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Abstract: The ecological succession has been widely studied by means of biofouling assemblages
among different substrates, and mainly targeted in early stages on artificial ones. The present study
focuses on biofouling that colonizes carbonated structures, a material similar to the natural substrate
produced by the electrolysis of seawater, which is relatively very little studied. We have observed the
colonization of sessile macrofouling of the port of Alicante (SE Spain, Western Mediterranean) on two
types of substrates (electrolytic carbonated and steel) over 12 months of succession. The assemblages
of both substrates have been analyzed by means of diversity indexes and multivariate analysis
(PERMANOVA and SIMPER) in order to see the differences over time. The carbonated substrate has
presented a community with higher values of biological diversity, structure and complexity, although
the differences in species composition between substrates are not evident during all immersion
periods. Thus, these results seem to indicate that, even after 12 months of immersion, communities
are still in a dynamic successional stage.

Keywords: biofouling; port environment; sessile invertebrate; recruitment; artificial reefs

1. Introduction

The ecological succession is a process in which a serial substitution of species takes
place, with the consequent structural and functional changes in the community, after the
appearance of (new) free space [1]. Regarding this, the biofouling community has been
widely studied in order to understand how the primary and secondary succession processes
work in the marine environment, principally in the intertidal zone [2–4]. However, during
the last years, the studies are being focused in the subtidal zone [5–7]. Being aware of how
the succession works is important for the correct management of marine ecosystems, not
only to develop artificial reefs, but also to control the recruited organisms on the artificial
submerged structures in the marine environment [5,8–10].

Many studies have been carried out about the initial stages of colonization, and it has
been shown that the sequence of early colonizers will have an effect on the biodiversity
and structuration of the developed fouling communities [5,11–14]. This early colonization
will depend on propagule availability and environmental conditions, as most of the macro-
fouling organisms are driven by seasonality [1,6,15]. Another factor which influences
the colonization and succession process is the substrate material. This affects directly
to the species preference [16–18], generating differences in the biofouling assemblages
in the early stages of colonization and maintaining them over time [6,8,19,20]. In fact,
many studies have been carried out comparing biofouling communities between different
substrates (natural and artificial), and they showed that the communities differ in terms
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of species composition, structure, diversity and biotic interactions [5,21–23], generating
even different biofouling communities within the same habitat and environmental condi-
tions (e.g., [1,8,11,24,25]). Moreover, it has been seen that several natural materials, like
sandstone, or even concrete (which can be considered as an artificial stone) may present
higher biodiversity than other materials like steel [19,23,26], as they are more similar to
natural rock [17,27]. In this regard, the succession process in the biofouling is affected
by the time and the early colonizers, so that the events occurring during the process,
principally in the early stages, will affect the final result, leading to different successional
biofouling communities which will finish at different endpoints [6,28]. Nevertheless, some
authors (e.g., [14,29,30]) have recorded that those different endpoints tend to converge and
homogenize to the same local community. In fact, regarding the experiments performed
with different substrates in the same habitat and environmental conditions, the same
controversy appeared, as some authors found that communities converge [8] and others
do not [19].

The substrate may cause differences within biofouling assemblages, so the type of
material to choose is a relevant factor when it comes to building artificial reefs [19]. Most
artificial reefs are made of artificial materials like concrete, steel, fiberglass and PVC [31],
but only a few are built of natural rock, which has a higher initial recruitment than other
artificial materials [16,17,27]. In fact, new concrete compositions are being developed to
improve this artificial substrate’s ecological properties [17,32,33]. Hence, there is a need to
find materials with similar characteristics to natural rock in order to use them as material for
artificial reefs or other marine structures. One of these materials is electrolytic carbonated
substrate. This substrate is the consequence of the application of electrolysis to metallic
materials immersed in sea water, for instance when preventing the corrosion of marine
metallic structures by cathodic protection [34]. Along the process, a carbonated layer, made
of CaCO3 and Mg(OH)2, precipitates around the cathode [35–37]. This layer is generated
from the salts dissolved in the surrounding marine water, which allows this layer to be like
natural carbonated rocks [31]. The potential of this material for the construction of artificial
reefs was shown by Hilbertz [36], but scarce studies were performed. In fact, most of them
have been carried out in tropical areas for the restoration of coral reefs [38–41] and they do
not observe the colonization of other species, but corals.

