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Abstract: The study of new catalytic protocols for the synthesis of organic compounds with a more
sustainable perspective is of interest. The use of ionic organic solids, such as 1,3-bis(carboxymethyl)
imidazolium chloride as a catalyst has allowed the Michael addition of N-heterocycles to chalcones.
This methodology has been applied to the unique preparation of the potential bioactive compound
1-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one with moderate
yield, due to the retro-Michael reaction. Both synthetic reactions (i.e., preparation of chalcone and
triazole Michael-addition to chalcone) have good green metrics.
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1. Introduction

Nitrogen-containing heteroarene units are usually present in natural products and biolog-
ically active synthetic compounds [1,2], being important as bioactive compounds due to their
stability and ability to bind “privileged structures” through hydrogen-bonding [3]. Triazole
derivatives produce a variety of biological effects [4,5], due to their structural characteristics
that make it easier to bind with target molecules. Among them, β-azolyl ketones consti-
tute a family of compounds of potential interest [6]. Thus, 3-aryl-3-triazolylpropiophenones
have been described as efficient components in fungicide, bactericide, and herbicide
formulations [7,8].

The synthesis of β-heteroarylated carbonyl compounds is of interest, and it can be
achieved through (a) reaction between ketones, formaldehyde and N-heterocycles [9],
(b) nucleophilic substitution of β-chloro or β-(dialkylammonium) ketones with nitrogen
heterocycles [10,11], or (c) conjugate addition of N-heterocycles to α,β-unsaturated ke-
tones [12–14]. Among them, the aza-Michael reaction constitutes a synthetic tool of great
importance [15], being the best atom-efficient synthetic protocol. This type of transforma-
tion provides access to β-aminocarbonyl derivatives as valuable precursors of bioactive
compounds. The aza-Michael reaction can be carried out in the absence of a catalyst for
certain activated nucleophiles and alkenes. However, the use of catalysts has made it
possible to extend the scope of the reaction. Thus, this type of addition has been achieved
under both acidic and basic conditions, using organocatalysts, metal salts or transition
metal complexes [15]. There are several protocols with a fair scope in the addition of
nitrogen-centered nucleophiles to activated alkenes, although in the case of chalcones, only
aromatic amines have been successfully added [16,17]. Thus, the addition of N-heterocyclic
compounds to chalcones has a particular interest, being a less considered transformation.
In addition, the intrinsic feature of the reaction being equilibrated through retro-Michael
makes the study of this synthetic process of special interest [18].

Our research group has been developing catalytic processes that allow the synthe-
sis of compounds in a more sustainable manner. Thus, we have been working on the
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use of ionic organic solids (IOS) as a catalyst in the absence of solvents in different syn-
thetic transformations to prepare compounds of potential interest [19,20], such as allyl-
substituted anilines, allyl-substituted N-heterocycles, quinolines, acridines, and thiophenes.
Based on that, we have postulated the possibility of using an ionic organic solid (IOS),
such as 1,3-bis(carboxymethyl)imidazolium chloride, as a catalyst to carry out an aza-
Michael process between chalcones and N-heterocycles in the absence of solvents [21].
Preliminary studies have led to the preparation of the 1,3-diaryl-3-triazolylpropan-1-one
described herein.

2. Results and Discussion

The preparation of chalcones can be straightforwardly achieved from an aromatic
aldehyde and an acetophenone in the presence of a basic catalyst. To perform the process
in a more sustainable way, we focused on carrying out the reaction in the absence of any
solvent, considering montmorillonite [22] and sodium hydroxide [23] as catalysts. Based
on previous studies, we selected NaOH due to the possibility of carrying out the process at
room temperature with a much better outcome [21]. Thus, the 1-(3,4-dimethoxyphenyl)-
3-(4-methoxyphenyl)prop-2-enone (1) was prepared by mixing 4-methoxybenzaldehyde
and 3,4-(dimethoxy)phenyl methyl ketone in the presence of a catalytic amount of sodium
hydroxide (Scheme 1), via a mechanochemical process. Moreover, the product was isolated
through simple recrystallization in ethanol, avoiding purification for better environmental
impact [24]. Indeed, the E-factor for the whole process is 8.4, being the main part of
waste due to the solvent (ethanol) employed for recrystallization. It is worth noting that
ethanol can be partially recovered producing a reduction of the E-factor to a value of 2.1.
Moreover, this procedure has an atom economy (AE) value of 0.94 and a stoichiometric
factor (SF) of 1 (see Supplementary Materials), since the reactants are employed in the
proper stoichiometric ratio and there is only one equivalent of water as a byproduct.
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Scheme 1. Preparation of chalcone 1 by mechanochemical reaction.

