H̃k(x) + εk||x||2 | x ∈ Q}.

This subproblem will be solved in Step 1 of the forthcoming algorithm within an error εk.

Remark 3.2 The objective function Hk
re(·) := H̃k(·)+εk||·||2 is strongly convex, so that argmin{H̃k(x)+

εk||x||2 | x ∈ Q} is a single point yk. As a consequence, there exists at least a point xk satisfying

xk ∈ Q, H̃k(xk) + εk||xk||2 ≤ H̃k(x) + εk||x||2 + εk ∀x ∈ Q. (28)

When H̃k is C1, and Q = Rn, then it is worthwhile to note that any usual convergent gradient method
will provide in a finite number of steps such a point by using the implementable stopping rule

||∇H̃k(xk) + 2εkxk|| ≤
√

2εk. (29)

Indeed, writing the strong convex inequality 〈∇Hk
re(xk)−∇Hk

re(yk), xk − yk〉 ≥ 2εk||xk − yk||2, it follows
from (29) that ||xk − yk|| ≤ 1√

2
. Since Hk

re(yk) ≥ Hk
re(xk) + 〈∇Hk

re(xk), yk − xk〉, using again (29),we
obtain (28).
Note that this implementable stopping rule does not imply (28) if the original objective function H̃k is
not regularized by adding εk||x||2.
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Now we can describe our basic algorithm:
The Remez penalty smoothing algorithm-RPSALG
Initialization: Set k = 0 and start with T 0

1 and T 0
2 defined in Lemma 3.1.

Step 1 Compute xk satisfying (28).
Step 2 Compute tk+1

1 and tk+1
2 satisfying (20) with (21).

Step 3 Set: T k+1
i = T k

i ∪
{
tk+1
i

}
i = 1, 2.

Set k ← k + 1; go to Step 1.

Each triple (θ, {γk}, {δk}) determines a different instance of RPSALG. In order to prove its convergence
we consider the following conditions involving a sequence {mk} such that mk ≥ |T k

2 | ∀k:

(a) θ ∈ F1, limk→∞
γk

δk
= 0, and limk→∞

γk

mk
= +∞.

(b) θ ∈ F2, limk→∞
γk

δk
= 0, and γk

mk
> ε ∀k, for a certain ε > 0.

(c) θ ∈ F2, limk→∞ δk = +∞, γk

mk
> ε ∀k for a certain ε > 0,

{
γk

δk

}
is bounded, and either θ(0) = 0

or (A2) holds.

Remark 3.3 The natural choice is mk = r2 + k. However another choice will be proposed at the end of
this Section. Furthermore it is worthwhile to note that condition (a) as well as condition (b) implies that
limk→∞ δk = +∞.

Theorem 3.1 Assume that (A1) holds. If (θ, {γk}, {δk}) satisfies at least one of the conditions (a), (b),
(c), then the sequence built by RPSALG is bounded and each limit point of this sequence is an optimal
solution of (P ) .

Proof. Let u ∈ Q such that G(u) < 0 if (A2) holds and u ∈ C otherwise.
1) Let l ≤ k be fixed nonnegative integers. Since F l ≤ F k ≤ F from the definition, using (26) in the
basic inequality (28) we get

F l(xk) +
γk

|T k
2 |

∑

t∈T k
2

θ(g(t, xk)δk)
δk

≤ F (u) +
γk

|T k
2 |

∑

t∈T k
2

θ(g(t, u)δk)
δk

+ νk(u),

with
νk(u) :=

1
log(r1 + k)

+ εk ‖u‖2 + εk, lim
k→∞

νk(u) = 0. (30)

Since θ is nondecreasing and nonnegative it follows that

F l(xk) +
γk

|T k
2 |

∑

t∈T l
2

θ(g(t, xk)δk)
δk

≤ F (u) +
γk

|T k
2 |

∑

t∈T k
2

θ(G(u)δk)
δk

+ νk(u)

≤ F (u) +
γk

δk
θ(G(u)δk) + νk(u). (31)

2) Let us prove now that the sequence {xk} is bounded. Suppose the contrary. Then there exists a
subsequence {xk}k∈K such that

lim
k→+∞

k∈K

||xk|| = +∞, lim
k→+∞

k∈K

xk

||xk|| = d 6= 0, d ∈ Q∞. (32)

Let l be arbitrary. Let αl
t < g(t, ·)∞(d) ∀t ∈ T l

2 and βl < (F l)∞(d). Then, as pointed out in Remark 2.1,
there exists kl such that

F l(xk) ≥ βl||xk||, g(t, xk) ≥ αl
t||xk|| ∀t ∈ T l

2, ∀k ∈ K such that k ≥ max{l, kl}.
Since θ is nonnegative and nondecreasing, dividing both members of inequality (31) by ||xk|| we deduce