Thus, the aim of this work is to observe the colonization of sessile macrofouling of
the port of Alicante on two types of substrates (electrolytic carbonated and steel) over
12 months of succession. We hypothesized that the colonization and succession would
be more effective in the electrolytic carbonated one as it is more like natural environ-
ment/rock. In a previous work [42], the colonization (after 3 months of immersion) of
the different substrates was studied, being significantly higher in the carbonated struc-
tures. In addition, it is aimed to determine the structure of sessile community over the
succession process.

2. Materials and Methods
2.1. Study Site

This study was located in Alicante’s harbor (SE Spain), concretely in dock No. 9
(38◦20′09.23′′ N–00◦29′05.81′′ W). The experimental work was carried out between
15 October 2019 and 13 October 2020. The dock is located in the outer quay (Figure 1) and
has a sandy–muddy seafloor with a maximum depth of 10 m. The mean surface seawater
temperature varies according to the season, having a range of 14.1 to 28.3 ◦C, as well
as salinity with a range of 37.8 to 37.3 PSU (according to https://www.puertos.es/es-es,
accessed: 17 February 2024).

https://www.puertos.es/es-es
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Figure 1. Alicante’s harbor location and ninth dock position (white circle). Images adapted from 
Google Earth via QGIS 3.16.7. 

2.2. Sampling 
To study the colonization and succession of biofouling, 24 square steel meshes of 15 

× 15 cm were used, 12 of which were previously subjected to an electrolytic process as in 
[36], until a 0.5 mm carbonated layer was deposited around them. In this way, 12 bare 
steel meshes acted as the control treatment. The meshes were arranged in three horizontal 
profiles of eight meshes each, four of each type, and they were placed alternately within 
the profile. The three profiles (all 24 meshes) were anchored at 2 m depth on 15 October 
2019 with the help of three small cranes. Note that each profile was separated by 1.5 m. In 
order to see the colonization process, every 3 months, two meshes (carbonated and bare 
steel) were manually collected from each profile (a total of six meshes: three carbonated 
and three bare steel). These collections were made in January, March, June and October. 
In this way, samples were taken after 3, 6, 9 and 12 months of immersion (hereafter im-
mersed time). The meshes were fixed with 10% formalin–seawater for at least 48 h. Then, 
the organisms were scraped and identified to the lowest taxon possible (based on World 
Register of Marine Species: https://www.marinespecies.org accessed: 15 December 2023). 
Only sessile macrofouling taxa were used in this work. 

2.3. Data Treatment 
In order to assess the effect of the substrate and the immersed time in the colonization 
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Figure 1. Alicante’s harbor location and ninth dock position (white circle). Images adapted from
Google Earth via QGIS 3.16.7.

2.2. Sampling

To study the colonization and succession of biofouling, 24 square steel meshes of
15 × 15 cm were used, 12 of which were previously subjected to an electrolytic process as
in [36], until a 0.5 mm carbonated layer was deposited around them. In this way, 12 bare
steel meshes acted as the control treatment. The meshes were arranged in three horizontal
profiles of eight meshes each, four of each type, and they were placed alternately within
the profile. The three profiles (all 24 meshes) were anchored at 2 m depth on 15 October
2019 with the help of three small cranes. Note that each profile was separated by 1.5 m. In
order to see the colonization process, every 3 months, two meshes (carbonated and bare
steel) were manually collected from each profile (a total of six meshes: three carbonated
and three bare steel). These collections were made in January, March, June and October. In
this way, samples were taken after 3, 6, 9 and 12 months of immersion (hereafter immersed
time). The meshes were fixed with 10% formalin–seawater for at least 48 h. Then, the
organisms were scraped and identified to the lowest taxon possible (based on World
Register of Marine Species: https://www.marinespecies.org accessed: 15 December 2023).
Only sessile macrofouling taxa were used in this work.