Based on our experience employing 1,3-bis(carboxymethyl)imidazolium (bcmim-Cl)
chloride as a catalyst in different transformations [19] since it enables the establishment of
favorable interactions with the reagents facilitating the process in the absence of solvent, the
study of this catalyst (bcmim-Cl) for the 1,4-addition of nitrogen-containing heterocycles
to chalcones was proposed. As expected, a preliminary study performed in our laboratory
showed that the reaction of chalcones with pyrazoles and triazoles as nucleophiles in the
presence of catalyst bcmim-Cl under solvent-free conditions resulted in the formation of the
corresponding 1,3-diaryl-3-(azol-1-yl)propan-1-one, although in moderately low yields [21].
A possible activation of the reagents by bcmim-Cl (Scheme 2) would approximate them
to react in the absence of solvents. The proposed interactions are like those favoring the
formation of eutectic mixtures [25–27].

Despite the moderate yields, the protocol has allowed the obtention of compounds of
interest due to their potential bioactivity. The addition of 1,2,4-triazole to chalcone 1 resulted
in the formation of a new compound 2. Thus, the reaction was performed by heating both
reagents in the presence of bcmim-Cl (10 mol%) at 80 ◦C (Scheme 3), observing after the
completion of the reaction that triazole was partially sublimated causing the reaction not to
give better yields. The use of a larger amount of triazole or the modification of reaction
time and temperature did not lead to better results, and since the retro-Michael reaction
restores the starting reagents [18], it was considered that this equilibrium does not allow
better results to be obtained under the conditions studied (Scheme 2).



Molbank 2024, 2024, M1791 3 of 6
Molbank 2024, 2024, x FOR PEER REVIEW 3 of 6 
 

 
Scheme 2. Possible activation of reactants by bcmim-Cl, and equilibrium between Michael-adduct 
and reactants. 

Despite the moderate yields, the protocol has allowed the obtention of compounds 
of interest due to their potential bioactivity. The addition of 1,2,4-triazole to chalcone 1 
resulted in the formation of a new compound 2. Thus, the reaction was performed by 
heating both reagents in the presence of bcmim-Cl (10 mol%) at 80 °C (Scheme 3), observ-
ing after the completion of the reaction that triazole was partially sublimated causing the 
reaction not to give better yields. The use of a larger amount of triazole or the modification 
of reaction time and temperature did not lead to better results, and since the retro-Michael 
reaction restores the starting reagents [18], it was considered that this equilibrium does 
not allow better results to be obtained under the conditions studied (Scheme 2). 

 
Scheme 3. Preparation of compound 2 mediated by bcmim-Cl. 

The 1H-NMR and 13C-NMR analyses were recorded using deuterated chloroform 
showing evidence of the corresponding product 2 (see Supplementary Materials).. In the 
1H-NMR spectra, apart from the three singlets (3.79, 3.91, and 3,94 ppm) corresponding to 
the methoxy groups and the signals of the aromatic protons in the phenyl substituents, 
there are signals that clearly confirm the presence of the product. Thus, two broad singlets 
at 7.92 and 8.18 relate to the triazole-ring protons, three signals of double doublet corre-
spond to diastereotopic protons α to the carbonyl (3.61 and 4.33 ppm), and proton β to 
carbonyl (6.14 ppm). The 13C-NMR spectra display signals for the 18 different carbons in 
the molecule. The signal of the carbonyl carbon (194.4) is a typical value for an aromatic 
ketone without a conjugated double bond. 

