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Abstract
The design of water distribution networks (WDN) can be formulated as an optimization problem. The objective
function, normally, is the network cost, given by the installation cost, which depends on the pipe diameters and
by the operation cost, given by the pumping costs associated to the network, which depends on the hydraulic
pumps necessary in the system. The water demand can be variable in the network nodes and this variability can
be modeled by a �nite set of scenarios generated by a normal distribution. In the present paper a disjunctive
Mixed Integer Nonlinear Programming (MINLP) formulation optimization problem is proposed to model the
design of WDN under uncertainties in the nodes demand. Flow directions are considered unknown and a
deterministic approach is used to solve the problem in three steps. Firstly, the problem is solved considering only
a nominal value to each uncertain parameter. In the second step, the problem is solved for all the scenarios,
being the scenario independent variables �xed to the solution achieved in the �rst step, which is a deterministic
solution. Finally, all the scenarios are solved without �xing any variable value, in a stochastic approach. Two
case studies were used to test the model applicability and global optimization techniques were used to solve the
problem. Results show that the stochastic solution can lead to optimal solutions for robust and �exible WDN,
able to work under distinct conditions, considering the nodes demand uncertainties.

Introduction
Water supply systems are fundamental in industrial processes and urban centers. These systems involve the
water catchment, the distribution network and the pumping station. The water distribution network (WDN) is
composed by the reservoirs of treated water, piping connecting the reservoir to the demand nodes, hydraulic
pumps and, most of the time, loops among the demand nodes. These components are responsible by the most
important part of the network cost.

The design of WDN is an important research �eld and the number of papers published in this subject is
increasing. The synthesis of WDN can be formulated as an optimization problem, involving, mainly, the
minimization of the network installation cost, which depends on the pipeline diameters. Normally, the �ow
directions are considered known in the demand nodes loop formed in the network. The optimization problem
can have a nonlinear programming (NLP) or a mixed integer nonlinear programming (MINLP) formulation and
stochastic and deterministic approaches have been used to solve the problem.

In some situations, it can exist variations in the water nodes demand in distinct periods of operation and these
kinds of uncertainties need to be considered in the problem formulation. In the present paper an optimization
model is proposed for the synthesis of WDN considering uncertainties in the nodes demand. The problem has
an MINLP formulation and the �ow directions are considered unknown and are treated as optimization
variables. The objective function is the WDN total cost, considering the installation costs, which depends on the
pipe diameters and the annualized pumping cost, due to the use of hydraulic pumps in the network. Disjunctive
programming is used to reformulate the problem and linearization techniques are used to avoid problems with
the nonlinear equations of Darcy-Weisbach and Hazen-Williams, used in the hydraulic calculations. No
additional software or hydraulic simulator is used, once all the velocity and pressure drop calculations are
included in the model. The water demand variability is modeled as a set of �nite scenarios generated by a
normal distribution in Excel. GAMS environment is used to implement the developed model, in three steps. First,
only a unique nominal value for each uncertain parameter is used. In the sequence, for all scenarios, the
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independent variables are �xed to the solution achieved in the �rst step. It corresponds to a deterministic
approach. Finally, the problem is solved for all scenarios, without �xing variables (stochastic solution). Two
case studies are used to test the developed model and global optimization techniques are used to achieve the
problem solution.

Literature review
The design of WDN can be formulated as an optimization problem. The WDN installation cost is the most used
objective function. Normally, the problem is formulated as the minimization of the installation cost, related to
the tube diameter, subjected to a set of constraints involving mass balances in the demand nodes, energy
balances if network loops are present, pressure and velocity limits. It is considered a set of commercial tubes
with proper costs and rugosity coe�cients to be chosen, aiming to minimize the total WDN cost. It is usual to
solve the hydraulic equations using additional software. EPANET (Rossman, 2000) is the most used hydraulic
simulator. Distinct formulations have been used, as Linear Programming (LP), Nonlinear Programming (NLP),
Mixed Integer Linear Programming (MILP) and Mixed Integer Nonlinear Programming (MINLP). Optimization
models with MINLP formulations are more representative for real problems and, recently, the use of this kind of
optimization models by research groups have been increased. In general, global optimality cannot be ensured
due to the nonlinear and nonconvex behavior of the model.

