
Eur. Phys. J. Plus          (2024) 139:69 
https://doi.org/10.1140/epjp/s13360-024-04855-3

Regular Art icle

Analysis of the geometry of the zero-velocity curves in the N-body ring problem
depending on the mass ratio parameter

Zahra Boureghdaa , M. C. Martínez-Beldab , Juan F. Navarroc

Department of Applied Mathematics, University of Alicante, Alicante, Spain

Received: 4 October 2023 / Accepted: 1 January 2024
© The Author(s) 2024

Abstract The purpose of the present study is the investigation of the effect of the mass ratio parameter, β, on the geometry of the
zero-velocity curves, when there are N � 3, 4, . . . , 100 peripheral bodies. It is well known that there is a bifurcation value of the
β parameter in the N-body ring problem that produces a change in the number of stationary solutions in the system from 5N to 3N .
By examining the behavior of the critical values of the Jacobi constant that define each of the zones of stationary solutions, we have
unveiled the existence of other bifurcations or critical values of β in the scenario with 5N stationary solutions, which cause different
changes in the geometry of the zero-velocity curves, which in turn affect the threshold for the total opening of the curves of zero
velocity.

1 Introduction

For decades, the N-body problem has captivated the interest of scientists, to investigate and improve the comprehension of various
celestial phenomena, such as exoplanetary systems, the Saturn’s rings, and Trojan asteroids. These scientific investigations provide a
contemporary challenge in unraveling the processes of Solar System formation. Besides that, recent researches have seen an increase
in the amount of effort devoted to understanding the dynamics of these celestial bodies, near their equilibrium points, since these
points can maintain a relatively stable position. This fact has led to design and develop several space exploration missions with
numerous benefits [1], such as the launch of the James Webb Space Telescope (JWST) in 2021, that uses a special type of orbits,
known as halo orbits of the Sun-Earth system [2, 3], and the satellites Genesis, SOHO, MAP, and ACE [4].

The first approximation of theN-body problem was presented by Maxwell in his investigation of Saturn’s rings [5] on the so-called
restricted N-body problem, which deals with the motion of a small particle under the gravitational influence of N + 1 bodies in
a planar ring configuration. Several authors have carried out qualitative research to improve our understanding on the behavior of
the motion of that small body in a complex physical system [6–19]. For instance, [8] and [11] studied the equilibrium points and
the zero-velocity curves (i.e., the contour lines that limit the zones where the particle’s motion is allowed, denoted as ZVC in the
following), distinguishing between the presence or not of a central body and unveiling a bifurcation in the number of stationary
solutions based on the mass ratio parameter β; [10] determined the stability of the stationary solutions and their parametric variations,
extending the problem to the case when the central primary is assumed to be ellipsoidal or a source of radiation, founding also
bifurcations depending on β; [13] made a review of the change of the equilibrium points, their stability, and bifurcation points, and
used new techniques to delimit the regions of chaotic behavior, classifying different kinds of orbits (escape, collision, and bounded
orbits) and also obtaining new families of periodic orbits for some values of N ; [15–18] studied the escape dynamics through the use
of surfaces of a section unveiling structures in the basins of escape dealing with the stable and unstable manifolds of the unstable
Lyapunov orbits present in the windows of escape of the potential well; [20, 21] investigated the effects of introducing perturbation
parameters such as radiation source; [19] considered the impact of small perturbations in the Coriolis and centrifugal forces, for
N � 4, 7, 32, in order to numerically illustrate the effect of different parameters on the existence of equilibrium points and regions
of motion; and [12] analyzed the shape of the ZVC depending on β for N � 10 peripheral bodies, obtaining new critical values of
β that affect the geometry of the ZVC. However, the influence of the parameters of the system in the geometry of the ZVC when N
increases is far from being completely unveiled. The existing studies present certain limitations in the prediction of the behavior of
the ZVC depending on the mass ratio parameter and the Jacobi constant of the system, as the number of peripheral bodies affects
the system dynamics.
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The purpose of the present study is to do an extensive and qualitative study of the ZVC in the planar N-body ring problem for an
increasing number of the peripheral bodies, up to N � 100, depending on the values of β and the Jacobi constant under the presence
of a central primary, that is, when β > 0, and considering spherical and homogeneous primaries with equal masses. In Sect. 2, we
provide a brief summary of the equations of motion of a particle subject to the gravity field of a N-body ring arrangement revolving
around a central mass. Section 3 presents a review of the location and linear stability of the stationary solutions of this dynamical
system. In Sect. 4, we focus on the study of the ZVC, discussing the influence of the mass ratio parameter, β, on their geometry
for the values of N mentioned above. Finally, in the last section, we extract the conclusions and give future perspectives of this
investigation.

2 The general equations of motion

Let us assume a reference frame spinning at an angular velocity equal to the unit, with its origin corresponding toward the main
body’s center of mass and the x axis fixed along the line connecting the center mass to a single of the primaries in the ring. The
non-dimensional equations of motion characterizing the planar motion of a particle S of infinitesimal mass (hence referred to as the
test particle) under the effect of this configuration are defined by [see, for instance, 8, 9]:

ẍ − 2 ẏ � ∂U

∂x
, ÿ + 2ẋ � ∂U

∂y
. (1)

The potential function U(x, y) is described by the following general expression

U (x , y) � 1

2
(x2 + y2) +

1

�

(
β

r0
+

N∑
ν�1

1

rν

)
,

where β � m0/m represents the ratio of the central mass, m0, with one of the peripheral masses, m,

r0 �
√
x2 + y2

is the test particle’s distance from the central body,

rν �
√

(x − x∗
ν )2 + (y − y∗

ν )2,

for ν � 1, 2, . . . , N , are the distances between the test particle and the N peripheral primaries of the system, while the quantities
x∗
ν and y∗

ν represent the positions of the peripheral bodies, which are written as

x∗
ν � 1

2 sin θ
cos(2(ν − 1)θ ), y∗

ν � 1

2 sin θ
sin(2(ν − 1)θ ).