βl +
γk

|T k
2 |

θ(αl
t||xk||δk)
||xk||δk

≤ F (u)
||xk|| +

γkθ(G(u)δk)
||xk||δk

+
νk(u)
||xk|| , ∀t ∈ T l

2. (33)
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Since θ is nondecreasing and δkG(u) ≤ 0, then θ(G(u)δk) ≤ θ(0) ∀k so that the right hand side of (33)
converges to zero as k →∞. As a consequence, ∀τ l > 0 we have for k large enough

βl +
γk

|T k
2 |

θ(αl
t||xk||δk)
||xk||δk

≤ τ l ∀t ∈ T l
2. (34)

Let us show now that
αl

t ≤ 0 ∀t ∈ T l
2. (35)

Suppose the contrary, i.e., there exists some t ∈ T l
2 with αl

t > 0. Consider

lim
k→∞

γk

|T k
2 |

θ(αl
t||xk||δk)
||xk||δk

= lim
k→∞

(
αl

tγk

|T k
2 |

)[
θ(αl

t||xk||δk)
αl

t||xk||δk

]
≥ lim

k→∞

(
αl

tγk

mk

)[
θ(αl

t||xk||δk)
αl

t||xk||δk

]
, (36)

where limk→∞
θ(αl

t||xk||δk)
αl

t||xk||δk
= θ∞(1). It is easy to see that the limit in (36) is +∞ under any of the

assumptions (a), (b) and (c), in contradiction with (34). Thus (35) holds.
Furthermore, since θ is nonnegative we deduce from (34) that βl ≤ τ l for all positive τ l, i.e., βl ≤ 0.
From (35), letting βl → (F l)∞(d), αl

t → g(t, ·)∞(d) ∀t ∈ T l
2, it follows that

(F l)∞(d) ≤ 0, g(t, .)∞(d) ≤ 0 ∀t ∈ T l
2.

Therefore, if we set l = 0 we get, together with d ∈ Q∞, a contradiction with the fact that F 0 is level
bounded on C0.
3) Now let x∞ be a limit point of the sequence {xk}. Since Q is closed, x∞ ∈ Q. Furthermore since T1

and T2 are compact, there exist t̄i ∈ Ti, i = 1, 2 and subsequences {xk}k∈K , {tk+1
i }k∈K , i = 1, 2, such

that
lim

k→+∞
k∈K

xk = x∞, lim
k→+∞

k∈K

tk+1
i = t̄i, i = 1, 2. (37)

Let l be arbitrary. Let α̃l
t < g(t, x∞), ∀t ∈ T l

2, β̃
l
< F l(x∞). Then by continuity there exists kl such that

F l(xk) ≥ β̃
l
, g(t, xk) ≥ α̃l

t ∀t ∈ T l
2, ∀k ∈ K such that k ≥ max{l, kl}.

As a consequence, since θ is nondecreasing, we deduce from inequality (31) that

β̃
l
+

∑

t∈T l
2

γk

|T k
2 |

θ(α̃l
tδk)

δk
≤ F (u) + γk

θ(G(u)δk)
δk

+ νk(u), with lim
k→∞

νk(u) = 0. (38)

Since 0 ≤ θ(G(u)δk) ≤ θ(0) and limu→−∞ θ(u) = 0, then

lim
k→∞

γk

θ(G(u)δk)
δk

= 0 (39)

under one of the conditions (a), (b), (c).

It follows that the right hand side of (38) converges to F (u) as k → ∞. As a consequence, since θ is
nonnegative, we get that

β̃
l ≤ F (u), β̃

l
+

γk

|T k
2 |

θ(α̃l
tδk)

δk
≤ F (u) + κk(u) ∀t ∈ T l

2, where lim
k→∞

κk(u) = 0. (40)

Repeating the same arguments as in part 2), we deduce from (40) that

α̃l
t ≤ 0 ∀t ∈ T l

2. (41)

Letting β̃
l → F l(x∞), α̃l

t → g(t, x∞) ∀t ∈ T l
2 it follows from (40) and (41) that

F l(x∞) ≤ F (u), (42)

and
g(t, x∞) ≤ 0 ∀t ∈ T l

2 ∀l. (43)

Now passing to the limit as l → +∞ we get

g(t̄2, x∞) ≤ 0. (44)
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Finally
g(tk+1

2 , x∞) = g(tk+1
2 , xk) + [g(tk+1

2 , x∞)− g(tk+1
2 , xk)],

so that, according to (20),

g(tk+1
2 , x∞) ≥ G(xk)− µk + [g(tk+1

2 , x∞)− g(tk+1
2 , xk)]. (45)

Passing to the limit, using (21), (37), (44), and the fact that G and g are continuous we get G(x∞) ≤ 0,
so that x∞ ∈ C.
Coming back to inequality (42), with u ∈ C (u ∈ Q and G(u) < 0 if (A2) holds), by continuity we get

F l(x∞) ≤ v(P ) ∀l. (46)

Now we define j(l) = max{j ∈ K : j < l}. Then

F l(x∞) ≥ f(tj(l)+1
1 , x∞) = f(tj(l)+1

1 , xj(l)) + [f(tj(l)+1
1 , x∞)− f(tj(l)+1

1 , xj(l))].