In a recent paper, Mala-Jetmarova et al. (2018) presented a detailed review of types of WDN optimization
problems and methods used to solve the problem. Designs of new WDNs, expansion and rehabilitation of
existing water distribution systems, strengthening, design timing, parameters uncertainty, water quality and
operational considerations were reviewed. As pointed by the authors, different deterministic and stochastic
approaches have been used to solve the optimization problem. Stochastic approaches are used in large scale
problems, where deterministic approaches normally fail. Some of important methods used are Particle Swarm
Optimization (PSO), in Ezzeldin et al. (2014), Surco et al. (2017) and Surco et al. (2021), Genetic Algorithms
(GA), in Savic and Walters (1997) and Kadu et al. (2008), Harmony Search (HS), in Geem (2006), Ant Colony
Optimization (ACO), in Zecchin et al. (2006), Simulated Annealing (SA), in Cunha and Sousa (1999) and Honey
Bee Mating Optimization (HBMO), in Mohan and Babu (2009).

There are less papers focusing on deterministic approaches to solve the WDN optimization problem. It is
because the intrinsic limitations of deterministic solvers in getting trapp in local optima solutions in nonlinear
problems and in the di�culties in using global optimality methods in large scale problems. However, important
advances have been published in this important research �eld. Bragalli et al (2012) proposed, to the
optimization of WDN with �xed topologies, a nonconvex continuous Non-Linear Programming (NLP) relaxation
and an MINLP search approach. Raghunathan (2013) used linearization techniques and global optimization
considering tailored cuts in MINLP formulation problems. D’Ambrosio et al (2015) presented a complete review
of Mathematical Programming approaches in the optimization of WDN considering the notion of the network
design and the network operation. Caballero and Ravagnani (2019) proposed an MINLP model considering
unknown �ow directions in the network loops and used global optimization techniques to solve the problem.
Cassiolato et al. (2019) used Generalized Disjunctive Programming to reformulate an MINLP model, developed
by Surco et al (2017), using a Big M approach. In Cassiolato et al. (2020), a hull reformulation was proposed in
the problem and the model was solved, reducing the relaxation gap and improving the overall numerical
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performance. As an extension, Cassiolato et al. (2023) a Mixed Integer Non-Linear Programming (MINLP) model
was developed to the synthesis of WDN considering the minimization of the WDN total cost, given by the sum
of installation and operational costs. Cassiolato et al. (2022a) considered in the model unknown �ow directions
and SBB and BARON solvers were used to achieve the problem solution. Cassiolato et al. (2022b) considered
installation and energy costs, with unknown �ow directions.

Balekelayi and Tesfamariam (2017) reviewed three approaches to the WDN synthesis, the use of deterministic
and non-gradient methods and real time optimization and compared some population-based algorithms to
solve the problem for a case study.

As mentioned before, the majority of the published papers use non-deterministic approaches and consider �xed
and known �ow directions and a hydraulic simulator to solve the velocities and pressures calculation. In real
WDN, variations in nominal values can occur and these variations can in�uence in the optimum network
operation conditions, causing an unappropriated behavior. So, the evaluation of the uncertainties in distinct
operation periods is a recent and important research �eld. The uncertainties in the demand nodes or in the tubes
rugosity due to the use in long times are problems that need to be considered in the �nal stage of the WDN
design. Branisavljevimc et al. (2009) used a Genetic Algorithm to �nd optimal solutions considering
uncertainties in the water nodal demand by a Monte Carlo simulation. Sivakumar et al. (2015) studied the
uncertainties in the tube rugosity and evaluated the tube �owrate and the different pressures between two
adjacent nodes. Dongre and Gupta (2017) considered uncertainties in the water demand and in the tubes
rugosity using fuzzy logic. Geranmehr et al. (2019) also used a fuzzy model to evaluate uncertainties in the
nodes demand in the reservoir and in the rugosity coe�cient. Calvo et al. (2018) considered non-correlated
functions of log-normal probability distributions to the management of valves. Salcedo-Díaz et al. (2020)
modeled the uncertainties in the nodes demand by a set of correlated scenarios generated by a Monte Carlo
simulation, assuming a log-normal probability distribution.