Lastly, the parameter � is defined by

� � M(� + βM2),

where

� �
N∑

ν�2

sin2 θ cos((N/2 + 1 − ν)θ )

sin2((N + 1 − ν)θ )
�

N∑
ν�2

sin2 θ

sin((ν − 1)θ )
,

and

M � √
2(1 − cos ψ) � 2 sin θ.

In such expressions, ψ represents the angle between both the central and two succeeding peripheral primaries, and θ � ψ/2 � π/N .
It is straightforward to demonstrate that the set of equations (1) has a Jacobi-type integral of motion, determined by

C � 2U (x , y) − (ẋ2 + ẏ2), (2)

in which C is the constant of Jacobi.
The regions of the test particle’s possible motion are bounded by the zero-velocity curves, which are obtained from equation (2),

and read as follows:

C � 2U (x , y) � x2 + y2 +
2

�

(
β

r0
+

N∑
ν�1

1

rν

)
. (3)
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Fig. 1 Partial derivatives of U(x, y) for N � 5, β � 0.5 (left panel), and N � 5, β � 2.0 (right panel), depicted in black color. The critical points are
organized in equal arcs on concentric circumferences from the center. For β � 0.5 there are five circumferences and for β � 2.0 there are three of them,
depicted in red, magenta, green, gray and brown colors

3 Zones of stationary solutions

The stationary solutions of this dynamical system, that is, its equilibrium points, satisfy the following nonlinear system

∂U

∂x
� 0,

∂U

∂y
� 0. (4)

Therefore, they are the critical points of the potential function U(x, y), as well. Note also that the potential function has multiple
symmetries: it is symmetric with respect to the line from the center to every peripheral body as well as to the line from the origin to
the bisector across adjacent primaries. Then, in order to determine the location of the critical points of U(x, y), it is enough to focus
on the angular portion [0, π/N ]. Equation (4) can be solved numerically, for instance, by means of the Newton–Raphson method,
and the critical points can be classified by studying the sign of the Hessian matrix of U(x, y).

Due to the fact that the stationary points satisfy the equation of the integral of motion of the system (3), they are also characterized
by a particular value of the constant of Jacobi, C, which will be here named as critical value of C. Then, we can classify the
stationary points attending to their associated critical value of C. According to [8], when β > 0:

• The stationary solutions are organized at the intersections of concentric circumferences with radial lines generating equal angles
π/N between them due to the symmetries of the potential function.

• The stationary points can be grouped in subsets of N points such that all the points in the subset belong to the same circumference,
that is, each N equilibrium points are at the same distance from the center. Then, each subset of points with the same radius defines
a zone and it is associated with the same critical value of the Jacobi constant.

• The number of stationary solutions depends on N and β, and the radii of the different zones increase as N increases.
• There can be from a minimum of three to a maximum of five zones, each of them containing N equilibrium points. We shall refer

to them as zones A1, A2, B, D1, and D2, with associated critical value of the constant of Jacobi denoted as CA1 , CA2 , CB , CD1 ,
and CD2 , respectively. These critical values can be computed by means of equation (3).

• There are always N points in each zone, but the number of zones varies depending on the value of the mass ratio parameter, β.
There exists a value β∗

N for each N such that, there are five zones when β is in the interval (0, β∗
N ), and there are three zones

when β > β∗
N , which are A1, D1, and D2. When β � β∗

N there are 4N equilibrium points. That is, there is a bifurcation in
the N-body problem depending on the mass ratio parameter, β∗

N , such that there is a variation from 5N to 3N total number of
stationary solutions in the system.

In Fig. 1, we show two examples of the curves that result for the partial derivatives of U(x, y) (equations (4), as well as the
circumferences containing the equilibrium points, when N � 5 and β � 0.5, 2.0. In the first case, there are 5N equilibrium points,
that is, five zones, whereas in the second one, there are 3N equilibrium points, that is, there are three zones.

The bifurcation value of β for each N , β∗
N , can be found numerically following the procedure described in [19]. In Table 1, we

show the total number of stationary solutions and the range of values allowed for β in each case for several values of N . It can be
remarked that the length of the interval (0, β∗

N ) such that the corresponding dynamical system has 5N equilibrium points increases
when N increases.
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Table 1 Intervals of β such that
the system has 5N or 3N
stationary solutions for several
values of N

N 5N stat. sol. 3N stat. sol.
(0, β∗

N ) (β∗, +∞)

3 (0,0.014021) (0.014021,∞)

4 (0,0.18708) (0.18708,∞)

5 (0,0.67771) (0.67771,∞)

6 (0,1.6084) (1.6084,∞)

7 (0,3.0988) (3.0988,∞)

8 (0,5.2731) (5.2731,∞)

9 (0,8.2558) (8.2558,∞)

10 (0,12.16) (12.16,∞)

