
A Compiler-Based Infrastructure for Fault-Tolerant
Co-Design

Felipe Restrepo-Calle
University of Alicante
03690 Alicante, Spain

frestrepo@dtic.ua.es

Antonio Martínez-Álvarez
University of Alicante
03690 Alicante, Spain

amartinez@dtic.ua.es

Hipólito Guzmán-Miranda
University of Sevilla
41092 Sevilla, Spain

hipolito@zipi.us.es
F.R. Palomo

University of Sevilla
41092 Sevilla, Spain

rogelio@zipi.us.es

M.A. Aguirre
University of Sevilla
41092 Sevilla, Spain

aguirre@zipi.us.es

Sergio Cuenca-Asensi
University of Alicante
03690 Alicante, Spain
sergio@dtic.ua.es

ABSTRACT
The protection of processor-based systems to mitigate the
harmful effects of transient faults (hardening) is gaining im-
portance as technology shrinks. Hybrid hardware/software
hardening approaches are promising alternatives in the de-
sign of such fault tolerant systems. This paper presents a
compiler-based infrastructure for facilitating the exploration
of the design space between hardware-only and software-only
fault tolerant techniques. The compiler design is based on
a generic architecture that facilitates the implementation of
software-based techniques, providing an uniform isolated-
from-target hardening core. In this way, these methods can
be implemented in an architecture independent way and can
easily integrate new protection mechanisms to automatically
produce hardened code. The infrastructure includes a simu-
lator that provides information about memory and execution
time overheads to aid the designer in the co-design decisions.
The tool-chain is complemented by a hardware fault emu-
lation tool that allows to measure the fault coverage of the
different solutions running on the real system. A case study
was implemented allowing to evaluate the flexibility of the
infrastructure to fit the reliability requirements of the sys-
tem within their memory and performance restrictions.

Categories and Subject Descriptors
B.8 [Performance And Reliability]: Reliability, Testing,
and Fault-Tolerance; B.8 [Performance And Reliabil-
ity]: Performance Analysis and Design Aids; C.3 [Special-
Purpose And Application-Based Systems]: Real-time
and embedded systems; C.4.2 [Performance of Systems]:
Fault tolerance

General Terms
Reliability, Verification, Design

SCOPES ’10, June 28-29, 2010, St. Goar, Germany

Keywords
Fault-tolerance, Single Event Effect (SEE), Single Event
Upset (SEU), Hardening, Co-Design

1. INTRODUCTION
Microprocessor performance has been dramatically increas-
ing during the recent decades. This fact has been possible
mainly because the progressive miniaturization of its elec-
tronic components. However, as technology shrinks, the
voltage source level and the noise margins are reduced, forc-
ing the electronic devices to be less reliable and micropro-
cessors more susceptible to transient faults [3, 30]. These in-
termittent faults are caused by external events, i.e. induced
by radiation, without provoking a permanent damage, but
may result in incorrect program execution by altering signal
transfers or stored values [27].

Although these faults are commonly found in the space en-
vironment, they are also present in a lower measure in the
atmosphere [7] and even at ground level [2]. Therefore, fun-
damental information about minimum environmental with-
stand conditions (including transient faults) for electronic
components has been established by several technical com-
mittees in each industrial field. These documents define de-
tailed qualification requirements that electronic components
must meet for their use. Some examples of them are: for
aerospace applications, ESA PSS-01-609 (The Radiation De-
sign Handbook) [8]; for avionic systems, IEC/TS 62396 (Pro-
cess Management for Avionics - Atmospheric radiation ef-
fects) [11]; for military systems, MIL-HSBK-817 (System De-
velopment Radiation Hardness Assurance) [6]; among oth-
ers.

Applying redundant hardware has been the usual way to
mitigate reliability problems. This strategy has been ap-
plied from low level structures (ECC — Error-Correcting
Code, parity bits) to more complex components like func-
tional units [1], co-processors [12], etc. In the same way, sev-
eral approaches have exploited the multiplicity of hardware
blocks available on multi-threaded/multi-core architectures
to implement redundancy [31, 14, 9]. More recent tech-
niques published in the literature [29] propose the selective
hardening of the design, which means that a system needs
to detect which parts of its circuitry are more vulnerable

or have larger probability of provoking a catastrophic be-
havior of the design itself. However, these hardware-based
approaches results very costly and for this reason unfeasible
in many cases.

In recent years several proposals based on redundant soft-
ware have been developed, providing both detection and er-
ror correction capabilities to applications. These works are
especially motivated by the need for low cost solutions, en-
suring an acceptable level of reliability [16] [20]. Some of
them apply redundancy to high-level source code by means
of automatic ruled transformations [22]. Some others use low
level (assembler) instruction redundancy in order to reduce
the code and execution time overheads caused by applying
these methods and improve the detection rates [18, 17, 26].
However, only few of these techniques have been extended
to allow the recovery of the system [21, 25]. Regarding
tools for implement fault-tolerant software techniques, re-
searchers have applied their own strategies, either by means
of modifications over a known compiler to perform auto-
matic code transformations [18, 26], designing ad-hoc tools
[22] or applying transformation rules manually to the in-
structions [20].

Despite the wide number of different hardware-only and
software-only methods, in many cases the optimal solution is
an intermediate point, which combines software and hard-
ware aspects (hardware/software co-design). Some recent
works have shown the viability of this hybrid strategy [24,
4]. In this context, there are needed suitable tools which
allow the designer to easily explore the design space in or-
der to find the best trade-off that satisfy the performance,
reliability, and hardware cost requirements of a design.

