Alternative approach to fit irregular corneas

Julián Espinosa Tomás
Alternative approach to fit irregular corneas

Collaborators
Jorge Pérez
David Mas
Carmen Vázquez
Carlos Illueca

Funding
This work has been partially financed by the project GV/2009/002 of the Conselleria d’Educació of the Generalitat Valenciana
Background

Scheimpflug cameras and topographers based in Placido rings permit accurate estimation of corneal surfaces
Background

Corneal height data ➔ Model ➔ Wavefront analysis

- Zonal approach.
 - B-Splines
 - Well suited for fitting complex-shaped surfaces
 - Not related with aberrations

- Modal approach.
 - Zernike polynomials
 - Direct relation with Seidel aberrations
 - Not precise when describing highly irregular corneas
COMBINATION
ZONAL + MODAL approaches

Zonal Zernike fitting of corneal height data

Zernike coefficients computed in overlapping local areas

- Diminishing the influence of smooth areas over irregular zones and vice versa.
- Limiting the influence of the peripheral irregularities over the central corneal area, thus giving accurate reconstruction of the central optical zone.
Modal approach. Zernike polynomials

\[W(x_u, y_v) \approx \sum_{j=0}^{p-1} c_j Z_j(x_u, y_v) \]

Least-squares method

\[C = \left(Z^T Z \right)^{-1} Z^T W \]
Least-squares method

$$W(x_u, y_v) \approx \sum_{j=0}^{p-1} c_j Z_j(x_u, y_v)$$

$$C = \left(Z^T Z \right)^{-1} Z^T W$$

Modal approach. Zernike polynomials

$$Z = \begin{bmatrix} \sum_{j=0}^{p-1} Z_j(x_1, y_1) & \ldots & \sum_{j=0}^{p-1} Z_j(x_n, y_1) \\ \ldots & \ldots & \ldots & \ldots \\ \sum_{j=0}^{p-1} Z_j(x_1, y_n) & \ldots & \sum_{j=0}^{p-1} Z_j(x_n, y_n) \end{bmatrix}$$
Zonal Zernike fitting

Auxiliary $a \times b$ matrices of size $N \times N$, unmasking $M \times M$ zone

$$W_{a,b}(u,v) \simeq \begin{cases} \sum_{j=0}^{p-1} c_{j}^{(a,b)} Z_{j} \left(\rho_{(u,v)}, \theta_{(u,v)} \right); \\ 0; \end{cases}$$
Zonal Zernike fitting

Modal

Modal+Zonal

(NxN)

(MxM)

One point of the surface may belong to different local regions
Zonal Zernike fitting

Reconstructed surface: Mean at each point

\[L(u, v) = \frac{\sum_{a=1}^{N-(M-1)} \sum_{b=1}^{N-(M-1)} W_{a,b}(u, v)}{\sum_{a=1}^{N-(M-1)} \sum_{b=1}^{N-(M-1)} O_{a,b}(u, v)} \]

Points in the central zone are evaluated \(M^2 \) times

\(M = 21 \text{ px} \Rightarrow 441 \text{ times} \)
Zonal Zernike fitting

Number of elements in the central zone

\[f_N(M) = M^2 \left[N - 2(M - 1) \right]^2 \]

From the derivative:

\[M_{opt} = \text{round} \left(\frac{N+2}{4} \right) \]
Results

- Height data analysis of surfaces.
 - Irregular surface
 - Keratoconus from Pentacam

Root mean square deviation (RMSD)

\[RMSD = \sqrt{\frac{\sum_{i=1}^{N'} (w_i - g_i)^2}{N'}} \]

- Validate \(M_{\text{opt}} \). Two masks of different sizes
Irregular surface: Sphere+Franke’s function

\[fr(x, y) = \frac{3}{4}\exp\left[\frac{-\left((9x - 2)^2 + (9y - 2)^2\right)}{4}\right] + \frac{3}{4}\exp\left[\frac{-\left((9x + 1)^2 + (9y + 1)^2\right)}{49} + \frac{(9y + 1)^2}{10}\right] + \frac{1}{2}\exp\left[\frac{-\left((9x - 7)^2 + (9y - 3)^2\right)}{4}\right] + \frac{1}{5}\exp\left[\frac{-\left((9x - 4)^2 + (9y - 7)^2\right)}{10}\right]\]
RMSD Sphere+Franke’s function

Pupil diameter = 4 mm \(N=41 \Rightarrow M_{\text{opt}}=11 \)
Differences Sphere+Franke’s function

Modal: difference with 120 Zernike polynomials

Zonal mask 21 px: difference with 96 Zernike polynomials

Zonal mask 11 px: difference with 43 Zernike polynomials
Real irregular surface: Keratoconus

Keratoconus height data - sphere
RMSD keratoconus

Pupil diameter = 4 mm \(N=41 \Rightarrow M_{\text{opt}}=11 \)
Differences keratoconus

Modal: difference with 178 Zernike polynomials

Zonal mask 21 px: difference with 196 Zernike polynomials

Zonal mask 11 px: difference with 217 Zernike polynomials
Conclusions

- Better results than modal fit for low order Zernike polynomials.
- The central surface part is better evaluated than the outer parts, since calculation is more intensive in this zone and not affected by peripheral irregularities.
- Diminishes the influence of smooth areas over irregular zones and vice versa.
http://web.ua.es/es/ocivis/