11 (0,17.13) (17.13,∞)

12 (0,23.26) (23.26,∞)

13 (0,30.7561) (30.7561,∞)

14 (0,39.58) (39.58,∞)

15 (0,50.02) (50.02,∞)

16 (0,62.11) (62.11,∞)

17 (0,76.05) (76.05,∞)

18 (0,91.91) (91.91,∞)

19 (0,109.83) (109.83,∞)

20 (0,129.92) (129.92,∞)

32 (0,592.8242) (592.8242,∞)

The pattern of the location of the equilibrium points for each zone is also known. Due to the symmetries of the potential function,
all the equilibrium points are placed either in the line that joins the origin with any of the primaries or in the line from the center to
the bisector of two consecutive primaries. The characteristics of each of the possible zones are as follows [see, for instance, 8]:

• The closest zone to the origin (denoted as A1) represents the stationary points which lie on the lines connecting the central body
with a peripheral primary and they are located between them. These points are known as inner collinear points.

• The second closest zone to the origin (denoted as A2) represents the stationary points which relate the bisector between two
successive primaries and are between the central body and the primaries. These points are known as inner between-masses points.

• The third zone (denoted as B) comprises the stationary points which lie also on the same bisector but are between two successive
peripheral primaries. These points are known as peripheral between-masses points.

• The fourth zone (denoted as D2) contains the stationary points which lie also on the bisector between two subsequent peripheral
primaries, but independent of them. These points are known as outer island points.

• The outermost zone (denoted as D1) represents the stationary points that relate with the identical lines as the primary zone;
however, they are not part of the peripheral primaries. These points are known as outer collinear points.

When β grows, the zone delimited by the inner between-masses, A2, and the one created by the peripheral between-masses, B,
approach each other up to the bifurcation point β∗

N , where they both disappear. Besides, when β → ∞, the radii of the three zones
that remain tend to the radius of the ring, rN � 1/(2 sin θ ) � 1/M [13]. Note that the radius of the ring gets bigger with N .

In Fig. 2, we illustrate the evolution of the zero-velocity curves and the location of the stationary solutions for N � 5 and the
mass ratio values β � 0.5 and 2.0, which belong to the intervals (0, β∗

N ) and (β∗
N , +∞), respectively. The red asterisks mark the

position of the inner collinear stationary points (zone A1), the inner between-masses points are depicted with magenta crosses (zone
A2), the green boxes mark the location of the peripheral between-masses points (zone B), the outer island points are plotted with
gray diamonds (zone D2), and the brown circles mark the position of the outer collinear points (zone D1).

3.1 The stability condition of the equilibrium points

The stability of the equilibrium points determined by Eq. (4), can be analyzed by finding the roots of the following characteristic
equation:

λ4 + (4 −Uxx −Uyy)λ2 + (UxxUyy −U 2
xy) � 0. (5)

An equilibrium point is said to be linearly stable if the eigenvalues of the characteristic equation are purely imaginary [22]. Several
authors [13, 23–25] have studied their linear stability, which permits us to recall the next proposition:

Theorem 1 The equilibrium points of the (N + 1)−body ring problem satisfy the following properties:
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Fig. 2 Zero-velocity curves and stationary points for N � 5 and β � 0.5, 2.0. On the left panel, for β � 0.5, we show an example of each of the five
different stages of the zero-velocity curves, as well as the location of the 25 stationary points. On the right panel, for β � 2.0, we show an example of each of
the three different stages of the zero-velocity curves and the location of the 15 stationary points. The stationary points that belong to the same circumference
(zone) are plotted with the same symbol and color. The primaries are depicted with black dots

i) The equilibrium points that are located in zones A1, B, and D1 are always unstable.
ii) For all N, there exists a β1(N ) such that if β > β1(N ) the equilibrium points located in zone D2 are stable, with

β1(N ) � 7(13 + 4
√

10) I (3) N 3

4π3 ,

where

I (3) �
+∞∑
k�1

1

k3 .

iii) The equilibrium points of zone A2 are stable if and only if the following conditions are satisfied:

– N > 10930,

– β < 2N+S
4

(
27

4(S/N−6)

)−3/2

,

where S � 2N
π

log

(
2N
π
eγ

)
− π

36N + O(1/N 2), and γ stands for the Euler constant.

4 The zero-velocity curves and their relation with β

In order to fulfill the main objective of this research, we have carried out an extensive analysis of the geometry of the zero-velocity
curves for several values of β in the intervals (0, β∗

N ) and (β∗
N , +∞), for N � 3, 4, . . . , 100. The zero-velocity curves are

characterized by three parameters: the number of peripheral primaries, N , the mass ratio parameter, β, and the constant of Jacobi,
C. From a first analysis of the zero-velocity contours for several values of β, we can extract the following conclusions:

• When β > β∗
N , there are only three (different) critical stages of the zero-velocity curves, which are in accordance with the three

different zones (A1, D2, and D1) created by the stationary solutions (see the right panel of Fig. 2). In this scenario, the zero-velocity
curves are topologically equivalent when the value of the Jacobi constant decreases for different values of β.

• When 0 < β < β∗
N , there are five (different) critical stages of the zero-velocity contours, which are in accordance with the five

different zones (A1, A2, B, D2, and D1) created by the stationary solutions (see the left panel of Fig. 2). However, contrarily to
the previous scenario, the transitions in the zero-velocity curves when value of the Jacobi constant decreases present a different
pattern depending on β.