According to (20), F (xj(l)) ≤ f(tj(l)+1
1 , xj(l)) + µj(l). Passing to the limit in these inequalities, and using

(46), we get F (x∞) ≤ v(P ), which proves that x∞∈ SP . ¤

Remark 3.4 The functions θ4 and θ5 satisfy the assumption θ(0) = 0, but not θ6.

Remark 3.5 When D is defined with a finite number of inequalities q, then we can take T 0
2 ={1, . . . , q},

and we do not need to compute in RPSALG the element tk+1
2 . Obviously the convergence proof remains

valid. Furthermore in that case we can choose mk = q which leads to parameters γk smaller than for
mk = r2 + k.

Remark 3.6 A unified framework for penalty and barrier methods was developed in [4] for nonconvex
programs containing a finite number of inequalities and semi-definite constraints. The convergence results
given in Theorem 3.1 can be extended to the nonconvex setting in a similar way, but using much more
sophisticated results on asymptotic functions (observe that some results of Section 2 are only valid for
convex functions (e.g., (12), (13) or Proposition 2.1).

Comment 1
In the min-max case (T2 = ∅), RAPSALG coincides with the entropic smoothing method proposed by
Sheu-Lin [26], where convergence was obtained under the stronger condition: Q is compact. For ordinary
CSIP (|(T1)| = 1), Martinet proposed in [17] an algorithm similar to RAPSALG, the difference being the
formula giving the approximating penalized term. In fact, Martinet chose G̃k(x) = αk

∑
t∈T k

2
θ (g(t, x)),

with αk ≥ 1, instead of (3). The class of penalty functions considered in [17] consists of continuous
functions θ : R → R+ such that θ(t) = 0 if t ≤ 0. This is a very restrictive condition which is
violated in particular by θ1, θ2, θ3 and by the exponential function θ6. Actually, this condition concerns
essentially functions as θ4 or θ5, for which the two frameworks coincide. With a completely different
proof, convergence in [17] was obtained in the nonconvex case, but under the stronger assumption which
imposes to F to be level bounded on Q instead on the feasible set Q∩D, as in Theorem 3.1. Furthermore
in [17] there is no duality analysis as in the following section.
It should also be noted that both schemes require summing up over T k

2 to evaluate the values of the
penalized function and of its gradient. In this case deletion rules can be helpful to improve the models.
Such a rule has been proposed in [17], where convergence is proved in the convex case, with the assumption
just cited above but imposing the additional one that F is uniformly strictly convex.

4. Duality results In this section we assume, for the sake of simplicity, that Q = Rn, that T1 is
reduced to a single point, so that F is C1 on the whole space Rn, and we suppose that ∇xg(·, ·) exists
and is continuous on T2 × Rn. We use the following notation:
a) C(T2) is the Banach space of real-valued continuous functions on T2, equipped with the maximum
norm

‖h‖ = max{|h(t)| : t ∈ T2}.
By C+(T2) we denote the cone of nonnegative valued functions in C(T2).
b) M(T2) is its topological dual, i.e., the space of all the finite signed Borel measures on T2, embedded
with the total variation norm. We have
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〈h, σ〉 :=
∫

T2

h(t)σ(dt) ∀σ ∈ M(T2), ∀h ∈ C(T2).

Since T2 is a metric space, C(T2) is separable and every finite signed Borel measure on T2 is regular (see,
for instance, [8, Example 2.37]).

By M+(T2) we represent the positive cone of M(T2), i.e., the subset of M(T2) composed by the finite
Borel measures on T2. For σ ∈ M+(T2) we have ||σ|| = ∫

T2
σ(dt).

c) L(x, σ) is the usual Lagrangian function associated with (P ), i.e.,

L(x, σ) := F (x) + 〈gx, σ〉 = F (x) +
∫

T2

g(t, x)σ(dt),

with x ∈ Rn, σ ∈ M+(T2), and gx(t) := g(t, x), for all t ∈ T2.
d) Associated with the Lagrangian function we consider the function

ψ(σ) := inf{L(x, σ)| x ∈ Rn}.
e) Associated with our primal problem (P ) we define the usual Lagrangian dual problem

(D) v(D) = supσ∈M+(T2) infx∈Rn L(x, σ) ≡ supσ∈M+(T2) ψ(σ). (47)
g) The so-called weak duality inequality v(P ) ≥ v(D) always holds. The optimal set of (D) is denoted by
SD.

The following theorem gathers the most relevant properties of the dual pair.

Theorem 4.1 Assume that assumptions (A1) and (A2) are satisfied. Then, the following statements
hold :
(i) The strong duality v(D) = v(P ) is satisfied, and the dual optimal set SD is nonempty and bounded
for the total variation norm.
(ii) If σ ∈ M+(T2) and x ∈ argminψ(σ) are such that

g(t, x) ≤ 0 ∀t ∈ T2, and 〈gx, σ〉 = 0,

then x and σ are optimal for (P ) and (D), respectively. Moreover, under the current assumptions we
have

x ∈ argminψ(σ) ⇐⇒ ∇xL(x, σ) = ∇F (x) +
∫

T2

∇xg(t, x)σ(dt) = 0. (48)

The proof comes straightforwardly from Theorems 5.97 and 5.98, Corollary 5.109, and (5.278) in [8].