Green metrics were calculated for the reaction depicted in Scheme 3 to evaluate the 
impact of this methodology (see Supplementary Materials). The protocol has perfect val-
ues of atom economy (AE = 1) and stoichiometric factor (SF = 1). Despite the moderate 
yield (38%), due to the retro-Michael, the E-factor considering the material recovered is 
10.3. Thus, the total E-factor is 53.3 but the catalyst and part of the recrystallization solvent 
can be recovered, reducing the impact of the synthetic procedure. 

3. Materials and Methods 
All commercially available reagents were purchased (Acros, Aldrich, Fluka) and used 

without further purification. Melting points were determined using a Gallenkamp capil-
lary melting point apparatus (model MPD 350 BM 2.5) and are uncorrected. 1H and 13C 

Scheme 2. Possible activation of reactants by bcmim-Cl, and equilibrium between Michael-adduct
and reactants.

Molbank 2024, 2024, x FOR PEER REVIEW 3 of 6 
 

 
Scheme 2. Possible activation of reactants by bcmim-Cl, and equilibrium between Michael-adduct 
and reactants. 

Despite the moderate yields, the protocol has allowed the obtention of compounds 
of interest due to their potential bioactivity. The addition of 1,2,4-triazole to chalcone 1 
resulted in the formation of a new compound 2. Thus, the reaction was performed by 
heating both reagents in the presence of bcmim-Cl (10 mol%) at 80 °C (Scheme 3), observ-
ing after the completion of the reaction that triazole was partially sublimated causing the 
reaction not to give better yields. The use of a larger amount of triazole or the modification 
of reaction time and temperature did not lead to better results, and since the retro-Michael 
reaction restores the starting reagents [18], it was considered that this equilibrium does 
not allow better results to be obtained under the conditions studied (Scheme 2). 

 
Scheme 3. Preparation of compound 2 mediated by bcmim-Cl. 

The 1H-NMR and 13C-NMR analyses were recorded using deuterated chloroform 
showing evidence of the corresponding product 2 (see Supplementary Materials).. In the 
1H-NMR spectra, apart from the three singlets (3.79, 3.91, and 3,94 ppm) corresponding to 
the methoxy groups and the signals of the aromatic protons in the phenyl substituents, 
there are signals that clearly confirm the presence of the product. Thus, two broad singlets 
at 7.92 and 8.18 relate to the triazole-ring protons, three signals of double doublet corre-
spond to diastereotopic protons α to the carbonyl (3.61 and 4.33 ppm), and proton β to 
carbonyl (6.14 ppm). The 13C-NMR spectra display signals for the 18 different carbons in 
the molecule. The signal of the carbonyl carbon (194.4) is a typical value for an aromatic 
ketone without a conjugated double bond. 

Green metrics were calculated for the reaction depicted in Scheme 3 to evaluate the 
impact of this methodology (see Supplementary Materials). The protocol has perfect val-
ues of atom economy (AE = 1) and stoichiometric factor (SF = 1). Despite the moderate 
yield (38%), due to the retro-Michael, the E-factor considering the material recovered is 
10.3. Thus, the total E-factor is 53.3 but the catalyst and part of the recrystallization solvent 
can be recovered, reducing the impact of the synthetic procedure. 

3. Materials and Methods 
All commercially available reagents were purchased (Acros, Aldrich, Fluka) and used 

without further purification. Melting points were determined using a Gallenkamp capil-
lary melting point apparatus (model MPD 350 BM 2.5) and are uncorrected. 1H and 13C 

Scheme 3. Preparation of compound 2 mediated by bcmim-Cl.

The 1H-NMR and 13C-NMR analyses were recorded using deuterated chloroform
showing evidence of the corresponding product 2 (see Supplementary Materials). In the
1H-NMR spectra, apart from the three singlets (3.79, 3.91, and 3,94 ppm) corresponding to
the methoxy groups and the signals of the aromatic protons in the phenyl substituents, there
are signals that clearly confirm the presence of the product. Thus, two broad singlets at
7.92 and 8.18 relate to the triazole-ring protons, three signals of double doublet correspond
to diastereotopic protons α to the carbonyl (3.61 and 4.33 ppm), and proton β to carbonyl
(6.14 ppm). The 13C-NMR spectra display signals for the 18 different carbons in the
molecule. The signal of the carbonyl carbon (194.4) is a typical value for an aromatic ketone
without a conjugated double bond.