A deeper analysis of the influence of β on the evolution of the zero-velocity curves when 0 < β < β∗
N unveils that there are some

critical values of β in the N-body ring problem that are directly related to the different patterns of the zero-velocity curves in this
scenario, as we will explain in the next section.
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Table 2 Values of βEi , for i � 1, 2, . . . , 7, for several values of N from 3 to 100

N βE1 βE2 βE3 βE4 βE5 βE6 βE7
CA1 � CD2 CD2 � CA2 CD1 � CA1 CD1 � CA2 CB � CA1 CD1 � CA2 CB � CD1

3 – – – – 0.00642192204 – –

4 – – – 0.0211687364 0.1056265308 – –

5 0.0145514611 0.01464692201 0.1369728160 0.1545667160 0.4085592184 – –

6 0.1459689364 0.14889593300 0.379749559 0.4316140001 0.9962877306 – –

7 0.4142013834 0.42549434600 0.7748770500 0.884634632 1.941930973 2.981730512 3.004145950

8 0.8384906000 0.86529626070 1.349449902 1.548632560 3.316234786 4.433851700 4.712717720

9 1.4401360100 1.49136944800 2.130267000 2.461349210 5.188900200 6.174944211 6.981986165

10 2.2406440000 2.3272540000 3.143930200 3.664162200 7.629044000 8.21202000 9.484532727

11 3.26142052000 3.396645600 4.416923040 5.203657260 10.70540910 10.54097200 13.45723370

12 4.5236971800 4.723304610 5.975656480 7.134380950 14.48647910 13.14746300 17.79742110

13 6.0485114800 6.331021370 7.846500000 9.524164300 19.04054615 16.0024440 22.96287172

14 7.8567035900 7.856703800 10.05579500 12.46617400 24.43575935 19.0504600 29.02136220

15 9.9689203500 10.48485800 12.62986400 16.11408300 30.74015400 22.17466000 36.04066800

16 12.405621050 13.07860610 15.59502202 20.85833604 38.02168000 25.02070420 44.08853809

17 15.187079000 16.04866200 18.97757011 – 46.34820800 – 53.23270200

18 18.333398100 19.41884300 22.80380910 – 55.78755050 – 63.54086020

19 21.864507200 23.21296156 27.10003340 – 66.40748000 – 75.08066880

20 25.800171400 27.45482601 31.89252614 – 78.27570080 – 87.91978320

30 91.651430000 99.73504210 112.8933603 – 280.4930500 – 302.6404040

40 218.69901000 242.9541000 272.4168100 – 681.8690000 – 721.5828000

50 424.76842000 480.8720012 536.7109740 – 1349.873540 – 1412.206042

60 726.89230000 837.2272000 932.0210430 – 2351.931710 – 2441.928150

70 1141.4900000 1335.770000 1484.580000 – 3755.451000 – 3878.153900

80 1684.4765000 2000.200000 2220.611000 – 5627.823000 – 5788.274500

90 2371.3619100 2854.260610 3166.342000 – 8036.430470 – 8239.670000

100 3217.2930000 3921.662000 4348.0000 – 11048.65600 – 11299.72500

4.1 Critical values of β in the interval (0, β∗
N )

When β ∈ (0, β∗
N ), there exist some critical values that explain the differences in the transitional shapes of the zero-velocity curves.

These critical values of the parameter β are found by studying the intersections of the curves that provide the relation between β

and each of the five critical values of the Jacobi constant, CA1 , CA2 , CB , CD2 , and CD1 . The latter are obtained, as mentioned in
Sect. 3, by computing numerically the stationary solutions of the system, that must satisfy the system of Eq. (4), and substituting
them in Eq. (3), that is, each critical value C j is associated with a set of stationary solutions of the system. In order to compute the
critical values of β with a high level of precision, we used an algorithm based on the bisection method, implemented in the software
Maple, so that we started by searching for an initial interval of β such that there is a change in the order of magnitude of two critical
values of the Jacobi constant, that is, there is a change from Ci < C j to Ci > C j or vice versa, with i , j ∈ {A1, A2, B, D2, D1},
i �� j , and next we continuously narrowed down this interval up to a precision given by |Ci − C j |≤ 10−10, obtaining the critical
value of β such that Ci � C j .

Our analysis reveals that there can appear up to seven critical values of β, here named as βEi , i � 1, 2, . . . , 7, which correspond,
respectively, to the following intersections between the critical values of the Jacobi constant: CA1 � CD2 , CA2 � CD2 , CD1 � CA1 ,
CA2 � CD1 , CB � CA1 , CA2 � CD1 , and CB � CD1 . Note that CA2 and CD1 can intersect twice, so that βE4 and βE6 stand for the
first and the second intersections of CA2 and CD1 , respectively.