2.3. Data Treatment

In order to assess the effect of the substrate and the immersed time in the colonization
process of sessile biofouling assemblages, both univariate and multivariate analyses were
performed. In both cases, a two-way linear model was used, with substrate and immersed
time as fixed and orthogonal factors, with two (carbonated vs. control) and four levels
(3 vs. 6 vs. 9 vs. 12 months), respectively. It is important to highlight that the third replicate

https://www.marinespecies.org
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of the carbonated treatment for the last immersed period (12 months) was lost, so the mean
value of the other two meshes was used as value for that replicate.

The effect of substrate and immersed time in the diversity of the community was
assessed with two-way analysis of variance (ANOVA) over the different diversity indexes
calculated: species richness (S), Shannon–Wiener index (H′, 2 base), Pielou’s evenness (J′)
and abundance (N) organisms/cm2 (for solitary organisms, each organism was counted,
whereas for colonial organisms, each colony was treated as a single organism). In the
cases that significant differences were found a Student–Newman–Keuls post hoc test
was performed.

For the purpose of assessing the effect of substrate and immersed time on the col-
onization and succession process of biofouling assemblages, a two-way permutational
multivariate ANOVA (PERMANOVA) [43] was conducted and a non-metric multidimen-
sional scaling (nMDS) to visualize the results by using Bray–Curtis dissimilarity [44]. Note
that, prior to the analysis, the data set was transformed with the fourth root, in order to
reduce the weight of most abundant species. Moreover, a Similarity percentage (SIMPER)
analysis was performed to detect which species contribute more to the differences and
which are the characteristic ones of each substrate and period, and a permutational analysis
of dispersion (PERMDISP) to test whether these differences were caused by the factor or
the dispersion of the data [45]. Furthermore, a univariate PERMANOVA was performed
for each species/taxon determined by SIMPER, in order to detect whether each one’s
abundance was significantly different between substrates. For that purpose, Euclidean
distance was used when performing PERMANOVA analysis to avoid the assumption of
normality of data [43]. PERMANOVA, nMDS, SIMPER and diversity index calculation were
conducted in PRIMER v.6+PERMANOVA software [45], whereas the different ANOVA
were conducted in R 4.1.2 [46].

3. Results
3.1. Taxonomic Study

We identified 61 different taxa during this study, most of them (53) to species level (see
Supplementary Table S1). Among them, 58 (95.1%) have been recruited in the carbonated
treatment and 43 (70.5%) in the control one, which means that 18 taxa were exclusive to the
carbonated substrate and 3 to the control. In addition, focusing on the different submersion
periods per substrate (carbonated vs. control), 29 vs. 14 taxa appeared after 3 months,
32 vs. 19 after 6 months, 43 vs. 29 after 9 months and 23 vs. 21 after 12 months. Among
them, nine taxa appeared over the four periods, three are exclusive for the first immersion
period, one for the second, eight for the third and six for the last one.

Looking each species in the different periods and substrates, it was found that, among
the species which appear over all the immersed times, Balanus trigonus, Turbicellepora
magnicostata and Bougainvillia muscus only meet that statement in carbonated substrate, as
they are not always present in the control one. Moreover, there are species which appear in
both substrates, but they need more time to be recruited in the control treatment. These
species are Crisia eburnea, Scrupocellaria scruposa, Spirobranchus triqueter, Hydroides dirampha,
Parasabella langerhansi, Leuckartiara octona, Styela plicata, S. canopus, Gregariella petagnae,
Anomia ephippium and Leucetta solida.

Referring to the different taxa, Bryozoa has been the most diverse taxa (18 spp.)
over the study and Hydrozoa the most abundant (mainly by three species, namely Obelia
dichotoma, Bougainvillia muscus and Eudendrium sp.). It must be highlighted, also, that the
species Hydroides elegans was the most abundant species (after O. dichotoma) during the
study. Analyzing the taxa by treatments (Figure 2), there is a high abundance of Hydrozoa
in both substrates during the first two periods of immersion, but in the third one (after
9 months), the abundances of the different taxa are very similar to each other in the case
of carbonated treatment, while this is not happening in the control one. In fact, during
that period of immersion, the highest species richness for all the taxa in both treatments
were recorded. However, after 12 months of immersion, there was again a domination of
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Hydrozoa, in terms of abundance, and Bryozoa, in terms of richness, as in the beginning of
the experiment.
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Figure 2. Graphical representation of species richness and abundance (number of organisms per cm2)
for each taxon in the two substrates over the four periods of immersion: (3) October 2019; (6) January
2020; (9) March 2020; (12) June 2020. Bars: standard error. Org equals to organism.