Let us come back to algorithm RPSALG in which we compute a point xk ∈ Rn satisfying the stopping
rule ∥∥∥∥∥∥

∇F (xk) +
γk

|T k
2 |

∑

t∈T k
2

θ′(g(t, xk)δk)∇xg(t, xk) + 2εkxk

∥∥∥∥∥∥
≤
√

2εk. (49)

For the rest of this section we suppose that (θ, {γk} , {δk}) satisfies at least one of the conditions (a),
(b), (c’), where (a) and (b) are defined in Section 3, and

(c’) θ ∈ F2, limk→∞ δk = +∞, γk

mk
> ε ∀k for a certain ε > 0,

{
γk

δk

}
is bounded, and θ(0) = 0.

Thanks to Remark 3.2 the point xk satisfies (28) so that Theorem 3.1 holds. Furthermore this inequality
leads us to introduce the sequence of discrete measures {σk} associated with the sequence {xk} by

σk :=
γk

|T k
2 |

∑

t∈T k
2

θ′(g(t, xk)δk)αt, (50)

where αt is the Dirac distribution concentrated at point t.
Using Theorem 4.1 we get the following dual convergence theorem, in which we prove the weak∗-
convergence of a sequence {σk} ∈ M(T2), to some element σ ∈ M(T2), i.e.,

lim
k→∞

〈
h, σk

〉
= 〈h, σ〉, ∀h ∈ C(T2).
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Theorem 4.2 Assume that (A1) and (A2) are satisfied, and suppose that (θ, {γk} , {δk}) satisfies at least
one of the conditions (a), (b), (c’). Then, the following statements hold :
(i) The sequence {σk} given in (50) is strongly bounded.
(ii) There exists at least a weak∗−limit point of this sequence, and each weak∗−limit point of this sequence
belongs to SD.

Proof. i-1) Let us consider the (possibly empty) set Ik := {t ∈ T2 : g(t, xk) ≤ 0}. Since θ is
nonnegative and convex we get

∀t ∈ T k
2 ∩ Ik :

γk

|T k
2 |

θ′(g(t, xk)δk)(0− δkg(t, xk)) ≤ γk

|T k
2 |

[θ(0)− θ(g(t, xk)δk)] ≤ γk

|T k
2 |

θ(0),

and since θ′ is nonnegative it follows, from the definition of σk, that

〈gxk , σk〉 ≥
∑

t∈T k
2 ∩Ik

γk

|T k
2 |

θ′(g(t, xk)δk)g(t, xk) ≥ −γk

δk
θ(0). (51)

i-2) Let us prove now that the sequence {σk} is strongly bounded. If not, there will exist a subsequence
{σk}k∈K such that limk→∞,k∈K

∥∥σk
∥∥ = ∞, and we define the measures

σ̂k := σk/
∥∥σk

∥∥ , k ∈ K.

Then recall that the separability of C(T2) entails that the ball B∗ := {σ ∈ M(T2) : ‖σ‖ ≤ 1} is weak∗

sequentially compact. As a consequence of that, and since the sequence {xk}k∈K is bounded with limit
points in SP (according to Theorem 3.1), there must exist a subsequence {σ̂k}k∈K′ , with K ′ ⊂ K, such
that

lim
k→∞,k∈K′

xk = x∞ ∈ SP , w∗ − lim
k→∞,k∈K′

σ̂k = σ̂ ∈ M+(T2), ||σ̂|| = 1. (52)

Now from (49) we obtain
∥∥∥∥
∇F (xk)
‖σk‖ +

〈
∇xgxk , σ̂k

〉
+

2εkxk

‖σk‖

∥∥∥∥ ≤
√

2εk

‖σk‖ , k ∈ K ′. (53)

Before taking limits for k →∞, k ∈ K ′, we write
〈
∇xgxk , σ̂k

〉
=

〈
∇xgxk −∇xgx∞ , σ̂k

〉
+

〈
∇xgx∞ , σ̂k

〉
. (54)

Using the uniform convergence over the compact set T2, we get

lim
k→∞,k∈K′

||∇xgxk −∇xgx∞ ||∞ = 0. (55)

So, since the sequences {xk}k∈K′ and {∇F (xk)}k∈K′ are bounded, from (54) and the weak∗ convergence
of the bounded sequence σ̂k to σ̂, taking limits in (53) we conclude

〈∇xgx∞ , σ̂〉 = 0. (56)

Let us write now 〈
gxk , σ̂k

〉
=

〈
gxk − gx∞ , σ̂k

〉
+

〈
gx∞ , σ̂k

〉
. (57)