In Table 2, we show the values of βEi for several values of N in the interval [3, 100]. Let us observe that the maximum number of
intersections occurs when 7 ≤ N ≤ 16, and they satisfy the relation βEi < βEi+1 , for i � 1, 2, . . . , 6, except when 11 ≤ N ≤ 16,
for which βE5 > βE6 , that is, the second intersection between CA2 and CD1 appears before the intersection between CB and CA1 .
When there are three peripheral bodies, only the values of CB and CA1 intersect for some β, which corresponds to βE5 in our
notation; for N � 4 only the values βE4 and βE5 appear; for N � 5, 6 there appear just the first five intersections, that is, βEi , for
i � 1, 2, . . . , 5, and they also verify that βEi < βEi+1 ; and finally, for 17 ≤ N ≤ 100, there are, as well, five intersections, but they
correspond to the values βEi , for i � 1, 2, 3, 5, 7, which satisfy also the relation βE1 < βE2 < βE3 < βE5 < βE7 .
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Fig. 3 Evolution of the bifurcation
value of β, β∗

N , and the critical
values βEi , i � 1, 2, . . . , 7, for
3 ≤ N ≤ 10. The solid lines
correspond to a polynomial
interpolation of the existing values
of βEi , for i � 1, 2, . . . , 7, and
the dotted lines represent an
extrapolation or prediction of
these values when the intersection
that they define does not happen
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In Fig. 3, we show a plot of comparison between the evolution of the bifurcation value β∗
N and the critical values βEi , for i � 1,

2, 3, . . . , 7, when 3 ≤ N ≤ 10, with colored solid lines. In addition, in dotted lines, we have depicted a prediction of the critical
values of β for the values of N where they do not occur, by means of a polynomial interpolation. Let us observe that when the curves
of βEi are below the curve of β∗

N , the critical values exist, whereas when they are above it (the dotted line corresponding to the
extrapolated values), the critical values do not appear. This fact explains the absence of intersection between some zones for certain
values of N . In summary, we can extract the following conclusions:

• The intersection values βEi , i � 1, 2, 3, for N � 3, 4, and βE4 , for N � 4 do not appear due to the fact that the two inner zones
A1 and A2 do not exist when β < β0 ≈ 0.001 [12], and the critical values βEi , for i � 1, 2, 3, 4, which define the intersection
of the zones A1 and A2 with the other zones, are expected to arise in such range of values.

• For N � 3, 4, 5, 6, the critical values βE6 and βE7 do not exist due to the fact that they are predicted to increase beyond the
bifurcation value β∗

N , but in such case, the zones A2 and B disappear. Therefore, the intersections defined by βE6 and βE7 cannot
occur because they involve the zone D1 with A2 and B, respectively.

In addition, we can conclude that for N > 16, the values βE4 and βE6 do not exist due to the fact that the adjacent zones A1, A2

and D1, D2 become too close to each other [8].
On the other hand, the critical values of β provide also information about the relation of order between the critical values of the

Jacobi constant, Ci , for i � A1, A2, B, D2, D1, that define the different zones of stationary solutions. Indeed, for each sub-interval
(βEi , βEi+1 ) there is a fixed order in these values, which varies depending on the number of peripheral bodies, N . These different
patterns are shown in Tables 3, 4, and 5. Note that they are in correspondence with the information provided by Table 2. We have
also included in these tables the relation of order of the critical values of C when β > β∗

N , for which there are only the three zones
A1, D2, D1.

According to the information provided by these tables, we can set the following relations between the critical values of the Jacobi
constant for N � 3, 4, 5, . . . , 100:

• For every β > 0, the relation CD1 > CD2 is always satisfied.
• For β ∈ (0, β∗

N ), the two extra zones that appear, A2 and B (which are not present if β > β∗
N ) always satisfy the relations

CA1 > CA2 , CB > CA2 , and CB > CD2 .
• For β > β∗

N , the relation CA1 > CD1 > CD2 always holds, which explains the fact that the transitions in the shape of the
zero-velocity curves for different values of C are topologically equivalent for different values of β and N .

Then, these relations are also consistent with the fact that there can only be up to a maximum of six different intersections between
the values CA1 , CA2 , CB , CD2 , and CD1 from a maximum of ten that could happen theoretically.

4.2 Parametric evolution of the zero-velocity curves

As it has been mentioned previously, when 0 < β < β∗
N , the critical transitions of the zero-velocity curves, defined by the five

critical values of the Jacobi constant, are not topologically equivalent, that is, they evolve differently depending on the value of β.
However, it is possible to identify a pattern with respect to this parameter depending on each of the sub-intervals that are created by
the values βEi , i � 1, 2, . . . , 7. In Figs. 4, 5, 6, 7, 8, and 9, we illustrate some examples of the zero-velocity curves for one value of
β in each of the sub-intervals (βEi , βEi+1 ), for N � 8, N � 11, and N � 17, respectively. The graphs are ordered from the point
of view of their associated value of the Jacobi constant, from highest to lowest values. The white regions denote the areas where
the particle’s motion is allowed whereas the motion is not possible in the gray ones. Our analysis reveal that the geometry of the
zero-velocity curves is influenced by the appearance of each of the critical values βEi , i � 1, . . . , 7, that is, they create certain effect
in the shape of the zero-velocity curves. This effect is highlighted in Figs. 4, 5, 6, 7, 8 and 9 by coloring the boundary of the two
consecutive panels or sub-figures where there is a change in the pattern of the zero-velocity curve, with a color code in accordance to
Fig. 3, that is, the red, brown, blue, violet pink, green, orange, and cyan colors indicate the effect of βEi , i � 1, . . . , 7, respectively.
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Table 3 Effect of the mass ratio
parameter β on the arrangement of
the critical values of the Jacobi
constant CA1 , CA2 , CB , CD2 , and
CD1 , when N � 7, 8, 9, 10

Sub-intervals created by the critical values of β Order of the critical values of Ci , i � A1, A2, B, D2, D1