This paper presents a flexible compiler-based infrastructure
for fault-tolerant embedded systems co-design. The novelty
of our proposal is that the developed tools allow the imple-
mentation of different software based redundancy methods
in a platform independent way. The compiler can selectively
apply every software technique to get intermediate solutions
that could be complemented with hardware redundancy to
reach the fault coverage requirements and meet the system
constraints at the same time. The tool-chain includes an
instruction set simulator (ISS) that is able to get exact
information about the code and performance overheads of
the protection strategy adopted. Also the ISS can perform
an estimation of the fault coverage offered by the software-
based techniques applied, facilitating the early take of de-
cisions to the designer. The present work completes the
preliminary results obtained in [28] that show the flexibility
of the proposal.

As a case study for validating our approach, we have devel-
oped a compiler front-end and back-end for the PicoBlaze
soft-microprocessor [5] and a benchmark suite. As part of
the case study, three software-based techniques have been
implemented and evaluated using our infrastructure. The
selective hardening feature has been explored applying one
of the techniques to several subsets of registers from the mi-
croprocessor register file. Different trade-offs among code
overhead, performance and fault coverage have been repre-
sented. Finally, the protected versions of the code produced
by the compiler have been evaluated while running in the

real system using the FTUnshades hardware fault emula-
tion tool [10]. This is one of the tools used by the European
Space Agency (ESA) to assess dependability for mission crit-
ical systems.

Next section provides background information about the
fault model and important terminology. Section 3 presents
our compiler-based infrastructure. Section 4 describes the
mentioned case study, including the experiments and their
results. Finally, Section 5 concludes the paper and suggests
directions for future research.

2. FAULT MODEL AND TERMINOLOGY
In this paper we will focus on the well known Single Event
Upset fault model. In this SEU fault model, only one bit-
flip of a storage cell occurs throughout the execution of the
program. This effect is caused by the ionization provoked by
an incident charged particle. Despite its simplicity, the SEU
fault model is widely used in the fault tolerance community
to model real faults because it closely matches the real fault
behavior [22].

In order to evaluate the system’s reliability, we classify the
injected faults according to their effect on the expected pro-
gram behavior as it was proposed by Reis et al. [25]. If
the fault provokes that the program completes its execu-
tion, but does not produce the expected output, this fault
is called Silent Data Corruption — SDC. If the program
completes its execution and produces the expected output,
the fault is categorized as unnecessary for Architecturally
Correct Execution — unACE. Finally, if the fault causes
the program to abnormally finishes its execution or to re-
main forever into an infinite loop, we categorize this fault
as Hang. Note that SDC and Hang are both undesirable
effects (categorized together as ACE faults). In addition,
it is worth noting that software-based techniques necessary
introduce redundancy, and this causes two important facts
to take into account. Firstly, these techniques increase the
execution time of the programs, therefore the probability
of fault occurrence is higher than for the original program
whose execution time is smaller. Secondly, redundancy in-
creases the number of bits present on the system, increasing
the number of bits that are susceptible to fault. Therefore
the fault coverage offered by a specific hardening strategy
is directly related with the percentage of unACE faults and
the execution time overhead.

3. COMPILER-BASED INFRASTRUCTURE
The most desirable features that a hardening platform must
supply can be expressed as:

• flexible: that is, easy to extend its hardening capabil-
ities.

• API –based internals: to easy interfacing.

• hardware–agnostic: to provide an uniform isolated hard-
ening core for each supported microprocessor/micro-
controller.

• retargetable output: to provide reusing of code.

• flow–control based analysis and code–injection routines.

• automatic reallocation/minimization of architecture re-
sources to optimize fault coverage.

In order to implement these tasks we have evaluated a num-
ber of tools within this context. In this way, well–known
compilers such as gcc, with a robust tool–chain and an effi-
cient back-end system are not suitable for us at this moment
taking into account:

• the optimization strategy was not thought for provid-
ing redundancy.

• the lack of an API regarding the compiler internals
(gcc).

• a new redundancy stage would have several offtopic–
interactions to deal with.

In short, the need for having a deep knowledge in the way
code is to be transformed, have lead us to develop an en-
tire instruction–level hardening infrastructure from scratch.
That is, a hardening strategy based on assembler code. More-
over, we don’t discard a further interaction with a high-level
compiler such as gcc, in the sense that it can generate as-
sembler code able to feed our hardening platform.

The compiler have been designed using ANTLR 3.2 [19] (a
LL(*)-based framework for constructing recognizers, com-
pilers, and translators from grammatical descriptions). The
hardening overall platform is written using C#.

The proposed infrastructure establishes a complete softwa-
re-hardened development environment because it not only
allows to design and implement software-based techniques,
but also permits to automatically apply them into the pro-
grams. The infrastructure is made up of two main com-
ponents. The first one is a flexible multi-target compiler
supporting several common hardening routines. The sec-
ond one corresponds to an instruction set simulator (ISS)
responsible for the functional validation of the hardened pro-
grams and their preliminary fault coverage evaluation. Fig.
1 shows the general scheme of the proposed infrastructure.

...

Arch. 1

Arch. 2

Arch. n-1

Arch. n

Compiler back-ends

...

Compiler front-ends

Generic

Instruction

Flow

(GIF)

Hardened

source

code

Arch. 1

HardenerArch. 2

Arch. n-1

Arch. n

Hardened

Generic

Instruction

Flow

(HGIF)

Original

source

code

Simulator

Generic Hardening Core

(GH-Core)

Figure 1: Infrastructure for Fault-Tolerant Co-
Design

The main advantages of our proposal are:

• It is based on a Microprocessor Generic Architecture
that permits to handle multiple microprocessor tar-
gets. This architecture is useful to provide a uniform
hardening core compatible with usual microprocessors.

• It has a Generic Hardening Core (GH-Core) that al-
lows to design and implement different techniques in a
platform independent way. According to the reported
results by different researchers, better accuracy level
is achieved when low level instruction redundancy is
employed. So, the GH-Core is guided by instruction
level code transformation rules (assembler) that allow
to automatically generate hardened code.