In the present paper, the existence of uncertainties in the nodes demand in the synthesis of WDN is considered.
The optimization model has an MINLP formulation and disjunctive programming is used to deal with integer
variables relating the tubes diameter, cost and rugosity coe�cient. The objective function is the total WDN
installation cost and the constraint are mass balances in the demand nodes, energy balances in the network
loops and velocity and pressure limits. No additional software is required for the hydraulic calculations and the
model was coded in GAMS and a deterministic approach is used to solve the problem. The uncertainties in the
nodes demand are thought as a set of correlated scenarios generated by a Monte Carlo simulation, assuming a
log-normal probability distribution. Two case studies were used to test the applicability of the developed model.

Optimization model
The system is modeled as a set of reservoirs and node demands, described by their elevation and expected
demand values, and a set of pipes with initial and �nal nodes, pipe length and chosen from a set of commercial
diameters. To each diameter is associated a cost per length and a speci�c rugosity coe�cient. Between the
demand nodes it can exist closed loops. For each demand node there is a minimum pressure limit and the
velocity in the tubes is between an upper and a lower bounded.
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The design of the WDN is thought as an optimization problem with MINLP formulation, in which the objective
function to be minimized is the network installation cost, subject to a set of algebraic constraints composed by
a mass balance in each node, pressure difference between two adjacent nodes, considering the existence of
loops, the equation for the volumetric �ow rate in each pipe and Hazen-Williams equation for the pressure loss
calculation, forming a nonlinear equations system. Complete the constraints set the inequalities for the velocity
inside the tubes and pressure in the demand nodes limits. Disjunctive programming is used to determine the
optimal WDN topology, with the attribution of binary variables and linear equations.

The uncertainties in the water demand nodes are modeled using a �nite set of scenarios sampling from a
probability distribution. The problem must be solved in three stages. In the �rst stage the problem is solved
without considering the existence of uncertainties. The decisions taken in the �rst stage before considering the
uncertainties are given for the design variables. In the second stage, the decisions taken after considering the
uncertainties allow to calculate operational variables. At last, in the third stage, the decisions are given by the
design and operational variables.

The indexes, sets, variables and parameters are described as:
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Indexes  

i, j Demand node

K Available diameter

S Scenario

Sets  

D Available commercial diameters (k)

Ei , j There exist a pipe between node i and node j (i-j)

N Demand nodes (i, j)

S Scenarios (s)

Parameters  

CostD Dk
Cost per length of pipe with diameter Dk [$/m]

di , s Water demand for node i in the scenario s [volume/time]

Dk Available commercial diameter k [m]

e1 Annual interest ratio [%]

Epmin
i , j  and Epmax

i , j
Minimum and maximum values for the pump energy in pipe i-j [m]

FAI Annualization factor for the installation cost [year-1]

hi Node i elevation [m]

Li , j Pipe i-j length [m]

na Design life time [year]

Pmin
i

Minimum pressure in node i [m]

probs Probability of occurrence of scenario s [%]

qmin
i , j  and qmax

i , j Minimum and maximum values for the volumetric �owrate in pipe i-j [m3/s]

Rk Rugosity coe�cient in pipe with diameter Dk [non-dimensional]

vmin
i , j  and vmax

i , j
Minimum and maximum values for the velocity in pipe i-j [m/s]

α Hazen-Williams numerical conversion factor [depends on the system being used]

β e γ Hazen-Williams equation coe�cients [non-dimensional]

( )
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Indexes  

ΔPmin
i , j  and ΔPmax

i , j
Minimum and maximum values for the pressure loss in the pipe i-j [m]

Boolean variables  

W1
i , j

True, if water �ows from node i to node j or false, on the contrary

W2
i , j

True, if water �ows from node j to node i or false, on the contrary

Y i , j , k True, if in the pipe i-j diameter Dk is selected or false, on the contrary

Binary variables  

w1
i , j

1, if water �ows from node i to node j or 0, on the contrary

w2
i , j

1, if water �ows from node j to node i or 0, on the contrary

yi , j , k 1, if in the pipe i-j diameter Dk is selected or false, on the contrary