β ∈ (0, βE1 ) CB > CD1 > CD2 > CA1 > CA2

β ∈ (βE1 , βE2 ) CB > CD1 > CA1 > CD2 > CA2

β ∈ (βE2 , βE3 ) CB > CD1 > CA1 > CA2 > CD2

β ∈ (βE3 , βE4 ) CB > CA1 > CD1 > CA2 > CD2

β ∈ (βE4 , βE5 ) CB > CA1 > CA2 > CD1 > CD2

β ∈ (βE5 , βE6 ) CA1 > CB > CA2 > CD1 > CD2

β ∈ (βE6 , βE7 ) CA1 > CB > CD1 > CA2 > CD2

β ∈ (βE7 , β∗
N ) CA1 > CD1 > CB > CA2 > CD2

β > β∗
N CA1 > CD1 > CD2

In the following, we provide an extensive description of those effects, which have been organized by subsections depending on
the number of peripheral primaries, N , for the shake of clarity.

4.2.1 Scenario with N < 11

1.- When β ∈ (0, βE1):

• If C > CB , the zero-velocity curves start determining an open outer space of motion and N + 1 closed areas surrounding the
primaries with no connection between them. Then, the particle is trapped, and the motion is only possible around the masses.

• If CB > C > CD1 , the particle may move from one peripheral primary to another because there are opened windows between
the primaries. However, transport between the central body and the peripheral masses is not possible, owing to the fact that there
appears an annulus around the central body.

• If CD1 > C > CD2 , the external closed area shrinks and decomposes into N isolated islands, creating N windows through which
the particle can escape. However, there is still not possible escape from the center area as the annulus remains.

• If CD2 > C > CA1 , the N islands disappear, but the annulus remains.
• If CA1 > C > CA2 , the annulus that surrounded the center body opens into N small isolated islands, so that the particle can

escape from the system.

2.- When β ∈ [βE1 , βE2 ):

• The first three transitions, as well as the last one, are equivalent to the previous case.

Table 4 Effect of the mass ratio
parameter β on the arrangement of
the critical values of the Jacobi
constant CA1 , CA2 , CB , CD2 , and
CD1 , when N � 11, 12, . . . , 16

Sub-intervals created by the critical values of β Order of the critical values of Ci , i � A1, A2, B, D2, D1

β ∈ (0, βE1 ) CB > CD1 > CD2 > CA1 > CA2

β ∈ (βE1 , βE2 ) CB > CD1 > CA1 > CD2 > CA2

β ∈ (βE2 , βE3 ) CB > CD1 > CA1 > CA2 > CD2

β ∈ (βE3 , βE4 ) CB > CA1 > CD1 > CA2 > CD2

β ∈(βE4
, βE6

) CB > CA1 > CA2 > CD1 > CD2

β ∈ (βE6
, βE5

) CB > CA1 > CD1 > CA2 > CD2

β ∈(βE5
, βE7

) CA1 > CB > CD1 > CA2 > CD2

β ∈ (βE7 , β∗
N ) CA1 > CD1 > CB > CA2 > CD2

β > β∗
N CA1 > CD1 > CD2

The bold stands for the changes in
the order of the critical values of β

with respect to the previous table

Table 5 Effect of the mass ratio
parameter β on the arrangement of
the critical values of the Jacobi
constant CA1 , CA2 , CB , CD2 , and
CD1 , when N � 16, 17, . . . , 100

Sub-intervals created by the critical values of β Order of the critical values of Ci , i � A1, A2, B, D2, D1