Green metrics were calculated for the reaction depicted in Scheme 3 to evaluate the
impact of this methodology (see Supplementary Materials). The protocol has perfect values
of atom economy (AE = 1) and stoichiometric factor (SF = 1). Despite the moderate yield
(38%), due to the retro-Michael, the E-factor considering the material recovered is 10.3.
Thus, the total E-factor is 53.3 but the catalyst and part of the recrystallization solvent can
be recovered, reducing the impact of the synthetic procedure.

3. Materials and Methods

All commercially available reagents were purchased (Acros, Aldrich, Fluka) and
used without further purification. Melting points were determined using a Gallenkamp
capillary melting point apparatus (model MPD 350 BM 2.5) and are uncorrected. 1H and
13C nuclear magnetic resonance (NMR) spectra were recorded at the Research Technical
Services of the University of Alicante (SSTTI-UA; https://sstti.ua.es/en; accessed on 11
March 2024), employing a Bruker AC-300. Chemical shifts (δ) are given in ppm and the
coupling constants (J) in Hz. Deuterated chloroform (CDCl3) was used as the solvent, and
tetramethylsilane (TMS) was used as the internal standard. Low-resolution mass spectra
(LRMS) with electronic ionization (EI) were obtained with an Agilent GC/MS-5973 Network
spectrometer provided with an EI source (70 eV) and helium as mobile phase. Samples
were introduced through injection through a gas chromatograph Hewlett-Packard HP-6890,

https://sstti.ua.es/en
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equipped with a Hp-5MS column (30 m length, 0.25 mm internal diameter, and 0.25 µm
film thickness: crosslinking 5% PH ME siloxane). Detected fragmentations are given as
m/z with relative intensities in parenthesis (%). The conversion of the reactions and purity
of the products were determined through gas chromatography (GC) analysis employing a
Younglin 6100GC equipped with a flame ionization detector and a Phenomenex ZB-5MS
column (30 m length, 0.25 mm internal diameter, and 0.25 µm film thickness, crosslinking
5% PH ME siloxane) using nitrogen (2 mL/min) as the carrier gas and 270 ◦C in the injector
block. The standard injection method was 60 ◦C as initial temperature (held for 3 min)
and 15 ◦C/min until 270 ◦C (held for 10 min). Infrared (IR) spectra were recorded with an
FT-IR 4100 LE (JASCO, Pike Miracle ATR) spectrometer. Spectra were recorded from neat
samples and wavenumbers (ν) are given in cm−1.

Catalyst bcmim-Cl was prepared as previously described by our group, [19]. 1,3-
Bis(carboxymethyl)imidazolium chloride: white solid; 1H-NMR (400 MHz, D2O) δH = 8.84
(def. t, J = 1.6 Hz, 1H, NCHN), 7.47 (d, J = 1.6 Hz, 2H, CHCH), 4.87 (s, 4H, 2×CH2) ppm;
13C-NMR (101 MHz, D2O) δC = 169.7, 138.1, 123.4, 50.1 ppm.