With the same arguments as above, taking limits for k →∞, k ∈ K ′, we get

lim
k→∞, k∈K′

〈gxk , σ̂k〉 = 〈gx∞ , σ̂〉 ≤ 0, (58)

since σ̂ ∈ M+(T2) and g(t, x∞) ≤ 0 ∀t ∈ T2.
Now, dividing both members of (51) by ||σk||, we get

〈gxk , σ̂k〉 ≥ − γk

δk||σk||θ(0). (59)

Since limk→∞
γk

δk||σk|| = 0, passing to the limit in this inequality, we get with (58)

〈gx∞ , σ̂〉 = 0. (60)
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Let us consider now u satisfying Slater’s condition. Since ||σ̂|| = 1 and σ̂ ∈ M+(T2), it follows that
〈gu, σ̂〉 < 0. Since g(t, ·) is convex, we get h(t) := 〈∇xg(t, x∞), u − x∞〉 ≤ g(t, u) − g(t, x∞) and from
(56), and (60) it follows

0 = 〈h, σ̂〉 = 〈〈∇xgx∞ , σ̂〉 , u− x∞〉 ≤ 〈gu − gx∞ , σ̂〉 < 0,

a contradiction.
ii) Since the sequence {σk} is bounded, and applying again that B∗ is weak∗ sequentially compact, there
will exist at least a w∗-limit point. Let σ∞ be an arbitrary w∗-limit point of this sequence. Since {xk}
is bounded with limit points in SP there exists a subsequence {σk}k∈K such that

lim
k→∞,k∈K

xk = x∞ ∈ SP , w∗ − lim
k→∞,k∈K

σk = σ∞ ∈ M+(T2). (61)

Using the same arguments as for (58) we get 〈gx∞ , σ∞〉 ≤ 0. Now, since either θ(0) = 0 or limk→∞
γk

δk
= 0,

and passing to the limit in (51), we get
〈gx∞ , σ∞〉 = 0. (62)

Now coming back to (49), passing to the limit and using the same arguments as in part i-2) we get

∇F (x∞) + 〈∇xgx∞ , σ∞〉 = 0.

Then applying Theorem 4.1, it follows that σ∞ ∈ SD. ¤

5. Integral-type Algorithm coupled with Penalty and Smoothing Methods RPSALG, as
all Remez-type methods, requires to solve nonconvex optimization problems in Step 2. From a compu-
tational point of view, actually this is only possible for particular cases, for instance when the functions
f(·, x), g(·, x) are polynomial, with low dimensional sets T1 and T2. An alternative strategy can be to
consider a global smoothing and penalization via integrals, which convexifies these functions.
In this section we suppose that Ti, i = 1, 2, is a compact set in some finite-dimensional Euclidean space,
with a nonempty interior, and that

f(t, x) = h(x) + 〈a(t), x〉 − b(t), ∀t ∈ T1, g(t, x) = 〈a(t), x〉 − b(t), ∀t ∈ T2,

where h : Rn → R∪{+∞} is convex, lsc, and C1 on Q. For more general cases we refer to the forthcoming
Remark 5.2.
For δk > 0, pk > 0, γk > 0, and θ ∈ F we set

Ik(x) =
1
pk

log
(∫

T1

exp[(〈a(t), x〉 − b(t))pk]dt

)
, Ek(x) = γk

∫

T2

θ(g(t, x)δk)
δk

dt,

where dt is the Lebesgue measure. Then we consider

Jk(x) = h(x) + Ik(x), Rk(x) = Jk(x) + Ek(x),

and with εk > 0, we introduce the associated regularized subproblem

(P k
irps) inf{Rk(x) + εk||x||2| x ∈ Q}. (63)

Observe that Ik is convex ([12, Lemma 1]) and, obviously, Ek is also convex, so that Rk is convex, lsc,
and C1 on Q. Consequently, the objective function of (P k

irps) is strongly convex on Q and there exists at
least a point xk satisfying

xk ∈ Q, h(xk) + Ik(xk) + Ek(xk) + εk||xk||2 ≤ h(u) + Ik(u) + Ek(u) + εk||u||2 + εk ∀u ∈ Q. (64)

Remark 5.1 Since h and θ are C1, the objective function of (P k
irps) is also C1, with

∇Ik(x) =

∫
T1

exp[(〈a(t), x〉 − b(t))pk]a(t)dt∫
T1

exp[(〈a(t), x〉 − b(t))pk]dt
, ∇Ek(x) = γk

∫

T2

θ′(g(t, x)δk)a(t)dt. (65)

Then it is worthwhile to note as in Remark 3.2 that, when Q is the whole space, any usual gradient
method will provide in a finite number of steps such a point by using the implementable stopping rule

||∇Rk(xk) + 2εkxk|| ≤
√

2εk. (66)
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We suppose now for the rest of this section that εk > 0, ∀k, limk→∞ εk = 0, limk→∞ pk = +∞, and
we introduce the following conditions:

(a’) θ ∈ F1, limk→∞
γk

δk
= 0, and limk→∞ γk = +∞.

(b’) θ ∈ F2, limk→∞
γk

δk
= 0, and γk > ε ∀k, for a certain ε > 0.