Variables  

Cpi , j , s Pump in the pipe i-j annualized operational cost in scenario s [$/year]

Costi , j Pipe i-j cost [$]

Diami , j Pipe i-j diameter [m]

Epow
i , j , s

Pump energy in pipe i-j in scenario s [kW]

Epi , j , s Pipe i-j pump in scenario s [m]

Ep1
i , j , s Ep2

i , j , s
Equal to Epi , j , s if water �ows from node i (j) to node j (i) in scenario s

expTAC Expected total annual cost [$/year]

Pi , s Pressure in node i in scenario s [m]

qi , j , s Volumetric �owrate in pipe i-j in scenario s [m3/s]

q1
i , j , s q2

i , j , s
Equal to qi , j , s if water �ows from node i (j) to node j (i) in scenario s

−
q i , j , s

Logarithm of qi , j , s in pipe i-j in scenario s

Rugi , j Rugosity coe�cient in pipe i-j [nondimensional]

TACs Total annual cost in scenario s [$/year]

( )

( )
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Indexes  

vi , j , s Water velocity in pipe i-j [m/s]

v1
i , j , s v2

i , j , s
Equal to vi , j , s if water �ows from node i (j) to node j (i) in scenario s

−
v i , j , s

Logarithm ofvi , j , s in pipe i-j in scenario s

ΔPi , j , s Pressure loss in pipe i-j in scenario s [m]

ΔP1
i , j , s ΔP2

i , j , s
Equal to ΔPi , j , s if water �ows from node i (j) to node j (i) in scenario s

Δ
−
P i , j , s

Logarithm ofΔPi , j , s in pipe i-j in scenario s

The WDN is evaluated by its total annual cost (TAC), given by the annual installation cost plus the annual pump
energy cost. For each scenario s ∈ S, a value for TACs is calculated and, to evaluate the performance of the
WDN under uncertainties in a unique metric, the expected value for TAC is minimized, given by:

E[TAC] = ∑
s ∈S

probs ⋅ TACs

1

In this equation probs is the inverse of the number of generated scenarios, being used the same probability of

occurrence for all scenarios.

The model constraints are the algebraic equations and inequalities that must be solved in each scenario, which
constitute a nonlinear system.

Mass balance in each demand node:

∑
j∈Ej , i

q1
j , i , s − q2

j , i , s − ∑
j∈Ei , j

q1
i , j , s − q2

i , j , s = di , s, ∀i ∈ Nands ∈ S

2

Energy balance in the network loops:

Pi , s + hi + Ep1
i , j , s − Ep2

i , j , s = Pj , s + hj + ΔP1
i , j , s − ΔP2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

3

Being Pmin
i ≤ Pi , s, for all i ∈ N and s ∈ S.

( )

( )

( ) ( )



Page 9/21

The choice of the pipe diameter depends on its cost, rugosity coe�cient, volumetric �owrate and pressure loss,
given by the Hazzen-Williams equation. Logarithms can be used to linearize the last two equations. The
exclusive disjunction can be thought:

∨
_

k ∈ D

Y i , j , k
Diami , j = Dk

Costi , j = Li , jCostD Dk

Rugi , j = Rk

−
v i , j , s =

−
q i , j , s − ln

π
4 D2

k

Δ
−
P i , j , s = ln αLi , j + β

−
q i , j , s − ln Rβ

kDγ
k

, ∀i, j ∈ Ei , jands ∈ S

4

This disjunction can be written using a convex hull reformulation (Grossmann and Lee, 2003). The binary
variable yi , j , k associated to the pipe i-j with diameter Dk, for all k ∈ D, is equal to 1 if in the pipe i-j the
diameter Dk is selected and 0, on the contrary. In this way:

Diami , j = ∑k ∈DDkyi , j , k, ∀i, j ∈ Ei , j (5)

Costi , j = ∑k ∈DLi , jCostD Dk yi , j , k, ∀i, j ∈ Ei , j
(6)

Rugi , j = ∑k ∈DRkyi , j , k, ∀i, j ∈ Ei , j (7)

−
v i , j , s =

−
q i , j , s − ∑k ∈Dln

π
4 D2

k yi , j , k, ∀i, j ∈ Ei , jands ∈ S
(8)