3.2. Biofouling Assemblages

Regarding the effect of substrate and immersed time in the composition of biofouling
assemblages, differences were found for both factors and their interaction (Table 1). The
biofouling composition was different among substrates after 3 and 9 months of immersion,
but not after 6 and 12 months, although there were marginally significant points (Table 1).
These results were clearly seen within the nMDS, where different substrates were far
from each other in all immersion periods, except for those immersed for 6 months, where
points were very close to each other, with a high similarity (60% between them) (Figure 3).
Moreover, the SIMPER analysis showed that the dissimilarities among substrates were
reduced from the first to second period, but they increased in the following periods,
reaching a maximum in the last period (51.91%, 38.72%, 46.2% and 62.5%, respectively). It
must be highlighted that the higher dispersion was found in the control (steel) treatment
(PERMDISP < 0.05), clearly seen after 12 months, when the similarity within samples was
nearly 30%. However, in the carbonated treatment the similarity was always over 70%,
except for the samples immersed for 6 months (65.84%).

Table 1. PERMANOVA results for the abundance of macrofouling assemblages for the different
substrates and immersed times. Note: * = p-Value < 0.05, *** = p-Value < 0.001.

Source of
Variation DF MS Pseudo-F p-Value

(MC) Post Hoc Test

Substrate = S 1 6513.1 9.2472 ***
Immersed time = T 3 7517 10.673 ***

S × T 3 1215.9 1.7263 * 3 and 9: C ̸= H
6 and 12: C ≈ H (p < 0.1)

Residual 16 704.33
Total 23
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In addition, the SIMPER analysis showed that the number of species which contributed
significantly to the dissimilarity between substrates on each period varied as immersed time
went on (nine, five, eleven and seven species, respectively, being always more abundant on
the carbonated treatment). Thus, the characterizing species changed over the immersed
times: reducing from the first to second period, increasing in the third and decreased again
in the last one, highlighting a trend every 6 months. This change in species composition
showed also that filter-feeders (ascidians) became typical species as the succession process
continued, especially after 12 months. Among the species, Filicrisia geniculata and Perforatus
perforatus stood out, as they were typical of the carbonated treatment, and they contributed
to the dissimilarity among substrates in the four periods, with a mean contribution of
5.4% in each one. Moreover, another species to highlight is Balanus trigonus, which was
also a typical species in the carbonated treatment and had the highest contribution to
the dissimilarity in all the periods except for the last one. On the other hand, there were
the following species, which characterized the biofouling assemblages of the carbonated
treatment on each period: (i) Schizoporella errata, Mytilus galloprovincialis, Spirobranchus
triqueter, Turbicellepora magnicostata and Hydroides elegans (3 months); (ii) Obelia dichotoma
(6 months); (iii) Bougainvillia muscus, Watersipora subtorquata and Sycon elegans (9 months);
and (iv) Styela canopus and Botrylloides cf. niger (12 months). This goes along with the
results seen in Section 3.1, as the characterizing species of the biofouling assemblages were
the ones which appeared over all the periods of immersion, and they had their greatest
differences in terms of abundance between substrates in those periods. In addition, for the
cases of S. elegans and B. cf. niger, they only appeared in those periods.

3.3. Biofouling Diversity

Referring to biodiversity, all indexes and abundance were statistically higher in the
carbonated substrate (Table 2 and Figure 4). In addition, a temporal trend can be seen,
where the species richness and Shannon–Wiener index were higher after 9 months of
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immersion than in any other period, whereas the abundance was kept similar during the
first three periods, before decreasing in the last. Pielou’s evenness was not affected by the
immersion length.

Table 2. ANOVA results for each diversity index and abundance of biofouling community for both
substrate and immersed times. Note: * = p-Value < 0.05, ** = p-Value < 0.01, *** = p-Value < 0.001.