• The infrastructure is conceived to implement a wide
suite of techniques, allowing to apply them in a selec-
tive way. For instance, if applying a particular set of
hardening routines results inconvenient according to
the requirements of the application (e.g. if the max-
imum execution time is exceded), it can be applied
partially depending on the critical program’s resources
or sections. This means that the designer can achieve
a protected version of the software by choosing from
different techniques to apply and even exploring the
design space that provide each one of these techniques.

The compiler front-ends take the original source code from
a supported target, perform lexical, syntactical and seman-
tical analyses, and finally generate a Generic Instruction
Flow (GIF) as output. This flow represents an intermediate
high level abstraction of a program that allows to perform a
platform independent implementation of the hardening rou-
tines (in the GH-Core). After the hardening process, the
Hardener produces a Hardened Generic Instruction Flow
(HGIF), which is taken by one of the compiler back-ends to
generate the hardened source code for the selected specific
microprocessor (see Fig. 1).

Using this scheme, the infrastructure compiler is also flexible
in the sense that is possible to process a code written for
a supported architecture and generate the hardened source
code targeting the same original architecture or a different
one by means of the several back-ends.

3.1 Microprocessor Generic Architecture
The generic architecture provides a workspace for the Gen-
eric Hardening Core. It gathers together every common el-
ements from different architectures in order to facilitate the
design and implementation of the state-of-the-art software-
based techniques in a technology independent way. The
Microprocessor Generic Architecture is defined by means of
Generic Instructions (GI) and provides the necessary func-
tionalities to suitably perform Memory Management and
analyses to the Control Flow Graph. In this way, every sup-
ported microprocessor target defined by means of an ISA
(Instruction Set Architecture) has a generic dual represen-
tation (ISA′) made up of generic instructions.

A GI is composed of the fields showed in Fig. 2.

Address Mnemonic
Generic

Operator List

Affected Generic

Flag List

Instruction

Type

Tool

message

Figure 2: Format of Generic Instructions

The Address is the memory position where the instruction
has been assembled by the compiler front-end; Mnemonic is
simply the target’s original mnemonic of the instruction (e.g.

ADD, JUMP, . . .). The Generic Operator List is a linked
list that contains the Generic Operators that are present
in the instruction. Each operator is made up of three fields,
they are: operator type, addressing mode and real name. The
operator type defines the kind of operator, such as: Register,
Literal, Address or Flag. The addressing mode can be: Ab-
solute, Register Indirect, Immediate Literal, among others.
Finally, the Real Name is the operator’s original name. Next
in the GI, there is the Affected Generic Flag List which is
a linked list with the generic flags affected by the execution
of the instruction. Each one of these is composed of type
and name. The Generic Flag Type can be: Zero, Not Zero,
Carry, Not Carry, Interrupt Enable, etc. The Name is the
original flag name of the target architecture. Inside the GI
there is also the Instruction Type that is used to classify the
instructions according to its functionality. It is very impor-
tant because the hardening process will depend on this type.
For example, it is different to handle an arithmetic instruc-
tion and a control flow instruction during hardening. Some
of the supported types are: interrupt, control flow, arith-
metic, logic, I/O, shift/rotate, etc. Finally, the last field in
a GI is Tool Message which is a log that the tool uses to
register events.

Considering hardening purposes, as it was suggested by Reis
et al. [26], we propose to classify in a special way those in-
structions whose function imply to cross the borders of the
Sphere of Replication (SoR) [23]. The SoR is the logic do-
main of redundant execution. Therefore, when an instruc-
tion causes that some data enter inside the SoR (e.g. reading
an input port, loading a value into a register or reading a
value from memory), it will be classified as inSoR; and con-
sequently when an instruction provokes data goes out from
the SoR (e.g. writing on an output port, storing a value into
the memory), it will be classified as outSoR (Fig. 3).

inSoR outSoR
Input port

Read from memory

Load a value

Output port

Write into memory
SoR

Figure 3: Instruction types related to crossing SoR
boundaries

Note that the boundaries of the SoR could change according
to the implemented technique. For instance, in EDDI [18]
the memory subsystem is inside the SoR, so the instructions
responsible to perform read/write operations over the mem-
ory do not cause that any data cross the SoR borders. In
the same way, supposing partially replication of the regis-
ter bank (i.e. not all of them replicated), those instructions
against data stored in unprotected registers cause some data
to cross through the SoR frontiers.

3.1.1 Memory Management
A common task for the software-based techniques is the in-
sertion of instructions into the original code during compi-
lation time. Therefore, it is necessary to supply the follow-
ing memory management means within the hardener tool:
identification of the memory map, extraction of the mem-
ory sections and modifications over the memory map. In
developing this compiler, similarly to other approaches, it

is assumed that the code being hardened does not exploit
dynamic memory allocation: all the data structures are de-
fined statically at compilation time. This is not a significant
limitation for developers of embedded applications, which
sometimes are forced to code standards that already avoid
dynamic memory usage [13]. The following three possibili-
ties were developed to keep update the memory map: dila-
tion, displacement and reallocation.

Dilation. When one or more instructions are inserted during
compilation time into a memory section, this section grows
and some of the instructions addresses inside this memory
section should be reassigned.

Displacement. If a dilation provokes that two or more mem-
ory sections share some addresses, which is an illegal situa-
tion, then the section must be completely moved and all its
instructions addresses updated.

Reallocation. If there is a memory overflow caused by pre-
vious instructions insertions, then it is needed to perform a
complete reallocation of the complete memory map. During
this process, free memory space among memory sections is
fully used. This situation takes place because of the typical
reduced memory size in embedded systems.

3.1.2 Control Flow Graph
Since the control flow graph is the key for many techniques
[17, 18, 26], our Microprocessor Generic Architecture allows
to identify it from a given GIF.