Δ
−
P i , j , s = ln αLi , j + β

−
q i , j , s − ∑k ∈Dln Rβ

kDγ
k yi , j , k, ∀i, j ∈ Ei , jands ∈ S

(9)

∑k ∈Dyi , j , k = 1, ∀i, j ∈ Ei , j (10)

The original variables can be found by exponentiation:

[ ( )

( )
( ) ( )

]
( )

( )
( ) ( )
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e
−
v i , j , s = vi , j , s, ∀i, j ∈ Ei , jes ∈ S

(11)

e
−
q i , j , s = qi , j , s, ∀i, j ∈ Ei , jes ∈ S

(12)

eΔ
−
P i , j , s = ΔPi , j , s, ∀i, j ∈ Ei , jes ∈ S

(13)

The �ow direction in each pipe is given by the exclusive disjunction:

W1
i , j

vi , j , s = v1
i , j , s

qi , j , s = q1
i , j , s

ΔPi , j , s = ΔP1
i , j , s

Epi , j , s = Ep1
i , j , s

vmin
i , j ≤ vi , j , s ≤ vmax

i , j

qmin
i , j ≤ qi , j , s ≤ qmax

i , j

ΔPmin
i , j ≤ ΔPi , j , s ≤ ΔPmax

i , j

Epmin
i , j ≤ Epi , j , s ≤ Epmax

i , j

∨
_

W2
i , j

vi , j , s = v2
i , j , s

qi , j , s = q2
i , j , s

ΔPi , j , s = ΔP2
i , j , s

Epi , j , s = Ep2
i , j , s

vmin
i , j ≤ vi , j , s ≤ vmax

i , j

qmin
i , j ≤ qi , j , s ≤ qmax

i , j

ΔPmin
i , j ≤ ΔPi , j , s ≤ ΔPmax

i , j

Epmin
i , j ≤ Epi , j , s ≤ Epmax

i , j

, ∀i, j ∈ Ei , jands ∈ S

14

This disjunction can be written using a convex hull reformulation. The binary variable w1
i , j is equal to 1 if water

�ows from node i to node j and 0, on the contrary, and the binary variable w2
i , j is equal to 1 if water �ows from

node j to node i e 0, on the contrary. In this way:

[ ] [ ]
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vi , j , s = v1
i , j , s + v2

i , j , s, ∀i, j ∈ Ei , jands ∈ S (15)

vmin
i , j w1

i , j ≤ v1
i , j , s ≤ vmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S (16)

vmin
i , j w2

i , j ≤ v2
i , j , s ≤ vmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S (17)

qi , j , s = q1
i , j , s + q2

i , j , s, ∀i, j ∈ Ei , jands ∈ S (18)

qmin
i , j w1

i , j ≤ q1
i , j , s ≤ qmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S (19)

qmin
i , j w2

i , j ≤ q2
i , j , s ≤ qmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S (20)

ΔPi , j , s = ΔP1
i , j , s + ΔP2

i , j , s, ∀i, j ∈ Ei , jands ∈ S (21)

ΔPmin
i , j w1

i , j ≤ ΔP1
i , j , s ≤ ΔPmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S (22)

ΔPmin
i , j w2

i , j ≤ ΔP2
i , j , s ≤ ΔPmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S (23)

Epi , j , s = Ep1
i , j , s + Ep2

i , j , s, ∀i, j ∈ Ei , jands ∈ S (24)

Epmin
i , j w1

i , j ≤ Ep1
i , j , s ≤ Epmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S (25)

Epmin
i , j w2

i , j ≤ Ep2
i , j , s ≤ Epmax

i , j w2
i , j, ∀i, j ∈ Ei , jeands ∈ S (26)

w1
i , j + w2

i , j = 1, ∀i, j ∈ Ei , j
(27)

The uncertainties in the demand nodes imply in the use of possible pumps which could be necessary to satisfy
the water demands in the network, depending on the scenario being evaluated. The pump energy located in the
pipe i-j in scenario s and the pump annualized operation cost are given by:

Epow
i , j , s =

9.81
0.82qi , j , sEpi , j , s, ∀i, j ∈ Ei , jands ∈ S

28

Cpi , j , s = 0.24 ⋅ 8,000Epow
i , j , s, ∀i, j ∈ Ei , jands ∈ S

29

The pump e�ciency is 0.82, the energy cost per kWh is 0.24 and the number of total hours of pumping is 8,000.