β ∈ (0, βE1 ) CB > CD1 > CD2 > CA1 > CA2

β ∈ (βE1 , βE2 ) CB > CD1 > CA1 > CD2 > CA2

β ∈ (βE2 , βE3 ) CB > CD1 > CA1 > CA2 > CD2

β ∈(βE3
, βE5

) CB > CA1 > CD1 > CA2 > CD2

β ∈(βE5
, βE7

) CA1 > CB > CD1 > CA2 > CD2

β ∈ (βE7 , β∗
N ) CA1 > CD1 > CB > CA2 > CD2

β > β∗
N CA1 > CD1 > CD2

The bold stands for the changes in
the order of the critical values of β

with respect to the previous tables
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Fig. 4 Curves of zero velocity for N � 8 and β � 0.5, 0.85, 1.0, 1.4. From left to right and from top to bottom: β � 0.5 and C � 12.0, 11.0, 10.5, 10.3,
10.194; β � 0.85 and C � 11.5, 10.5, 10.15, 10.015, 10.01; β � 1.0 and C � 11.0, 10.5, 10.0, 9.92, 9.90; β � 1.4 and C � 11.0, 10.0, 9.67, 9.66, 9.61
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Fig. 5 Curves of zero velocity for N � 8 and β � 2.5, 4.0, 4.5, 4.9. From left to right and from top to bottom: β � 2.5 and C � 9.5, 9.15, 9.02, 8.95, 8.9;
β � 4.0 and C � 9.0, 8.4, 8.31, 8.29, 8.25; β � 4.5 and C � 8.5, 8.25, 8.13, 8.115, 8.1; β � 4.9 and C � 8.5, 8.1, 7.99, 7.98, 7.96
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Fig. 6 Curves of zero velocity for N � 11 and β � 3.0, 3.3, 3.5, 5.0. From left to right and from top to bottom: β � 3.0 and C � 17.4, 17.0, 15.9, 15.8,
15.78; β � 3.3 and C � 17.5, 16.0, 15.7, 15.637, 15.63; β � 3.5 and C � 17.0, 16.0, 15.6, 15.54, 15.519; β � 5.0 and C � 16.0, 15.0, 14.88, 14.857,
14.8
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Fig. 7 Curves of zero velocity for N � 11 and β � 10.0, 10.6, 10.8, 13.47. From left to right and from top to bottom: β � 10.0 and C � 14.0, 13.5, 13.4,
13.347, 13.3; β � 10.6 and C � 13.4, 13.359, 13.3, 13.219, 13.2; β � 10.8 and C � 13.5, 13.315, 13.2, 13.18, 13.15; β � 13.8 and C � 13.0, 12.8,
12.69, 12.68, 12.63
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Fig. 8 Curves of zero velocity for N � 17 and β � 12.0, 15.5, 17.0. From left to right and from top to bottom: β � 12.0 and C � 33.9, 32.0, 31.3, 31.2,
31.1; β � 15.5 and C � 32.4, 30.5, 30.2, 30.16, 30.15; β � 17.0 and C � 31.6, 30.0, 29.84, 29.8, 9.78
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Fig. 9 Curves of zero velocity for N � 17 and β � 40, 50, 58. From left to right and from top to bottom: β � 40 and C � 27.5, 26.9, 26.8, 26.76, 26.72;
β � 50 and C � 26.5, 26.2, 26.15, 26.1, 26.0; β � 58 and C � 26.0, 25.8, 25.73, 25.67, 25.63
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• The effect of βE1 is produced in the fourth transition, i.e., when CA1 > C > CD2 , highlighted in red in Fig. 4: the zero-velocity
curves are totally open: the N outer islands shrink at the points of zone C2 and, at the same time, the annulus that surrounded
the central body begins to decompose into small isolated islands at the locations of the stationary points that define the zone A1.
Therefore, the particle can move between the central body and the primaries and escape from the system through some of the N
windows that exist.

3.- When β ∈ [βE2 , βE3 ):

• The first four transitions are equivalent to the previous case.
• The effect of βE2 is produced in the fifth transition, i.e., when CA2 > C > CD2 , highlighted in brown in Fig. 4: the zero-velocity

curves are also open but there is a shift in their shape with respect to the preceding case: the small inner isolated islands disappear
whereas the N outer larger islands remain.

4.- When β ∈ [βE3 , βE4 ):

• The first two transitions are equivalent to the previous cases.
• The effect of βE3 is produced in the third transition, i.e., when CA1 > C > CD1 , highlighted in blue in Fig. 4: the annulus that

surrounded the central body is decomposed into N small isolated islands, at the locations of the points of the zone A1, but the
zero-velocity curves are still closed, then, the particle may move between the central body and the primaries, but it cannot escape
from the system.

• The zero-velocity curves open in the fourth transition and their evolution to the fifth transition is similar to case number 3.

5.- When β ∈ [βE4 , βE5 ):

• The first two transitions are similar to all the previous cases.
• The third and fifth transitions follow the same pattern as the case described in item number 4.
• The effect of βE4 is produced in the fourth transition, i.e., when CA2 > C > CD1 , highlighted in violet pink in Figs. 4 and 5:

the N inner small isolated islands disappear, but the zero-velocity curves remain closed so that the particle is trapped, and it can
move only between the primaries and the central body.

6.- When β ∈ [βE5 , βE6 ):

• The behavior of the zero-velocity curves is similar in transitions one and three to five.
• The effect of βE5 is produced in the second transition, i.e., when CA1 > C > CB , highlighted in green in Fig. 5: the zero-velocity

curves are still closed, but the central annulus disappears, and the inner curves of the zero-velocity curves merge at the location
of the points of zone B, creating N small openings that allow the particle to move between the central body and the primaries.

7.- When β ∈ [βE6 , βE7 ):

• Transitions one to three and five are similar to the preceding case.
• The effect of βE6 is produced in the fourth transition, i.e., when CD1 > C > CA2 , highlighted in orange in Fig. 5: the external

forbidden area shrinks and splits up into N windows, at the location of the points of zone C1, through which the particle my
escape, but there are still N small islands between the primaries at the location of the points of zone A2.

8.- When β ∈ [βE7 , β∗
N ):

• In this last case there is a change in the evolution of the zero-velocity curves in the third transition with respect to the previous
case, that is, when CD1 > C > CB , highlighted in cyan in Fig. 5: they open at this stage, as the external forbidden area shrinks
and forms N islands, creating N windows at the location of the points of zone D1. Then, the particle may escape through them.

An example of this behavior is illustrated in Figs. 4 and 5, for N � 8 and several values of β.

4.2.2 Scenario with 11 ≤ N ≤ 16

There is only a change in the order of appearance of the intersections that define βE5 and βE6 ; hence, the effects described in the
zero-velocity curves defined in items 6 and 7 when N < 11 are shifted (see Tables 3, 4, and 5 and Figs. 6 and 7).