The control flow graph is represented by a directed graph.
In order to build it, first we must identify the program’s
basic blocks. A basic block is a group of instructions that
are executed sequentially, without any jump instruction nor
function call, excepting possibly the last instruction. Also,
a basic block does not contain instructions being the desti-
nation of a call or jump instruction, excepting the first in-
struction. Each basic block represents a node in the graph.
The control flow changes are represented in the graph as
links among the nodes. Fig. 4 shows an example of a simple
control flow graph.

Node 1

Node 4

Node 3Node 2

Node 5

Node 1: {I1, I2, I3, I4, I5}

Node 2: {I6, I7, I8}

Node 3: {I9, I10}

Node 4: {I11, I12, I13}

Node 5: {I14}

Figure 4: Control Flow Graph

In addition, when an instruction sends data outside of the
SoR, it may provoke an unrecoverable error if that data is
corrupted. In this way, it would be desirable to perform
a verification of the data’s correctness before it leaves the
sphere. Therefore, in this paper we propose that the nodes
(basic blocks) of the control flow graph should be subdi-
vided into subnodes after each instruction classified as out-
SoR (Fig. 5).

3.2 Generic Hardening Core - GH-Core
The GH-Core has two main components: the hardener and
the ISS.

Node 1

I1: ______

I2: ______

I3: STORE

I4: ______

I5: ______

Node 1

I1: ______

I2: ______

I3: STORE

I4: ______

I5: ______

Subnode 1

Subnode 2

Figure 5: Subnodes

The hardener is based on the Microprocessor Generic Ar-
chitecture. It is comprised of an Application Programming
Interface (API) of hardening routines typical from software-
based techniques algorithms. Developing new hardening al-
gorithms is a task significantly easier by using this API.

The available options in the hardener able the designer to de-
cide which technique will be applied, which is the replication
level to be used in redundant instructions (i.e. duplication,
triplication), which is the preferred recovery procedure to
use (i.e. among different implementations of majority vot-
ers, in case of recovery techniques, or routines to be applied
when a fault is detected). In this way, the hardener offers
a complete control to the user and produce a new protected
version of the GIF (HGIF).

Also, the hardener allows to design the hardening strategy
by means of partial application of one or more software-
based techniques. In case the tool is hardening a program
and find that there are not enough available resources to
keep adding redundancy (e.g. there are not enough registers
to replicate), then the process continue without hardening
until some resources are released. Furthermore, the selective
hardening can be controlled by the designer, being able to
determine which resources must be hardened. This feature
permits to quickly explore the design space provided by the
technique, obtaining a set of hardened versions to evaluate
and determine their code overhead, performance degrada-
tion and reliability level.

The ISS has two main functionalities. On one hand, it as-
sists the designer in the implementation of new software-
based techniques. On the other hand, the ISS performs
different analyses on the original and hardened GIF, and
generates useful information to aid the designer in the co-
design process.

As usual for the instruction simulators, the ISS presents in-
formation about the state of the resources of the architecture
during and after the simulation process. Likewise, the tool
allows to verify if the functionality of the hardened programs
matches the original non-hardened programs functionality.
This is possible by means of the check-hardening option
that use information stored in the source code through a
compiler pragma to know which the expected results are.

After the simulation process, the ISS presents a brief sum-
mary to inform the code and execution time overheads of the
applied hardening technique. Also, it performs a characteri-
zation of the simulated programs, informing the percentage
of executed instructions by its type: arithmetic, logical, con-
trol flow, etc.

Moreover, in order to evaluate the reliability provided by
the applied techniques, the ISS is also able to inject SEUs
during the simulation by means of bit-flips into the registers
bits. The effect of the fault on the final outputs of the pro-
gram are classified as was mentioned in Section 2: unACE,
SDC and Hang.

The reliability results offered by the ISS are only prelimi-
nary estimations, because the simulation at this level does
not take into account the micro-architectural details of the
target microprocessor (for example, the user-hidden register
such as those ones in pipeline). However, this is an useful
information for tuning the hardening strategy and compar-
ing different techniques. In order to obtain more realistic
results, a hardware SEU -emulation tool is included to the
infrastructure.

3.3 SEU-Emulation tool: FTUnshades
The FTUnshades system, described in [15], is a FPGA-based
platform for the study of digital circuit reliability against
radiation-induced soft errors. SEU affecting the circuit are
emulated by inducing bit-flips in the circuit under study, by
means of partial reconfiguration.

The system is composed of a FPGA emulation board and a
suite of software tools for design preparation, testing of the
emulated design, and analysis of the test results. The main
software of the suite is the FTUnshades Test aNalysis Tools
(TNT) program, which manages the communications with
the board, the partial reconfiguration and the test campaign
execution.

In the original version of FTUnshades, two instances of the
circuit or module under test (MUT) are instantiated in the
implemented design: Target and Gold. Faults are injected
over the Target instance, whereas the Gold instance remains
unchanged for comparison purposes.

The system has been extended for the study of microproces-
sor architectures. An exhaustive description of this exten-
sion can be found in [10]. Instead of two instances of the
MUT (Gold and Target), the implemented design has just
one instance of the MUT (Target), and the Golden instance
is substituted by a Smart Table (see Fig. 6). This is needed
because the typical cycle-by-cycle comparison would classify
as output error the effect of faults that could be corrected if
the Target microprocessor was given more processing time.
The exact additional time, measured in clock cycles, that the
affected microprocessor needs to output the correct value is
called recovery time.

The Smart Table is an automaton which implements the
relaxed time restrictions needed for the fault injection test-
ing of microprocessors that implement software-based tech-
niques.