Now we describe our second algorithm as follows:

Integral Penalty Smoothing Algorithm - IPSALG:
Compute, at each Step k, xk satisfying (64).

From now on, for each Vi ⊂ Ti we set ν(Vi) =
∫

Vi
dt. Then we have the following lemma:

Lemma 5.1 Let u ∈ Q, τ(u) := max{〈a(t), u〉−b(t) : t ∈ T1}, and let {uk} be a sequence in Q converging
to u. Then

Ik(u) ≤ τ(u) +
log(ν(T1))

pk
and lim

k→∞
Ik(uk) = τ(u). (67)

Proof. Set

l(t) := 〈a(t), u〉 − b(t), lk(t) = 〈a(t), uk〉 − b(t), and t∗1 ∈ argmax{l(t) : t ∈ T1}.
Then the first inequality in (67) is a direct consequence of the inequality exp[l(t)pk] ≤ exp[τ(u)pk] ∀t ∈ T1.
Now we claim that for each β > 0 there exist ε1 > 0 and n1 such that

lk(t) ≥ τ(uk)− β ∀t ∈ B(t∗1; ε1) := {t ∈ T1 : d(t∗1, t) ≤ ε1} and ∀k ≥ n1.

Otherwise, there would exist β > 0 such that, for each positive integer r, there exist tr ∈ T1 and kr ≥ r
verifying d(t∗1, tr) ≤ 1

r and lkr (tr) < τ(ukr )−β. The sequence {tr} converges to t∗1, and since the function
τ is continuous, passing to the limit, we get τ(u) ≤ τ(u)− β, a contradiction. As a consequence we get,
denoting B1 := B(t∗1; ε1),

Ik(uk) ≥ 1
pk

log
(∫

B1

exp[lk(t)pk]dt

)
≥ 1

pk
log

(∫

B1

exp[(τ(uk)− β)pk]dt

)

= (τ(uk)− β) +
log(ν(B1))

pk
.

Passing to the limit, since τ is continuous we obtain lim infk→∞ Ik(uk) ≥ τ(u)−β, and then, with β → 0+,
we obtain lim infk→∞ Ik(uk) ≥ τ(u).
Now using the first inequality in (67) and the continuity of τ we get lim supk→∞ Ik(uk) ≤ τ(u) so that
limk→∞ Ik(uk) = τ(u). ¤

Theorem 5.1 Suppose that Assumption (A1) holds and that (θ, {γk} , {δk}) satisfies at least one of the
conditions (a’), (b’). Then the sequence {xk} built by IPSALG is bounded and all its limit points are in
SP .

Proof. 1) Let u ∈ C and set

ηk(u) := γkν(T2)
θ(G(u)δk)

δk
+

log(ν(T1))
pk

+ εk. (68)

Since 0 ≤ θ(G(u)δk) ≤ θ(0), it follows from (68), and at least one of the two conditions (a’) and (b’) that

lim
k→∞

ηk(u) = 0. (69)

Now since θ is nondecreasing, by definition of Ek(xk), and from (64) and (67)

xk ∈ Q, h(xk) + Ik(xk) + Ek(xk) ≤ F (u) + ηk(u) + εk||u||2 ∀u ∈ C. (70)

As a consequence, since Ek(xk) is nonnegative there exists some α ∈ R such that, for k sufficiently large,
we have

h(xk) + Ik(xk) + Ek(xk) ≤ α and h(xk) + Ik(xk) ≤ α. (71)
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2) Now let us prove that the sequence {xk} is bounded. Suppose the contrary. Then there exists a
subsequence {xk}k∈K such that

lim
k→+∞, k∈K

||xk|| = +∞, lim
k→+∞ k∈K

xk

||xk|| = d 6= 0, d ∈ Q∞. (72)

Let t∗1 ∈ argmax{〈a(t), d〉| t ∈ T1}. Then (see Section 2) F∞(d) = h∞(d) + 〈a(t∗1), d〉. Now let τ <
〈a(t∗1), d〉. Then, since a(·) is continuous, for each r1 > 0 with τ +4r1 ≤ 〈a(t∗1), d〉 there exists ε1 > 0 such
that

〈a(t), d〉 > 2r1 + τ ∀t ∈ B1 := B(t∗1; ε1). (73)

Set uk(t) :=
〈
a(t), xk

||xk||
〉
− b(t)

||xk|| . Since a(·), b(·) are continuous, the sequence {uk}k∈K converges uni-
formly on B1 to 〈a(·), d〉, and there exists k0 such that

uk(t) ≥ r1 + τ , ∀t ∈ B1, and ∀k ≥ k0, k ∈ K.

Then ∀k ≥ k0 we have

Ik(xk) ≥ 1
pk

log
(∫

B1

exp[pkuk(t)||xk||]dt

)
≥ 1

pk
log

(∫

B1

exp[(τ + r1)||xk||pk]dt

)

= (τ + r1)||xk||+ log(ν(B1))
pk

,

and this entails

lim inf
k→∞, k∈K

Ik(xk)
||xk|| ≥ τ + r1.

