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ABSTRACT

Edge-cloud collaborative processing for IoT data is a relatively
new approach that tries to solve processing and network issues
in IoT systems. It consists of splitting the processing done by a
Neural Network model into edge part and cloud part in order to
solve network, privacy and load issues. However, it also has it
shortcomings such as the big size of the edge part’s output that has
to be transmitted to the cloud. In this paper, we are proposing a
data transmission reduction method for edge-cloud collaborative
solutions that is based on data similarities in stationary objects. The
performed experiments proved that we were able to reduce 62% of
the data sent.
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1 INTRODUCTION

Artificial Intelligence of Things (AIoT) is a research field that has
attracted a lot of attention in the last few years and has reached
a mature and stable state [9]. However, it still has some unsolved
issues such as the location of the processing. Since the Al models
are heavy and resource consuming, using them on the connected
object itself or other devices at the edge will result in a big load on
this device and a long processing time [8] [29]. Even so, offloading
the processing task to a more powerful entity like the cloud will
also lead to some problems such as long communication delay and
response time as well as privacy issues [5].

One of the solutions that has been proposed recently is edge-
cloud collaborative data processing, where the Al model responsible
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for the processing (generally a Neural Network (NN)) is split into
two parts, the first part is used at the edge and the second in the
cloud. This solution consists of partitioning the NN in the most
appropriate position to reduce the data sent to the cloud and there-
fore network related issues, benefit from the powerful resources of
the cloud, not overload the IoT object and preserve data privacy
[30] [27] [12]. However, the output of hidden layers of a NN, is
generally voluminous or layers of smaller output size are at the end
of the network which means burdening the edge device with the
biggest part of processing.

In this paper, we propose a solution to reduce the data to be sent
to the cloud while benefiting from the advantages of segmenting
the processing task. In IoT systems where data is captured by a
stationary object such as cameras and sensors, data captured suc-
cessively is too much the same [11]. Supposing that to a pre-trained
NN (has defined weights) input similarity entails similarity of the
hidden layers’ outputs, instead of sending the output of the first
part of the split DNN directly to the cloud, we propose sending
only the difference between this output and the previous one.

This paper is organized as follows: in Section 2 we review most
relevant work in the data transmission reduction and Neural Net-
work splitting fields, then we determine how our work is situated
compared to them. In Section 3 the proposed solution is presented
and explained formally. In section 4 several experiments are con-
ducted in order to confirm the suggestions and test the proposed
solution on a real world use case. Section 5 concludes the paper
and outlines the future work.

2 STATE OF THE ART

Our solution is a combination of two domains: data transmission
reduction and NN splitting. For this, in this section we present the
most relevant papers in these two domains.

2.1 Data Transmission Reduction

In the literature, several solutions have been proposed to reduce
data sendings from connected objects to servers.

Some of the proposed solutions are based on prediction models.
Those solutions consist of using the same model trained to predict
the next data on both sides and only transmit poorly predicted
values. This solution has been used in different situations such in
[16-19] to reduce temperature, humidity, light, and voltage data
sent from sensors to the sink node. In [20], authors proposed a
prediction model to reduce the periodical information uploaded
from smart industrial machines by not sending data of the same
value or data increasing/decreasing linearly because it can be easily
predicted.
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Other solutions are based on classification models. Those models
are trained on the importance of data according to the system, then
used at the 10T objects level to decide if this data is worth send-
ing or not. Such in [21] for wearable sensor networks or between
connected vehicles and edge server in [22]. Data compression is
also a widely used solution to reduce the size of data sent from one
entity to another. It consists of reducing the number of bits used to
represent the message by applying a compression algorithm such
asin [6, 7, 17].

Reducing the data sent can also be based on data aggregation
such as in [23, 26] where the authors proposed an aggregation
model based on eliminating redundant similar data received from
sensor nodes in a cluster. For visual sensor networks, authors of [24]
proposed to eliminate near-duplicate images using near-duplicate
clustering, seed image selection then deleting the rest of images in
the cluster. Sajedi et al.proposed in [25] a data aggregation system
based on fuzzy logic in order to manage the dynamic and nonlinear
nature of healthcare data and reduce the load on the network.