The Smart Table can be configured in emulation-time (this
is, after synthesis, implementation and FPGA programming).
First, the Smart Table must be configured with the outputs
of a Golden Run of the Target microprocessor. This means a
whole emulation of the circuit processing workload is done,
but without injecting any bit-flips. When being configured
during a Golden Run, the Smart Table not only memorizes

Target MUT

COUNTER

COUNTER

SMART
CONTROLLER

Inputs

Outputs

COMP

Figure 6: FTUnshades implementation approach us-
ing Smart Table

the sequence of the correct outputs, but also the time (in
clock cycles) where the outputs change.

After filling the Smart Table with the [expectedOutput, ex-
pectedCycle] duplets, the most important parameter the user
must configure is the critical recovery time (Tcrit), which is
the maximum recovery time allowed for the microprocessor.
This means that if the microprocessor outputs the correct
value in expectedCycle + Tcrit cycles, the fault is classified
as producing no damage. But if expectedCycle + Tcrit +
1 clock cycles have passed and the microprocessor has not
output any value yet, the Smart Table classifies the fault
as producing timeout. Note that, since the emulation stops
at this moment, timeout can mean either that the program
execution has frozen, or that the damage is so bad that the
hardening technique cannot recover the correct values after
Tcrit + 1. Since we want to relax the time restrictions of the
test, but we want the output data sequence to be correct,
if the microprocessor outputs a wrong value (Output != ex-
pectedOutput) before expectedCycle + Tcrit + 1, the fault is
classified as producing output damage.

4. CASE STUDY
To assess the effectiveness of our infrastructure, we devel-
oped a compiler front-end and back-end for PicoBlaze micro-
processor. This is an 8 bit soft-micro widely used in FPGA-
based embedded systems. It supports the following main
features: 16 byte-wide general-purpose data registers, 1K
instructions of programmable on-chip program store, byte-
wide Arithmetic Logic Unit (ALU) with CARRY and ZERO
indicator flags and 64-byte internal scratchpad RAM. The
PicoBLaze assembler uses the KCPSM3 syntax [5].

The PicoBlaze front-end takes the original KCPSM3 source
code, performs lexical, syntactical and semantical analyses,
and finally generates a GIF as output. It is worth noting
that our PicoBlaze compiler front-end is a multiplatform
tool that provides a very accurate error localization, com-
pared with any other PicoBlaze compiler (including the of-
ficial KCPSM3 compiler).

After the hardening process, it is produced a HGIF, which
is taken by the developed compiler back-end for PicoBlaze,
transforming the flow back to the KCPSM3 syntax.

As part of the case study, we have implemented three software-

based fault recovery techniques. These techniques are based
on the well known Triple Modular Redundancy (TMR) ap-
proach. Two of them are aimed to protect specially arith-
metic and logic instructions within a program, whereas the
third one is an adaptation of an overall technique proposed
by Reis et al. [25], the so called SWIFT-R.

First implemented strategy, called TMR1, can be summa-
rized as follows.

1. First step is the identification of nodes (basic blocks)
and subnodes in the program.

2. Build the flow control graph of the program.

3. Triplication of the desired instructions (in this case,
arthmetic and logic instructions). Redundant instruc-
tions must operate using redundant register copies.

4. Insertion of majority voters and recovery procedures
for protected registers at the following points: just
before the last instruction of each node/subnode and
also, just before any instruction being the destination
of a jump or function call.

5. Release redundant register copies after each majority
voter inserted. Once the registers value’s correctness
has been verified, its copies can be released.

6. Optionally, during the hardening process, additional
majority voters and recovery procedures can be dy-
namically inserted in case there are not enough avail-
able registers to replicate. By means of this, registers
copies will be released to continue with the hardening
process.

Second implemented technique is called TMR2. It consists of
detect and correct faults in the program data by computing
the values twice and recomputing a third time if a discrep-
ancy between the first two values occurs. This technique, in
the same way that TMR1, is only applied to arithmetic and
logic instructions.

Fig. 7 shows an example of the hardening of a simple pro-
gram (KCPSM3 syntax) using TMR1 and TMR2.

add s0, 3F

store s0, 10

load S1, s0 ; Copy

load S2, s0 ; Copy

add s0, 3F

add S1, 3F ; Redundant

add S2, 3F ; Redundant

compare S0, S1 ; Voter

jump Z, 008 ; Voter

load S0, S2 ; Recovery

store s0, 10

load S1, s0 ; Copy

load S2, s0 ; Copy

add s0, 3F

add S1, 3F ; Redundant

compare S0, S1 ; Voter

jump Z, 008 ; Voter

add S2, 3F ; Redundant

load S0, S2 ; Recovery

store s0, 10

TMR1 TMR2

Original version

Figure 7: Hardened program using TMR1 and
TMR2

SWIFT-R is an overall technique aimed to protect the regis-
ters values. Our adaptation of this method can be explained
as follows.

1. Just like in TMR1, it is necessary to identify the nodes
and subnodes of the program and build its flow control
graph.

2. The first time that a data enters to the SoR must
by triplicated. In this case, the SoR does not in-
clude the memory subsystem because it is assumed
that the memory already has its own protection mech-
anisms [25]. So, for every instruction type classified
as inSoR (read input ports, read from memory, load
a value into a register), there will be created two ad-
ditional copies. These copies always will be created
using LOAD instructions to avoid additional memory
or ports accesses.

3. Triplication of the operations using redundant copies.
Replicated instructions are those ones whose type is
one of the following: arithmetic, logic, shift/rotate.

4. Check the consistency of the data involved on the fol-
lowing instructions (by inserting majority voters and
recovery procedures before execute them):

• outSoR instructions. These ones cause that the
data stored in a register leaves the SoR (store into
a memory position or write into an output port).

• Those instructions located just before a condi-
tional branch. This verification is necessary be-
cause these instructions affect the flags and if the
register value has been corrupted maybe the re-
sultant flag state so has it, provoking a branch to
an erroneous node in the flow control graph.