Then, taking τ → 〈a(t∗1), d〉, which implies r1 → 0+, we get

lim inf
k→∞, k∈K

Ik(xk)
||xk|| ≥ 〈a(t∗1), d〉. (74)

Now dividing both members of the second inequality in (71) by ||xk|| and passing to the limit, we get
from inequality (74) and from the definition of h∞:

0 = lim
k→∞, k∈K

α

||xk|| ≥ lim inf
k→∞, k∈K

(
h(xk)
||xk|| +

Ik(xk)
||xk||

)
(75)

≥ lim inf
k→∞, k∈K

h(xk)
||xk|| + lim inf

k→∞, k∈K

Ik(xk)
||xk||

≥ h∞(d) + 〈a(t∗1), d〉 = F∞(d).

Now we proceed by dividing both members of the first inequality (71) by ||xk||, passing to the limit and
using (75):

0 = lim
k→∞, k∈K

α

||xk|| ≥ lim inf
k→∞, k∈K

(
h(xk)
||xk|| +

Ik(xk)
||xk|| +

Ek(xk)
||xk||

)
(76)

≥ h∞(d) + 〈a(t∗1), d〉+ lim inf
k→∞, k∈K

Ek(xk)
||xk|| .

Now we prove that
(gt)∞(d) = 〈a(t), d〉 ≤ 0 ∀t ∈ T2, (77)

in which case, using (22), relations (72), (75), (77) would imply that assumption (A1) is not satisfied,
and this is a contradiction. So, suppose that (77) does not hold. Then, since a(·) is continuous, there
exist t∗ ∈ T2, r > 0 and ε2 > 0 such that

〈a(t), d〉 > 2r ∀t ∈ B2 := B(t∗; r) := {t ∈ T2 : d(t∗, t) ≤ r}. (78)

Set uk(t) :=
〈
a(t), xk

||xk||
〉
− b(t)

||xk|| . Since a(·), b(·) are continuous, the sequence {uk}k∈K converges uni-
formly on B2 to 〈a(·), d〉. Hence, there exists k1 such that

uk(t) ≥ r, ∀t ∈ B2, and ∀k ≥ k1, k ∈ K.

Since θ is nondecreasing, it follows that

θ(g(t, xk)δk) ≥ θ(r||xk||δk), ∀t ∈ B2, and ∀k ≥ k1, k ∈ K,
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so that
Ek(xk)
||xk|| =

γk

δk||xk||
∫

B2

θ(g(t, xk)δk)dt ≥ ν(B2)γk

θ(r||xk||δk)
||xk||δk

∀k ≥ k1, k ∈ K. (79)

Taking limits we get

lim inf
k→∞, k∈K

Ek(xk)
||xk|| ≥ ν(B2) lim inf

k→∞, k∈K

{
γk

θ(r||xk||δk)
||xk||δk

}
. (80)

We shall make the following discussion:

(a’) Since

lim inf
k→∞, k∈K

{
θ(r||xk||δk)
||xk||δk

}
≥ θ∞(r) = rθ∞(1) > 0

and limk→∞ γk = +∞, we get limk→∞, k∈K
Ek(xk)
||xk|| = +∞ and this contradicts (76).

(b’) Since γk > ε > 0, ∀k, and θ∞(r) = rθ∞(1) = +∞ we reach a similar contradiction, and we have
to conclude that the sequence {xk} is bounded.
3) Now let {xk}k∈K be a subsequence such that limk→∞, k∈K xk = x∞ and, in order to finish the proof,
let us show that x∞ is an optimal solution. Since Q is closed it follows that x∞ ∈ Q. Furthermore, since
Ek is nonnegative and h is continuous at x∞, passing to the limit in (70), and thanks to (69) and Lemma
5.1, we get

F (x∞) ≤ v(P ). (81)

Coming back to (71), and since from Lemma 5.1 the sequence {h(xk) + Ik(xk)} is bounded, then there
exists a scalar β such that

Ek(xk) ≤ β, k ∈ K. (82)

To prove that x∞ is an optimal solution, since x∞ ∈ Q, and thanks to (81), we have only to show that
〈a(t), x∞〉 − b(t) ≤ 0 ∀t ∈ T2.
Suppose the contrary. Then, since a(·), b(·) are continuous, there exist t∗ ∈ T2 and r > 0 such that

〈a(t), x∞〉 − b(t) > 2r ∀t ∈ B(t∗; r).

Set uk(t) := 〈a(t), xk〉 − b(t). Again, since a(·), b(·) are continuous, the sequence {uk}k∈K converges
uniformly on B(t∗; r) to 〈a(·), x∞〉− b(·). As a consequence of that it follows, for k sufficiently large, that
uk(t) ≥ r ∀t ∈ B(t∗; r). Then since θ is nondecreasing and nonnegative we get from (82)

ν(B2)γk

θ(rδk)
δk

≤ β.