2.2 Neural Network Models Splitting

In order to benefit from the advantages of collaborative processing
such as reducing the energy and resource consumption for the
IoT object, reducing the load on the cloud, gaining time as well as
augmenting the security of the data by not sending the real data
via the network. Research work in this area is mostly focused on
defining algorithms and platforms that search for the most conve-
nient splitting point. Taking in consideration the characteristics
of the edge device, the network, the input data, the output of the
layer, and the task to be achieved. The defined algorithms return
the layer that gives the best characteristics of the split model.

The proposed solutions are generally iterative algorithms that
checks if the conditions are met for all layers such as in [8], where
authors presented NNs auto-splitting algorithm that analyzes the
data size that needs to be transmitted at each layer, then solves the
optimization problem to generate a list of splitting possibilities. In
[12] also, authors defined a set of iterative algorithms that based
on available bandwidth and the latency requirement decide the
best layer to partition the NN. In [29] the choice of the splitting
point was based on the waiting delay, the layer that can make the
delay smaller is chosen as output of the first part. In [3] the NN
was split between edge and cloud with the objective of reducing
bandwidth consumption so the splitting can only be made at layers
whose output dimensions are lower than input image dimensions.
Authors of [27] split a CNN trained on pedestrian detection into
two parts in order to process the first part in an edge-heavy sensor
and the second on the server. The data sent was twelve times lower
than the input data size. However, they reduced the CNN layers’
and filters’ numbers too much in order to reduce the size of the
first part’s output size. In [4] the algorithm defines several splitting
points then calculated latency for each one compared to cloud only
and edge only using different devices with different costs at the
edge. For smaller edge devices, edge-only computation was the
cheapest and the fastest solution, while for more powerful devices
a middle split between edge and cloud gave better results.

Other methods were also used to find the best splitting point such
as data-flow computing in [30] based on a data-flow computing
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model, taking in consideration the architecture of the NN, network’s
characteristics and computation resources availability define the
splitting point. The solution in [10] was based on genetic algorithms
for a multi-objective (memory usage, latency, energy consumption)
optimization problem.

2.3 Findings

After reviewing work of both NN splitting and data transmission
reduction, our findings are as follow:

o Research work in this area is mostly focused on defining the
most convenient position to split the NN taking in consid-
eration the characteristics of the edge device, the network,
the input data, and the task to be achieved. The solution
is generally an algorithm that checks if the conditions are
met for all layers, then return the most appropriate splitting
position.

e For deep NN, the output of the layers is large, it only gets
reduced near the end of the NN. Solutions proposed for NN
splitting either split at the last layers of the NN so the entity
to be sent is smaller but then the processing done at the IoT
object is heavy. Or use more powerful devices at the edge to
compute the first part of the processing. Another option is
to reduce the number of filters and calculation in the layers
so the output is smaller as in [27], however the functioning
is less efficient especially for complex tasks such as real time
object detection.

e Data transmission reduction solutions are only proposed
for the original data and they are generally based on pre-
diction, regression or classification models which make the
task achieved by the IoT object heavier.

Our proposed solution reduces data to be sent in case of split NN
in order not to remain exclusive for powerful edge device or light
weight models. Also, it is a solution based on data similarities that
doesn’t overburden the IoT objects with predicting or classification
models.

3 THE PROPOSED SOLUTION

3.1 General Description

To solve data transmission related problems such as limited band-
width availability, and low latency tolerance for most IoT applica-
tions, we are proposing a data transmission reduction solution for
split NN models where the first part is processed at the object’s
level, then the result is transferred to the cloud to be used as an
input of the second part. The result of the first part is the output
matrix of the last layer in the first part. Considering applications
where the object is stationary, the collected data do not vary much
between one sending and the next one as shown in figure 1. Since
the inputs are similar and the NN is the same, we suppose that the
outputs of the first part will also be similar somehow. Our proposed
solution only sends the non similarities between the actual output
of the first part and the previous one.

Figure 2 and Figure 3 explain the functioning of this solution.
The pre-trained NN is split into two parts, the first part used at the
object side and second at the cloud server side. For the first data
captured by this object, the output of the first part is directly sent
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Figure 1: Successive images captured by a traffic camera.
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Figure 2: The functioning of the proposed solution for the
first data captured.

to the cloud. At the cloud level, this received entity is used as an
input for the second part of the NN. This entity is also stored on

both sides for the purpose of using it in the subsequent sendings.