5. Redundant registers only can be released in the follow-
ing situations:

• If the register won’t be used anymore in the pro-
gram.

• If next time the register is used is overwritten.
Note this condition imply a detailed analysis to
the flow control graph to avoid consistency loss.

While TMR1 keeps register copies only until a check point
occurs, SWIFT-R maintains those copies longer, until they
are not needed anymore.

Two experiments were performed in the case study. The
first one is aimed to the evaluation of the implemented tech-
niques by means of applying the software-only techniques to
a benchmark suite. On the other hand, a second experiment
has been proposed to show the infrastructure possibilities in
the fault-tolerant co-design field.

The benchmark suite used in the experiments is made up of
the following test programs: bubble sort (bub), scalar divi-
sion (div), Fibonacci (fib), greatest common divisor (gcd),
matrix addition (madd), matrix multiplication (mmult), sca-
lar multiplication (mult) and exponentiation (pow).

4.1 Evaluation of software-based techniques
Using the proposed infrastructure, it has been automati-
cally hardened every test program applying the three soft-
ware techniques. Although, these techniques provide mech-
anisms to protect both the control flow and the data, only
the second was enabled because the memory restrictions of
PicoBlaze. Therefore, for this case, the flags register and

program counter (PC) are the firsts candidates to be hard-
ened using hardware redundancy. Fig. 8 presents the code
overhead results, whereas Fig. 9 shows the execution time
overhead results, both figures normalized to a baseline with
the non-hardened version.

1,0

1,5

2,0

2,5

3,0

3,5

bub div fib gcd madd mmult mult pow GeoMean

N
or

m
al

iz
e

d
Co

de
 O

ve
rh

e
ad

TMR1 TMR2 SWIFT-R

Figure 8: Normalized Code Overhead

1,0

1,5

2,0

2,5

3,0

3,5

bub div fib gcd madd mmult mult pow GeoMean

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

O
ve

rh
ea

d

TMR1 TMR2 SWIFT-R

Figure 9: Normalized Execution Time Overhead

TMR1 and TMR2 present almost the same impact over the
code, the geometric mean (calculated across all benchmarks)
of their normalized code overhead is×2.52 and×2.58 respec-
tively. While SWIFT-R has a slightly higher code overhead
of ×2.97. However, regarding Fig. 9, notice that SWIFT-
R offers the lowest impact over the execution time (×2.37),
whereas TMR1 and TMR2 cause a performance degrada-
tion of ×2.81 and ×2.54 respectively. These overhead anal-
yses can motivate important design decisions, e.g if one of
the evaluated techniques provoke unsuitable overheads, ac-
cording with the requirements of a specific application.

The following experimental setup has been configured to as-
sess the reliability offered by the techniques. For each bench-
mark (original and hardened versions) were performed 5.200
executions in the ISS. According to the fault model, there
was only one SEU simulated during each program’s run.
Fault was simulated by a bit-flip in a randomly selected bit
from the microprocessor registers bank (16 byte-wide regis-
ters for PicoBlaze) during the program execution. Fig. 10
shows the fault percentages for every benchmark.

In average the unACE percentages are: 83.95% for non-
hardened version, 85.68% for TMR1, 84.44% for TMR2 and
94.77% for SWIFT-R. This means that these percentages of

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C

bub div fib gcd madd mmult mult pow Average

Pe
rc

en
ta

ge
 [

%
]

unACE SDC Hang

Figure 10: Fault classification percentages for non-
hardened version (0), TMR1 (A), TMR2 (B),
SWIFT-R (C) using the ISS

the injected faults do not provoke any undesirable behavior
and can be considered an estimation of the fault coverage
offered by the techniques. Note that TMR1 and TMR2
do not offer a considerably fault tolerance increase, whereas
SWIFT-R does.

Next, the FTUnshades SEU -emulation tool was used to
evaluate the real system running all the benchmarks. The
system was implemented using the official Xilinx PicoBlaze
netlist. The fault injection campaign was equal to the used
for the ISS : 5.200 SEUs injected (one per run) during a ran-
domly selected clock cycle in a randomly selected bit of the
register file. For all the test Tcrit was defined as 20 clock cy-
cles, giving to the microprocessor 20 more clock cycles than
the usual time usual to recover the system to a fault-free
state.

Fig. 11 shows the results obtained for each version of the
system, by using the FTUnshades. Results have been clas-
sified in the same way as with the ISS evaluation. In this
case the average fault coverage offered by the methods are:
89.50% for non-hardened version, 90.56% for TMR1, 89.77%
for TMR2 and 96.59% for SWIFT-R. As it can be seen
these results confirm the hypotheses expressed during the
preliminar reliability evaluation with the ISS. Although the
FTUnshades percentages are slightly higher than those ones
obtained with the ISS, they maintain the same tendencies.

Reliability results jointly with overhead results must be taken
into account in the next decisions about system design, rep-
resenting several trade-offs among code size, performance
and reliability. For instance, if execution time is critical,
it is necessary to discard some approaches, selecting those
ones that meet the performance constraints, for further fault
coverage improvements.

4.2 Co-design Space Exploration
Using the proposed infrastructure it is possible to follow
different co-design strategies depending on the systems re-
quirements. Generally such requirements can be directly

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C 0 A B C

bub div fib gcd madd mmult mult pow Average

Pe
rc

e
nt

ag
e

 [
%

]

unACE SDC Hang

Figure 11: Fault classification percentages for non-
hardened version (0), TMR1 (A), TMR2 (B),
SWIFT-R (C) using the FTUnshades

a system constraint (silicon area, performance, power con-
sumption,. . .) or may target any kind of fault tolerance
metrics associated to a specific application (fault coverage,
recovery time,. . .). Anyway, in order to demonstrate the
infrastructure possibilities, an in deep analysis of the ma-
trix multiplication algorithm running on PicoBlaze was per-
formed.