The total annual cost in each scenario is composed by the pipe installation annual cost and by the pumps
annual operation cost, given by:
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TACs = ∑
i , j∈Ei , j

FAI ⋅ Costi , j + Cpi , j , s , ∀s ∈ S

30

The annualization factor of the installation cost for the extension of the WDN design in na years, subject the

annual interest rate e1, is:

FAI =
e1 1 + e1

na

1 + e1
na − 1

31

As a result, the complete optimization model for the WDN synthesis considering uncertainties in the demand
nodes and unknown �ow directions is:

( )

( )
( )
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min ∑s ∈Sprobs ⋅ TACs

s. a ∑ j∈Ej , i
q1

j , i , s − q2
j , i , s − ∑ j∈Ei , j

q1
i , j , s − q2

i , j , s = di , s, ∀i ∈ Nands ∈ S

  Pi , s + hi + Ep1
i , j , s − Ep2

i , j , s = Pj , s + hj + ΔP1
i , j , s − ΔP2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

  xi , j = ∑k ∈DDkyi , j , k, ∀i, j ∈ Ei , j

  Diami , j = ∑k ∈DDkyi , j , k, ∀i, j ∈ Ei , j

  Costi , j = ∑k ∈DLi , jCostD Dk yi , j , k, ∀i, j ∈ Ei , j

  Rugi , j = ∑k ∈DRkyi , j , k, ∀i, j ∈ Ei , j

  −
v i , j , s =

−
q i , j , s − ∑k ∈Dln

π
4 D2

k yi , j , k, ∀i, j ∈ Ei , jands ∈ S

 
Δ

−
P i , j , s = ln αLi , j + β

−
q i , j , s − ∑k ∈Dln Rβ

kDγ
k yi , j , k, ∀i, j ∈ Ei , jands ∈ S

  ∑k ∈Dyi , j , k = 1, ∀i, j ∈ Ei , j

 
e

−
v i , j , s = vi , j , s, ∀i, j ∈ Ei , jands ∈ S

 
e

−
q i , j , s = qi , j , s, ∀i, j ∈ Ei , jands ∈ S

 
eΔ

−
P i , j , s = ΔPi , j , s, ∀i, j ∈ Ei , jands ∈ S

  Pmin
i ≤ Pi , s, ∀i ∈ Nands ∈ S

  Epow
i , j , s =

9.81
0.82qi , j , sEpi , j , s, ∀i, j ∈ Ei , jands ∈ S

  Cpi , j , s = 0.24 ⋅ 8,000Epow
i , j , s, ∀i, j ∈ Ei , jands ∈ S

  TACs = ∑ i , j∈Ei , j
FAI ⋅ Costi , j + Cpi , j , s , ∀s ∈ S

  vi , j , s = v1
i , j , s + v2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

  vmin
i , j w1

i , j ≤ v1
i , j , s ≤ vmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S

  vmin
i , j w2

i , j ≤ v2
i , j , s ≤ vmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S

  qi , j , s = q1
i , j , s + q2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

( ) ( )

( )

( )
( ) ( )

( )
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min ∑s ∈Sprobs ⋅ TACs

  qmin
i , j w1

i , j ≤ q1
i , j , s ≤ qmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S

  qmin
i , j w2

i , j ≤ q2
i , j , s ≤ qmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S

  ΔPi , j , s = ΔP1
i , j , s + ΔP2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

  ΔPmin
i , j w1

i , j ≤ ΔP1
i , j , s ≤ ΔPmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S

  ΔPmin
i , j w2

i , j ≤ ΔP2
i , j , s ≤ ΔPmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S