For the next data, the object calculates the difference between the
output of the actual data and the previous output, eliminates zeros
then sends it to the cloud. At the cloud server level, the input of the
second part is calculated by adding zeros to the received entity, then
additioning it with the previous output (either received entirely in
the case of the first data or calculated previously).

3.2 Formalization

A neural network is composed of an input layer, an output layer, and
a set of hidden layers in between. One layer’s output is a weighted
sum of the outputs of previous layers, added to a threshold value
called bias, then passed to a nonlinear function called activation
function. The output of each layer is defined as [15] [28]:

fi (X) = a(WiX; + B;) (1)

Where:
e ais the activation function whose objective is to make the
NN learn nonlinear features from the input [14]. It can be the

hyperparabolic tangent, sigmoid, softmax, rectifier function
or other functions (Fig. 4).

44

Object level Server level
,i
Ouput first
) parti-1

Caleulating _,, Additioning Elj i (o | e | @
changes Send via the

network

Input i

/

Ouput first
part i-1

Figure 3: The functioning of the proposed solution for the
rest of the data.

e X is the input matrix at layer i.
e W is the weight matrix at layer i.
e B; is the bias matrix at layer i.

Then, the whole network is defined as a composition of functions
as [13] [15]:

Y=fo 0 f A (X @)
Y=fi (..(fi-.. (1 (X)) ©)
Y=a(Wea(...Wia(... WX +By)....+Bj).... +Br) (4

Where:

e K is the number of layers.
e X is the input data.
e Y is the output of the NN.

Let i be an intermediate layer where 1 < i < k.

Let (n, 1), be the dimensions of the input X; of layer i and
(m, n) the dimensions of the weight matrix W;, then the dimension
of the multiplication W;X; is of dimensions (m, 1).
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Figure 4: Commonly used activation functions: (a) Sigmoid,
(b) Tanh, (c) ReLU, and (d) LreLU [6].

Thus, the dimensions of the bias matrix Bj; is also (m, 1) and the
layer output is also of dimensions (m, 1). ¥; € R™¥1

Observing activation functions graphs in figure 4, we notice
that for similar inputs the output is similar. And since we have
similar NN inputs and same pretrained weights, then the outputs
of intermediate layers are similar. Therefore, in this paper, we only
send the changes that occur in the new output of the first part.

We define C; as the difference matrix between two outputs Y1;,Y2;
e R™ ! of similar inputs X1,X» at layer i.

A (Y11, Yai) = C;C € R ©)

Instead of sending the matrix C, we only send the values that
represent a change: values different from zero. The entity to be sent
to the cloud is defined as:

D= (cr,p) €C crp#0 6)

™

D e R™"where (n, t) < (m, 1)

4 EXPERIMENTS

4.1 Experiment’s Settings

Use case: Traffic cameras are one of the connected devices that
collect a massive amount of voluminous data especially if the cam-
era is of high resolution. The captured images are generally sent
to the cloud where it can be used in different types of applications
such as accident detection, cars counting, car number detection,
low violation detection, etc. Therefore, we chose traffic cameras as
a use case to test our proposed solution. Since detecting objects is
the first step for most applications on traffic data, we decided to
do object detecting where the used Al model is trained to detect
objects, frame them and predict their class.

NN model: The first step of our experiment is to split a neural
network model into two parts. We used the pre-trained YOLO (You
Only Look Once) model, one of the most used NN for object de-
tection [32]. Yolo architecture is composed of convolutional layers
followed by connected layers predicting bounding boxes in the
image. Several versions of Yolo pre-trained are available for use.
We used the version 3 of Yolo (figure 5) contains 106 layers and was
trained on COCO dataset (Common Objects in Context) [33]. This
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YOLO v3 network Architecture

Figure 5: YoloV3 architecture [31].

dataset contains 80 class among which we have "car", "bus", "truck”,
"person”, "bicycle", "motorbike", "traffic light", "stop sign" that are
the objects that can be detect in traffic data.

Data: Data needed to test our solution is traffic data captured
successively using the same camera and in order. For this we used
Sherbrooke Urban Tracker dataset that provides successive images
captured by traffic cameras with a rate of 30 frames per second in

Montreal-Canada [2].