Source of Variation DF MS F p-Value SNK

S

Substrate = S 1 570.4 62.507 *** C > I
Immersed time = T 3 192.4 21.082 *** 9 > 3 = 6 = 12

S × T 3 14.5 1.588 0.231
Residuals 16 9.1

H

Substrate 1 5.894 24.935 *** C > I
Immersed time 3 1.912 8.088 ** 9 > 3 = 6 = 12

S × T 3 0.424 1.794 0.188788
Residuals 16 0.236

J

Substrate 1 0.07071 6.512 * C > I
Immersed time 3 0.02659 2.449 0.1012

S × T 3 0.01403 1.292 0.3113
Residuals 16 0.01086

N

Substrate 1 78.94 36.596 *** C > I
Immersed time 3 15.78 7.314 ** 12 < 3 = 6 = 9

S × T 3 0.7 0.326 0.80647
Residuals 16 2.16
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4. Discussion

The substrate caused differences in the biofouling assemblages during the early colo-
nization stage and during the succession process. This is supported by several studies in
which the assemblages differed between substrates as succession develops [17,19]. How-
ever, in this work, there are periods in which the differences are not clear, suggesting
that the biofouling community still remains in a dynamic state, and it did not reach fi-
nal succession stage, as it did in [6], after being immersed for one year in the Central
Mediterranean. In fact, a clear seasonal pattern was observed, in which, every 6 months,
the biofouling assemblages tended to converge and then diverge again (only tested for
first 6 months, as the study finished after 12 months). These periods corresponded to
winter and summer, when recruitment rates were lower and higher, respectively [1,6,14,15].
Nevertheless, both periods have been characterized by a dominance of hydrozoans (Obelia
dichotoma and Bougainvillia muscus after 6 months and Eudendrium sp. after 12). Hydrozoans
are erect, stolonal and fast-growing species, which gives them the ability to colonize the
empty space easily and grow over other species. In fact, this suggests they can exploit
the least suitable seasons to colonize better than other species, and, during winter, they
can use the space left behind by algae as there is less available light [47]. Furthermore,
once the unfavorable winter months left, the diversity of both substrates increased and
the differences in biofouling composition appeared again. One reason to explain this is
the arborescent three-dimensional growth of hydrozoans, which increases the complexity
and colonization of both vagile and sessile species for the next periods. Indeed, it has been
proven that they can easily recruit mytilids and some solitary ascidians; among others, this
occurred in [47–51] as it happened in this work: the appearance of Mytilus galloprovincialis
after 6 months and Styelidae juveniles after 9.

There is no doubt that the presence of propagules in the environment determines
the appearance and abundance of certain species relative to others [14,52], and it was
observed that species were substituted during the succession process. In fact, this propagule
availability in the environment has a seasonality which allows or facilitates the recruitment
of some species over others [14,53], leading to different biofouling communities depending
on the time of immersion, as reported in Lezzi and Giangrande [6]. However, some species
were characteristic of carbonated treatment, appearing in all or almost every period on it
(B. trigonus, F. geniculata y P. perforatus) which means that their propagules were abundant
in the study area, and they can act as pioneer species and persist on that substrate over
time. In fact, these species have a calcareous skeleton, and [54,55] and [26] showed that
cathodically protected structures and calcareous substrates have a higher recruitment of
barnacles, agreeing with this finding.