  Epi , j , s = Ep1
i , j , s + Ep2

i , j , s, ∀i, j ∈ Ei , jands ∈ S

  Epmin
i , j w1

i , j ≤ Ep1
i , j , s ≤ Epmax

i , j w1
i , j, ∀i, j ∈ Ei , jands ∈ S

  Epmin
i , j w2

i , j ≤ Ep2
i , j , s ≤ Epmax

i , j w2
i , j, ∀i, j ∈ Ei , jands ∈ S

  w1
i , j + w2

i , j = 1, ∀i, j ∈ Ei , j

The three-stages procedure for considering uncertainties in WDN nodes demand can be described as:

i) In the �rst step the expected TAC is minimized with a probability of occurrence of 100% for the original
scenario. In this step the optimum design is achieved considering a unique nominal value for each uncertain
parameter. In this case, the annual pumping cost is zero.

ii) In the second step the expected TAC with probability of occurrence in all scenarios is minimized but with �xed
values for the discrete variables, given by the solution obtained in the �rst step. In this case, the annual
installation cost is �xed. The solution found in this stage is called deterministic solution.

iii) In the third stage the TAC is minimized with probability of occurrence in all scenarios with no �xed values for
the variables. In this way, the optimal design considering uncertainties in the nodes demand is achieved. The
solution found in this stage is called stochastic solution.

Case Studies
To test the applicability of the developed optimization model for the synthesis of WDN considering uncertainties
in the nodes demand, two case studies from the literature are used. In both cases, the parameters considered for
the Hazen-Williams equation are α = 10,667, β = 1,852andγ = 4,871. The scenarios are generated by
using a normal distribution in Excel. The model was coded in GAMS and global optimization techniques were
used to solve the problem. The lifetime of the WDN design is considered to be 20 years and the interest rate is
5% per year. Hydraulic pumps are considered if it is necessary to attend the demand in some node in each one
of the generated scenarios.
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Case study 1
The �rst benchmark problem is known as Two loop WDN, and is presented in Fig. 1. The network has 8 pipes
linking 7 nodes demand and 2 loops involving the nodes. The reservoir is considered the �rst node and its
demand is the summation of all other nodes. The water velocity must be bounded by 0.3 and 3 m/s and the
minimum acceptable pressure for all nodes is 30 m. The pipe diameter is selected from a set of available
commercial diameters, given in Table 1. The rugosity coe�cient is 130 for all pipes.

For this network, 30 scenarios were generated, with expected values and standard deviation for the water
demand in each one of the nodes given in Table 2. The problem has 4435 variables, being 128 discrete
variables. The deterministic solutions found by �xing the design variables, according to the problem solution
without assuming variations in the demand nodes is compared with the stochastic solution obtained without
�xing the variables, following the solution of the problem assuming the variation of water demand in the nodes.

Table 3 presents results achieved by the diameters and pipe �ow directions and the expected total annual cost,
according to each solution. Results shown that the WDN design by the stochastic approach reduce the expected
TAC in more than 2.6% in comparison to the deterministic solution. As the annual installation cost is greater in
the stochastic solution, the reduction in the expected TAC is due, mainly, to the necessity of using pumps to
satisfy the nodes demand in some scenarios in the deterministic design. Table 3 presents the differences
between the stochastic and deterministic solutions in some pipe diameters. It is related to the water velocity in
the pipes and to the use of energy of piping. To satisfy the necessary water demand, the greater the selected
diameter the greater the water velocity. It implies in more use of energy.

Table 1
– Available diameters for the Two loop WDN

Diameter (m) Cost ($/m) Diameter (m) Cost ($/m)

0.0254 2 0.3048 50

0.0508 5 0.3556 60

0.0762 8 0.4064 90

0.1016 11 0.4572 130

0.1524 16 0.5080 170

0.2032 23 0.5588 300

0.2540 32 0.6096 550

Table 2
– Water demand in the nodes for the Two loop WDN

Water demand (m3/h) Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Expected value 100 100 120 270 330 200

Standard deviation 4.88 3.92 8.13 18.29 31.52 15.42
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Table 3
– Results for the Two loop WDN

Pipe Deterministic solution Stochastic solution

1 0.4572 (1–2) 0.4572 (1–2)

2 0.2540 (2–3) 0.3556 (2–3)

3 0.4064 (2–4) 0.3556 (2–4)

4 0.1016 (4–5) 0.0254 (4–5)

5 0.4064 (4–6) 0.3556 (4–6)