Not only applying different software-only techniques is pos-
sible within the proposed hardening compiler, but also it
is possible to apply a specific technique in a selective way.
In this case study, an optimized version of the mmult has
been written and incrementally hardened, by applying the
SWIFT-R technique to several sets of selectively-chosen reg-
isters. For example, in the hardened version obtained with
the set 0 − A − E, only these registers are protected. Note
that the sixteen PicoBlaze registers are numbered from 0 to
F (hex).

Fig. 12 shows the overheads results for each one of the
selectively hardened versions of mmult. These results are
normalized with a baseline built with the optimized non-
hardened version.

As for the benchmark suite, a similar fault injection cam-
paign has been performed using the ISS to assess the re-
liability of each one of the selectively hardened versions of
mmult. Results are depicted in Fig. 13.

In the same way, the hardware of the system have been im-
plemented for all the software hardened versions. The relia-
bility of the systems has been tested using the FTUnshades
by means of a fault injection campaign designed using the
same features as for the benchmark suite test campaign. Ob-
tained results using FTUnshades are presented in Fig. 14.

Once again, comparing the reliability results maintain the
same tendencies and their differences are sustained by the
explanations given in Section 3.2 when the ISS was pre-
sented.

1,0

1,5

2,0

2,5

3,0

3,5
N

o
rm

al
iz

e
d

 O
ve

rh
e

ad
s

Code Overhead Execution Time Overhead

Figure 12: Normalized Code and Execution Time
Overheads for mmult selective hardened versions

70%

75%

80%

85%

90%

95%

100%

N
o

n
e 0 A D E F

0
-D 0
-E

A
-E

A
-F

D
-E

0
-D

-E

0
-A

-E

A
-E

-F

A
-D

-E
-F

0
-A

-D
-E A
ll

mmultM

P
e

rc
e

n
ta

ge
 [%

]

Hang

SDC

unACE

Figure 13: Fault classification percentages for mmult
selective hardened versions using the ISS

Analyzing overheads results together with reliability ones
is a very important key because it permits the designer to
find out several possible combinations of the protections ap-
plied to the software, in order to decide which parts of the
system will be hardened in this way, and which others is
better to protect by means of redundant hardware. In this
case, it is worth noting for example, that the hardened ver-
sion provided applying SWIFT-R only to the register set
A−D−E−F would be an interesting choice from the soft-
ware side, because it offers high reliability (98.18% are un-
ACE faults in FTUnshades) and at the same time, its code
and execution time overheads results are acceptable, ×1.79
and ×1.70 respectively. However, these decisions must be
strictly connected with the requirements of every specific
application.

Comparing the obtained results using the ISS and the FTUn-
shades may appear to be unnecessary to use the hardware
SEU -emulator. However, it is essential to assessing the final
system after applying hardware-based hardening techniques,
which in this case study have not been included.

5. CONCLUSIONS AND FUTURE WORK

70%

75%

80%

85%

90%

95%

100%

N
o
n
e 0 A D E F

0
-D 0
-E

A
-E

A
-F

D
-E

0
-D
-E

0
-A
-E

A
-E
-F

A
-D
-E
-F

0
-A
-D
-E A
ll

mmultM

Pe
rc

en
ta

ge
 [

%
]

Hang

SDC

unACE

Figure 14: Fault classification percentages for mmult
selective hardened versions using the FTUnshades

This paper presents a compiler–based hardening infrastruc-
ture able to lead the co-design of fault-tolerant hardware/software
systems.

The overall infrastructure facilitates the exploration of the
design space between hardware-only and software-only fault
tolerant techniques.

As a trade–off between accuracy and flexibility we calculate
the fault–coverage with both an Instruction Set Simulator
and a SEU emulation tool.

The advantages of the resultant mixed hardware/sofware
implementation are illustrated by means of an exhaustive
case study. In this context a compiler front–end for the well-
known PicoBlaze soft-micro have been developed, as well as
a sort of fault–redundant techniques to assess the different
fault–coverage when applied.

It has been depicted a novel co–design space exploration
strategy by means of a selective application of the fault tol-
erance techniques on different microprocessor resource sets
of interest (mainly general purpose registers).

As a result, this new strategy suggests the implementation
of automatic co–hardening tasks within the presented plat-
form and opens up interesting new boundaries in space ex-
ploration. As future work, the hardening development envi-
ronment will be extended to support 32-bit soft-core micro-
processors, such as Xilinx’s MicroBlaze and LEON3.

6. ACKNOWLEDGMENTS
This work makes part of RENASER project (ESP2007-65914-
C03-03) funded by the 2007 Spain Research National Plan of
the Ministry of Science and Education in which context this
work has been possible. The work presented here has been
carried out thanks to the support of the research project
‘Aceleración de algoritmos industriales y de seguridad en
entornos cŕıticos mediante hardware’ (GV/2009/098) (Gen-
eralitat Valenciana, Spain).

7. REFERENCES

[1] T. Austin. DIVA: A reliable substrate for deep
submicron microarchitecture design. In 32nd Annual
International Symposium on Microarchitecture,
(MICRO-32), pages 196–207, 1999. Haifa, Israel, Nov
16-18, 1999.

[2] R. Baumann. Soft errors in commercial semiconductor
technology: Overview and scaling trends. IEEE 2002
Reliability Physics Tutorial Notes, Reliability
Fundamentals, page 121, April 2002.

[3] R. Baumann. Radiation-induced soft errors in
advanced semiconductor technologies. IEEE Trans. on
Device and Materials Reliability, 5(3):305–316, Sept
2005.

[4] P. Bernardi, L. Bolzani, M. Rebaudengo, M. Reorda,
F. Vargas, and M. Violante. A new hybrid fault
detection technique for systems-on-a-chip. IEEE
Transactions on Computers, 55(2):185–198, Feb 2006.