On the other hand, a substitution of species was observed as the succession went ahead,
where active filter-feeders (mainly ascidians) became more important, particularly at the
end of the experiment. The dominant ascidians were the typical ones of port environments
and during the summer months [51,56]. In the case of ascidians, it has been reported that
their larvae prefer rough surfaces to settle [21,57] explaining why they are more abundant
on the carbonated substrate. Moreover, during this species substitution process, there are
species, such as Crisia denticulata, Savignyella lafontii, Botrylloides cf. niger, Ostrea stentina,
S. ciliatum and Sycon sp., which appeared only after 12 months. This finding is explained
by the seasonality of the species (as in the case of B. cf. niger, which is a typical species
of warm periods) or by the need of a developed pioneer community to settle, as in the
case of Sycon spp., which need a developed algal community [58]. In addition, a lag in
the recruitment of certain species (Scrupocellaria scruposa, Spirobranchus triqueter, Hydroides
dirampha, Parasabella langerhansi, Leuckartiara octona, Styela plicata and S. canopus) can be
observed between both substrates. These species took at least one trimester longer to be
recruited in the control treatment, which reinforces the fact that the carbonated substrate
has higher recruitment and diversity rates. This may be due to the fact that the pioneer
community developed more rapidly in the carbonated substrate, not only because of its
greater capacity for initial recruitment [42], but also because of the greater abundances of
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hard-shelled organisms, such as balanids and mytilids, and hard-bodied organisms like
solitary ascidians, among others. These organisms are able to generate more space to be
colonized by other organisms, thus increasing the capacity for recruitment of new species
over time. Furthermore, as recruitment is also dependent on the presence of propagules
in the environment, the gap in the recruitment among both substrates could be explained
by the enhancement of propagules from the species that developed in the carbonated
treatment, which were easier recruited in the carbonated meshes.

The higher biological diversity values were obtained in the carbonated treatment,
being significantly higher after 3, 6 and 9 months, and decreasing in the last period. These
findings are consistent with other studies [19,23,26] that found higher biological diversity
values in natural rock and concrete substrates that were similar to electrolytic carbonated
substrates. Moreover, the results are comparable to studies conducted by Neves et al. [59]
and Albano and Obenat [23], in which calcareous substrates, such as concrete, had a higher
abundance of organisms than other substrate types because their surfaces are similar to
natural rocks. The differences found among substrates are consistent over time from the
beginning of colonization, indicating that the carbonated substrate is capable of generating
a more structured and developed fouling community in less time than steel. Nevertheless,
a drop in the diversity and abundance of organisms has been observed after 12 months
of immersion, matching with a certain homogenization of the assemblages, possibly due
to greater competition among species due to substrate limitation [5,60]. It was in this
period when the higher dissimilarities between substrates were found and a dominance of
Eudendrium sp. was detected in both substrates. The remaining dominant species differed
according to the substrate, with arborescent bryozoans and ascidians (mostly solitary)
predominant in the carbonated one and hydrozoans and serpulids (H. elegans) in the control.
The dominance of these fast-growing and high space colonizer fouling species [61] may
explain the decreasing of indexes and the convergency, rather than statistical differences, of
assemblages in this period. However, it was expected that the diversity and the abundance
of organisms will continue increasing, due to a major propagule supply enhanced by the
warming of seawater [1,6,14,62,63]. Nevertheless, the effect of higher temperatures during
the last period of sampling (the meshes submerged for 12 months) could also explain the
decreasing of abundance of fouling species as some species cannot cope with them, mainly
the ones dominant during the cold months.

As has been explained, the dissimilarities within the biofouling assemblages in the
substrates were high and there was not a clear homogenization of communities among both
substrates after 12 months of immersion, as there was when the dissimilarities were higher.
Hence, it indicates that the communities did not reach an endpoint. So, a longer-term study is
required, as conducted in other works (e.g., [8,19]) to elucidate where the communities reach
and how the succession process develops on both substrates. In fact, it could be hypothesized
that, as carbonated treatment has more dead and alive hard-bodied species, once the warm
period has ceased, the largest space availability of that substrate will be easily and rapidly
colonized by species. In addition, considering the seasons, a complementary work is suggested
by the authors in order to see the effect of immersion time (season) on both early colonization
and succession over the two substrates, as was carried out in [6,14,15], and to determine the
seasonal peaks of the species from Alicante’s harbor.

Based on the above, the carbonated substrate presented a community with higher
values of biological diversity, structure and complexity, although the differences in species
composition between substrates were not evident during all immersion periods, which
seems to indicate that, even after 12 months, the communities were still in a dynamic
successional stage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse12030443/s1. Table S1: average abundance (X + SE) of the
observed taxons (organisms/cm2) by moth and substrata: (C) carbonated; (S) steel. Table S2: SIM-
PER results for the abundance of biofouling assemblages (fourth root transformed data). Note:
* = p-Value < 0.05, ** = p-Value < 0.01, *** = p-Value < 0.001.
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