6 0.2540 (6–7) 0.0254 (6–7)

7 0.2540 (3–5) 0.3556 (3–5)

8 0.0254 (7 − 5) 0.3048 (5–7)

expTAC ($/year) 35,757.05 34,798.27

Case study 2
The second case study is a real WDN situated in Brasil and is known as the Modi�ed Grande Setor WDN.
Figure 2 presents the network topology, with 8 pipes linking 7 demand nodes, with 2 loops and a water reservoir,
represented by the seventh node. Its demand is given as the summation of all other nodes. The water velocity
must be between 0.2 and 3 m/s and the acceptable minimum pressure is 25 m for all nodes. The pipe diameters
are selected from a set of available commercial diameters, given in Table 4.

In this case study, 20 scenarios were generated with the expected values and the standard deviation for the
water demand in each node presented in Table 5. The problem has 2981 variables, being 96 discrete variables.
As in case study 1, the deterministic solution obtained �xing the design variables, according to the problem
solution without assuming variability in the water nodes demand is compared with the stochastic solution
obtained without �xing the variables, following the problem solution assuming the variation in the nodes
demand.

Table 6 presents the results obtained for the diameters and the pipe �ow directions and the expected total
annual cost, according to each solution. Results shown that the stochastic solution reduce the TAC in 1.2%
when compared to the deterministic solution. It is due, mainly, to the necessity of using pumping to satisfy the
water nodes demand in some scenarios in the deterministic solution. As the installation cost is greater in the
stochastic solution, the reduction in the expected TAC is due to the pumping system to satisfy the nodes
demand in some scenarios of the deterministic solution.
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Table 4
– Available diameters for the Modi�ed Grande Setor WDN

Diameter

(m)

Cost

(US$/m)

Rugosity coe�cient Diameter

(m)

Cost

(US$/m)

Rugosity coe�cient

0.1084 23.55 145 0.3662 158.93 130

0.1564 31.90 145 0.4164 187.50 130

0.2042 43.81 145 0.4666 218.12 130

0.2520 59.30 145 0.5180 257.80 130

0.2998 76.12 145 0.6196 320.15 130

Table 5
– Water demand for the Modi�ed Grande Setor WDN

Water demand (L/s) Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Expected value 84.29 47.78 80.32 208.60 43.44 40.29

Standard deviation 8.05 6.85 11.28 19.93 3.35 7.41

Table 6
– Results for the Modi�ed Grande Setor WDN

Pipe Deterministic solution Stochastic solution

1 0.6196 (7 − 1) 0.6196 (7 − 1)

2 0.2520 (1–2) 0.2998 (1–2)

3 0.1084 (2–3) 0.2042 (2–3)

4 0.2998 (4 − 3) 0.2998 (4 − 3)

5 0.6196 (1–4) 0.6196 (1–4)

6 0.2520 (1–5) 0.2520 (1–5)

7 0.1084 (5–6) 0.1084 (5–6)

8 0.2520 (4–6) 0.2520 (4–6)

expTAC (US$/ano) 150,877.70 148,942.16

Conclusions
In the present paper an optimization model with MINLP formulation was developed using disjunctive
mathematical programming for the synthesis of water distribution networks considering uncertainties in the
nodes demand and unknown �ow directions. The main objective is the minimization of the total annual cost,
composed by the annual installation cost and the pumping energy cost. The water demand variation was
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modeled as a set of �nite scenarios generated from a normal distribution in Excel. The model was implemented
in GAMS and the global optimization solver BARON was used.

The problem was solved in three stages. First, only a unique nominal value for each uncertain parameter was
used. Second, for all scenarios, in which the independent scenarios variables are �xed to the solution obtained
in the �rst step (deterministic solution). Third, for all scenarios, no variable is �xed (stochastic solution). Two
case studies were used to test the applicability of the developed model and results shown that under
uncertainties, the stochastic solution improve the deterministic one.

The optimization problem of WDN optimization with uncertainties in the nodes demand and unknown �ow
directions is not trivial, due to the complexity inherent to the nonlinearity of the system. It is necessary a �nite
set of applications of the developed model, according to the number of generated scenarios to the WDN
evaluation.
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