[5] K. Chapman. PicoBlaze KCPSM3. 8-bit Micro
Controller for Spartan-3, Virtex-II and Virtex-II Pro.
Xilinx Ltd., 2003. October 2003.

[6] DoD. MIL-HDBK-817, Military Handbook System
Develop Radiation Hardness Assurance. Technical
report, Department of Defense. USA, 1994.

[7] R. Edwards, C. Dyer, and E. Normand. Technical
standard for atmospheric radiation single event effects
(SEE) on avionics electronics. In IEEE Radiation
Effects Data Workshop (REDW), pages 1–5. IEEE,
2004.

[8] ESA. The Radiation Design Handbook ESA
PSS-01-609. Technical report, European Space
Agency, 1993.

[9] M. Gomaa, C. Scarbrough, T. Vjaykumar, and
I. Pomeranz. Transient-fault recovery for chip
multiprocessors. IEEE MICRO, 23(6):76–83, Nov-Dec
2003.

[10] H. Guzman-Miranda, M. Aguirre, and J. Tombs.
Noninvasive fault classification, robustness and
recovery time measurement in microprocessor-type
architectures subjected to radiation-induced errors.
IEEE Transactions on Instrumentation and
Measurement, 58(5), May 2009.

[11] IEC. IEC/TS 62396-1. Technical report, International
Electrotechnical Commission, March 2006.

[12] A. Mahmood and E. McCluskey. Concurrent
error-detection using watchdog processors - a survey.
IEEE Transactions on Computers, 37(2):160–174,
FEB 1988.

[13] MISRA. MISRA-C:2004 Guidelines for the use of the
C language in critical systems. Motor Industry
Software Reliability Association, 2004.

[14] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed
design and evaluation of Redundant Multithreading
alternatives. In 29th Annual International Symposium
on Computer Architecture, pages 99–110, 2002.
Anchorage, AK, May 25-29, 2002.

[15] J. Napoles, H. Guzman, M. Aguirre, J. Tombs,
F. Munoz, V. Baena, A. Torralba, and L. Franquelo.
Radiation environment emulation for VLSI designs A
low cost platform based on xilinx FPGAs. In IEEE
International Symposium on Industrial Electronics,
ISIE 2007, 2007.

[16] N. Oh, S. Mitra, and E. J. McCluskey. (EDI)-I-4:

error detection by diverse data and duplicated
instructions. IEEE Transactions on Computers,
51(2):180–199, 2002.

[17] N. Oh, P. Shirvani, and E. J. McCluskey. Control-flow
checking by software signatures. IEEE Transactions
on Reliability, 51(1), 2002.

[18] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error
detection by duplicated instructions in super-scalar
processors. IEEE Transactions on Reliability, 51(1),
2002.

[19] T. Parr. ANTLR - ANother Tool for Language
Recognition. http://antlr.org, Sep 2009. Internet.

[20] M. Rebaudengo, M. S. Reorda, and M. Violante. A
new software-based technique for low-cost
Fault-Tolerant application. Annual Reliability and
Maintainability Symposium, 2003 Proceedings, pages
25–28, 2003.

[21] M. Rebaudengo, M. S. Reorda, and M. Violante. A
new approach to software-implemented fault tolerance.
Journal of Electronic Testing-Theory and
Applications, 20(4):433–437, 2004.

[22] M. Rebaudengo, M. S. Reorda, M. Violante, and
M. Torchiano. A source-to-source compiler for
generating dependable software. First IEEE
International Workshop on Source Code Analysis and
Manipulation, Proceedings, pages 33–42, 2001.

[23] S. Reinhardt and S. Mukherjee. Transient fault
detection via simultaneous multithreading. In 27th
International Symposium on Computer Architecture,
pages 25–36, 2000. Vancuver, Canada, Jun 12-14,
2000.

[24] G. Reis, J. Chang, N. Vachharajani, S. Mukherjee,
R. Rangan, and D. August. Design and evaluation of
hybrid fault-detection systems. In 32nd International
Symposium on Computer Architecture, Proceedings,
pages 148–159, 2005. Madison, WI, Jun 04-08, 2005.

[25] G. A. Reis, J. Chang, and D. I. August. Automatic
instruction-level software-only recovery. IEEE Micro,
27(1):36–47, 2007.

[26] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan,
and D. I. August. SWIFT: software implemented fault
tolerance. CGO 2005: Int Symposium on Code
Generation and Optimization, pages 243–254, 2005.

[27] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan,
D. I. August, and S. S. Mukherjee.
Software-Controlled fault tolerance. ACM
Transactions on Architecture and Code Optimization,
Vol. V:1–28, 2005.

[28] F. Restrepo-Calle, A. Mart́ınez-Álvarez,
S. Cuenca-Asensi, F. Palomo, and M. Aguirre.
Hardening development environment for embedded
systems. 2010. In the 2nd HiPEAC Workshop on
Design for Reliability (DFR’10) held in conjunction
with The 5th Int. Conf. on High Performance and
Embedded Architectures and Compilers. Pisa, Italy,
Jan 25-27, 2010.

[29] P. Samudrala, J. Ramos, and S. Katkoori. Selective
triple modular redundancy (stmr) based single-event
upset (seu) tolerant synthesis for fpgas. IEEE
Transactions on Nuclear Science, 51(5), Oct. 2004.

[30] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on

the soft error rate of combinational logic. In
International Conference on Dependable Systems and
Networks, Proceedings, pages 389–398, 2002.

[31] T. Vijaykumar, I. Pomeranz, and K. Cheng.
Transient-fault recovery using simultaneous
multithreading. In 29th Annual International
Symposium on Computer Architecture, pages 87–98,
2002. Anchorage, AK, May 25-29, 2002.