1-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-enone (1). A mixture of 4-
methoxybenzaldehyde (2 mmol, 272 mg), 3,4-dimethoxyacetophenone (2 mmol, 360 mg)
and NaOH (40 mg) were ground in a mortar and pestle for 10 min. The product was
recrystallized with ethanol, giving a yellowish solid (83% yield). M.p. = 85–86 ◦C (EtOH;
lit. [28] 86–87 ◦C); 1H-NMR (300 MHz, CDCl3) δH = 7.81 (d, J = 15.6 Hz, 1H, ArCH),
7.71–7.60 (m, 4H, ArH), 7.45 (d, J = 15.6 Hz, 1H, COCH), 6.97–6.93 (m, 3H, ArH), 3.99 (s,
3H, CH3), 3.98 (s, 3H, CH3), 3.87 (s, 3H, CH3) ppm; 13C-NMR (101 MHz, CDCl3) δC = 188.6
(C=O), 161.5 (ArC-OMe), 153.1 (ArC-OMe), 149.2 (ArC-OMe), 143.8 (CH=CHCO), 131.6
(ArC), 130.1 (2C, ArCH), 127.8 (ArC), 122.8 (ArCH), 119.3 (CHCO), 114.4 (2C, ArCH), 110.8
(ArCH), 109.9 (ArCH), 56.1 (OCH3), 56.0 (OCH3), 55.4 (OCH3) ppm; MS (EI, 60 eV) m/z:
299 [M+ + 1] (23%), 298 [M+] (100), 297 (24), 283 (35), 268 (12), 267 (53), 255 (11), 190 (12),
165 (25), 161 (23), 133 (13).

1-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-3-(1H-1,2,4-trizaol-1-yl)propan-1-one
(2). A mixture of chalcone 1 (0.5 mmol, 150 mg), 1H-1,2,4-triazole (0.5 mmol, 35 mg), and
bcmim-Cl (0.05 mmol, 11 mg) was heated at 80 ◦C for 24 h. After reaction time, ethyl
acetate (4 mL) was added and filtered through a pad of celite to remove the catalyst. The
product was purified through recrystallization (EtOAc), giving a white solid (37% yield).
M.p. = 174–175 ◦C); ν = 3116 (arC-H), 1666 (C=O), 1585, 1511, 1257 (arC-C), 1126, 1014,
817(arC-H)) cm−1; 1H-NMR (300 MHz, CDCl3) δH = 8,18 (s, 1H, ArH), 7.92 (s, 1H, ArH),
7.62 (dd, J = 8.3, 1.9 Hz, 1H, ArH), 7.47 (d, J = 1.9 Hz, 1H, ArH), 7.39–7.34 (m, 2H, ArH),
6.91–6.87 (m, 3H, ArH), 6.14 (dd, J = 8.5, 5.1 Hz, 1H, COCH2), 4.33 (dd, J = 17.5, 8.5 Hz, 1H,
COCH2), 3.94 (s, 3H, CH3), 3.91 (s, 3H, CH3), 3.79 (s, 3H, CH3), 3.61 (dd, J = 17.5, 5.1 Hz,
1H, ArCHN) ppm; 13C-NMR (101 MHz, CDCl3) δC = 194.4 (C=O), 159.7 (ArC-OMe), 153.7
(ArC-OMe), 151.7 (NCN), 149.1 (ArC-OMe), 143.8 (NCN), 130.7 (ArC), 130.1 (ArC), 129.4
(ArCH), 128.3 (2C, ArCH), 122.9 (ArCH), 114.3 (2C, ArCH), 110.0 (ArCH), 58.8 (CH2CH),
56.1 (OCH3), 55.9 (OCH3), 55.3 (OCH3), 43.2 (CH2) ppm; MS (EI, 60 eV) m/z: 368 [M+ + 1]
(11%), 367 [M+] (44), 299 (22), 298 (100), 297 (23), 283 (3), 267 (47), 202 (67), 188 (21), 175 (25),
165 (63), 134 (38), 133 (97); elemental analysis: calcd. for C20H21N3O4, C 65.38, H 5.76, N
11.44%, found, C 64.90, H 5.90, N 11.16%.

4. Conclusions

To conclude, the efficiency of an ionic organic solid as a heterogeneous catalyst pro-
motes the addition of N-heterocycles (such as 1H-1,2,4-triazole) to chalcones in the absence
of any solvent or any additive. The protocol has been applied to the preparation of 1-
(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one, being
a compound with potential bioactivity since it is related t herbicide, fungicide, and bac-
tericide products. The synthesis proposed contains the preparation of a chalcone by a
methodology with good to excellent green metrics, and the subsequent conjugated addition
of 1,2,4-triazole presents fair values of green metrics, despite the moderate yield.
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