Then taking the same arguments given at the end of part 2, and passing to the limit in this inequality,
we obtain a contradiction, which finishes the proof. ¤

Remark 5.2 When Q is bounded it is worthwhile to note that the proof of Theorem 5.1 remains valid for
functions ft and gt not necessarily affine. Indeed the proofs of Lemma 5.1 and parts 1 and 3 of Theorem
5.1 remain valid, by word by word, meanwhile part 2 becomes unnecessary because Q is bounded.

Remark 5.3 When T1 = ∅ and T2 6= ∅ we define F := h, Ik := 0, while if T2 = ∅ and T1 6= ∅ then
D = Rn and we define Ek := 0. Then in both cases IPSALG is well defined and Theorem 5.1 obviously
remains valid with a proof which becomes simpler.

Duality results
For the sake of simplicity we suppose here that Q is the whole space, that {T1} is reduced to a single
element and that xk satisfies (66). As pointed out in Remark 5.1, xk satisfies (64), so that Theorem 5.1
holds.
Let us introduce a linear map J0 : C+(T2) → M+(T2) as follows

〈J0f, h〉 :=
∫

T2

hfdt ∀f ∈ C+(T2), ∀h ∈ C(T2).
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Now we associate with the sequence {xk} the sequence {σk} of measures given by

σk := γkJ0(θ′(g(·, xk)δk)).

Using the same techniques as for RPSALG we can obtain the following convergence theorem, whose
proof is only sketched here.

Theorem 5.2 Assume that (A1) and (A2) are satisfied, and suppose that (θ, {γk} , {δk}) satisfies at least
one of the conditions (a’), (b’). Then, statements (i) and (ii) in Theorem 4.2 also hold in this setting.

Proof. i-1) If we consider again the set Ik := {t ∈ T2 : g(t, xk) ≤ 0}, we have this time

〈gxk , σk〉 ≥
∫

Ik

γkθ′(g(t, xk)δk)g(t, xk)dt ≥ −γk

δk
ν(T2)θ(0). (83)

i-2) To prove that the sequence {σk} is strongly bounded, again we suppose the contrary. Then there
exists a subsequence {σk}k∈K such that limk→∞,k∈K

∥∥σk
∥∥ = ∞, and we define the measures σ̂k :=

σk/
∥∥σk

∥∥ , k ∈ K. Following the same arguments as in Theorem 4.2, now we conclude from (83) that

0 ≥ 〈gx∞ , σ̂〉 = lim
k→∞, k∈K′

〈gxk , σ̂k〉 ≥ lim
k→∞, k∈K′

− γk

δk||σk||ν(T2)θ(0) = 0.

In other words, 〈gx∞ , σ̂〉 = 0, which yields a contradiction with Slater’s condition. The rest of the proof
is as in Theorem 4.2. ¤

To put in perspective the results obtained for IPSALG with respect to related works we end this
section with two comments.

Comment 2
IPSALG is a family of methods concerning three types of problems. The first type corresponds to those
problems where T1 = ∅, T2 6= ∅ (here F = h is C1 and Ik = 0); the second type concerns problems where
T1 6= ∅, T2 = ∅ (now C = Q and Ek = 0); and the third class is the most general with both T1 and T2

nonempty.
The references [2], [16], and [30] deal with problems of first type where F is C1 and εk = 0 ∀k. In these
three papers, as we shall see below, the conditions which are needed for primal convergence are stronger
than the unique condition (A1) required for IPSALG.
In [2] θ = θ4, while in [16] θ = θ6, so that in both cases θ ∈ F2. Furthermore in both cases γk = 1 and
limk→∞ δk = +∞, so that condition (b′) holds and they coincide with IPSALG when εk = 0 ∀k. In [2] Q
is supposed to be compact. In [16] it is assumed that (A1) and Slater condition hold as well as two other
technical conditions. In both cases, the duality results also require stronger assumptions than IPSALG.
The method proposed in [30], appears without conditions on γk > 0, δk > 0 as a particular case of
IPSALG with εk = 0 ∀k and θ = θ3 ∈ F1. However these two algorithms are different since the
parameters are chosen differently. Indeed in [30] δk →∞ and for δk fixed γk is chosen such that xk is in
addition feasible, while for IPSALG they must satisfy condition (a’). Moreover, in [30] Q is supposed to
be compact, the Slater condition is also assumed and no duality result is provided.
In [12] the problem is of second type, a pure min-max problem where T2 = ∅ and the proposed algorithm
coincides with IPSALG when εk = 0 ∀k and limk→∞ pk = ∞. In [12] Q is supposed to be compact, while
for IPSALG we only require (A1).

Comment 3
Obviously if we want to use IPSALG, Ti must have low dimension. Then in this case, a natural question
raised by the study of IPSALG will be to ask if it has some advantage over RAPSALG, but unfortunately
we cannot give a theoretical response to such a question. In fact it would be also interesting to compare
problems of the same nature as for example, RAPSALG with Remez cutting plane methods, or IPSALG
with integral barrier methods. To gain better understanding of their numerical behavior, future works
on implementing and testing these methods should be conducted.
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