4.2 NN splitting

We split the pre-trained YoloV3 into two parts. We chose layer 11
as a splitting point. The objective of our research is not to find the
best position to split. Therefore, we chose manually a layer that
is not so far from the input of the NN and does not have loops in
order not to send two outputs. The output of layer 11 is of size (1,
104, 104, 128). We name the first part sub-model1 and the second
sub-model 2.

4.3 Outputs Comparison

We calculated the difference between two successive outputs of sub-
model 1. Figure 6 presents two examples of numbers frequency in
the difference of two successive outputs. The frequency of numbers
can vary depending on the image, however zero is always the most
frequent value: 785177 (56,71% of the difference) in first example
and 490663 (35,44% of the difference) in the second.

4.4 Transmission Reduction

This experiment consists of eliminating zeros from the difference
between the current output and the previous one. We also send the
position of data not sent in order to reconstruct the same output at
the cloud level. We send to the cloud a list that contains non-zero
numbers and a bit matrix that for each position contains 1 if the
number is sent and 0 if not. Then, we calculate the difference in size
between the original output size and the entity send when reducing
Z€r0S.

At the cloud level we have the inverse function of the applied
representation method which allows rebuilding the data without
causing any data loss.
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Difference 1384448
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Figure 6: Number’s distribution in the difference D.

Table 1: Size of data sent

2 images (MB) 100 images (MB)
Submodel1’s 21.13 1699.84
output
Zeros reduced 18.07 1075.2

We calculated the size of data to be sent when we don’t send
zeros for two images and hundred successive images. Results are
presented in Table 1.

Data to be sent was considerably reduced compared to the output
of sub-modell. We have 14.48% bytes reduction for two images and
36,74% for hundred images. We notice that reduction is higher in
long terms when similarities are accumulated.

4.5 Values Close to Zero

We noticed that values close to zero may not be frequent (because
those values are up to nine digits after the decimal point) but they
are numerous. Reducing them will reduce furthermore the data
transmitted. And since it is a value close to zero in the difference,
that means that the output didn’t change much. Not sending it will
not affect the results much.

This experiment consists of reducing values close to zero. When
not sent, these values are replaced by zeros at cloud level. Then,
we check if sub-model2 is able to detect and classify data correctly
even without receiving those values.

The method calculating if data is correctly detected compares
the number of objects detected, the classification as well as the
positions of the bounding box (we allowed a small shift of the

- . . image length
position of the bounding box estimated by ——;——).

Figure 7, 8 and 9 presents the results of this experiment where
we gradually enlarged the interval of data not sent while verifying
that the end result is correct.
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Figure 7: Percentage of correctly detected objects in relation
with the interval of data not sent.

The results show that not sending values in interval [-0.01, 0.01]
reduces the number of data to be sent to 60% from the size of sub-
modell output (35% more than when reducing only zeros) while
maintaining 100% correct detection and classification. In terms of
bytes, when not sending data in interval [-0.01, 0.01] we only send
38% (62% not sent) of bytes (including data and positions) compared
to when we send all the output.

The reduction percentage may vary from one set of images to
another depending on the similarity rate between images. How-
ever, our experiments proved that data transmitted in edge-cloud
collaborative Al can be considerably reduced using the proposed
similarity-based method.

5 CONCLUSION AND FUTURE WORK

In order to benefit from the advantages of collaborative processing
(reducing network related issues as well as the load on the IoT
object), in this paper we defined a solution to reduce data sending.
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Figure 8: Percentage of numbers not sent in relation with the
interval of data not sent.
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Figure 9: Percentage of bytes sent in relation with the interval
of data not sent.

Based on similarities in data captured by stationary objects, the
proposed method reduces the values sent from the IoT object to
cloud while being able to reconstruct the real data at the cloud level.

Several experiments were performed to prove the efficacy of the
proposed solution. We demonstrated that the output of the first part
of a split NN model for similar inputs contains a significant per-
centage of repetitions. Thus, we only send the difference between
two outputs when it is different from zero. Sending only non-zero
values and their positions reduced 36,74% of bytes sent.

We also experimentally defined the interval ([-0.01, 0.01]) of data
that is not worth sending since it can be replaced by zero at cloud
level without causing a deterioration in the object detection task.
By not sending data in this interval, we reduce bytes sent by 62%.

To our knowledge, this paper is the first to propose a data trans-
mission reduction method for edge-cloud collaborative processing.

For future work we will test this solution on other use cases with
different data types in order to provide a better generalization.
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