4.2.3 Scenario with 17 ≤ N ≤ 100

Due to the fact that βE4 and βE6 do not exist in this case (then, zones D1 and A2 do no intersect) there are N small isolated islands
present simultaneously with the opening of the N windows during the fourth transition (see Figs. 8 and 9).
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5 Conclusions

In this research, we have carried out a qualitative analysis of the shape of the zero-velocity curves (which bound the regions of
possible motion of the test particle) in the planar N-body ring problem for N � 3, 4, . . . , 100 peripheral bodies with the presence
of a central body (β > 0). For this purpose, we have accomplished a very accurate analysis of the different intersections of the
so-called critical values of the Jacobi constant, which characterize the sets of stationary points of the system, when β is lower than
the bifurcation value of the system, β∗

N . As a result, we have found that there can be up to a maximum of seven intersections between
these critical values, which are directly related to a particular value of β, here denoted as βEi , i � 1, 2, . . . , 7. We have shown that
each of these βEi produces a specific change in the arrangement of the critical values of the Jacobi constant, which then involve
a different evolution of the shape of the zero-velocity curves for decreasing values of the constant of Jacobi. The number of these
critical values of β is not constant with N , that is, there is a relation between the number of peripheral bodies and the behavior of the
intersections of the different zones of stationary solutions. It has also been shown that there is not intersection between the zones
A2 and D1 when N > 16, which causes that the small isolated islands around the central mass have not still disappeared when the
zero-velocity curves open. Finally, due to the fact that the set {z � 0, ż � 0} is invariant in this system, the results of this research
can be applied to explain the motion of an infinitesimal particle that lies on the XY plane in the 3D N-body ring problem, which we
can then conclude that will be subject to the same structure of the zero-velocity curves in the plane.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work has been partially funded by the Algerian
Ministry of Higher Education and Scientific Research, who awarded a grant for PhD training abroad in 2020 to the first author, Zahra Boureghda, at the
University of Alicante.

Data Availability There is no data associated in the manuscript.

Declarations

Conflict of interest The authors declare no potential conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. M. Woodard, D. Folta, D. Woodfork, Artemis: the first mission to the lunar libration orbits. In: Proc. of the 21st International Symposium on Space
Flight Dynamics, Toulouse, France (2009)

2. A. Knutson, K. Howell, Coupled orbit and attitude dynamics for spacecraft composed of multiple bodies in earth-moon halo orbits. Proc. of the
International Astronautical Congress, IAC . 8, 5951–5965 (2012)

3. E. Canalias, J.J. Masdemont, Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems.
Discrete Contin. Dyn. Syst. 14(2), 261–279 (2006)

4. W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Dynamical Systems, the Three-Body problem and Space Mission Design. Equadiff 99, 1167–1181
(2000)

5. J.C. Maxwell, On the stability of motions of Saturn’s rings (Macmillan and Company, Cambridge, 1859)
6. H. Salo, C.F. Yoder, The dynamics of coorbital satellite systems. Astron. Astrophys. 205, 309–327 (1988)
7. F. Tisserand, Traité de Mécanique Céleste (Tome II. Gauthier-Villars, Paris, 1889)
8. T.J. Kalvouridis, A planar case of the n + 1 body problem: the ‘ring’ problem. Astrophys. Space Sci. 260, 309–325 (1999)
9. T.J. Kalvouridis, A planar case of the n + 1 body problem: the ‘ring’ problem. Periodic Solut. Ring Problem 266, 467–494 (1999)

10. M. Arribas, A. Elipe, Bifurcations and equilibria in the extended n-body ring problem. Mech. Res. Commun. 31(1), 1–8 (2004)
11. T.J. Kalvouridis, On a property of zero-velocity curves in n-body ring-type systems. Planet. Space Sci. 52, 909–914 (2004)
12. M.N. Croustalloudi, T.J. Kalvouridis, Regions of a satellite’s motion in a Maxwell’s ring system of n bodies. Astrophys. Space Sci. 331, 497–510 (2011)
13. R. Barrio, F. Blesa, S. Serrano, Qualitative analysis of the (n + 1)-body ring problem. Chaos Solit. Fractals 36(4), 1067–1088 (2008)
14. E. Barrabés, J.M. Cors, G.R. Hall, Numerical exploration of the limit ring problem. Qual. Theory Dyn. Syst. 12, 25–52 (2013)
15. J.F. Navarro, M.C. Martínez-Belda, Escaping orbits in the n-body ring problem. Comput. Math. Methods 2(1), 1067 (2020)
16. J.F. Navarro, M.C. Martínez-Belda, On the use of surfaces of section in the n-body ring problem. Math. Methods Appl. Sci. 43(5), 2289–2300 (2020)
17. J.F. Navarro, M.C. Martínez-Belda, On the analysis of the fractal basins of escape in the n-body ring problem. Comput. Math. Methods 3(6), 1131

(2021)
18. J.F. Navarro, M.C. Martínez-Belda, Analysis of the distribution of times of escape in the n-body ring problem. J. Comput. Appl. Math. 404, 113396

(2022)
19. M.S. Suraj, R. Aggarwal, A. Mittal, O.P. Meena, M.C. Asique, The study of the fractal basins of convergence linked with equilibrium points in the

perturbed (n + 1)-body ring problem. Astron. Nachr. 341(8), 741–761 (2020)

123

http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. Plus          (2024) 139:69 Page 17 of 17    69 

20. T.J. Kalvouridis, K.G. Hadjifotinou, Particle dynamics in a Maxwell’s ring-type configuration with a radiating central primary. Earth Moon Planet. 108,
51–67 (2011)

21. T.J. Kalvouridis, J. Telemachus, The effect of radiation pressure on the particle dynamics in ring-type N-body configurations. Earth Moon Planet. 87,
87–102 (1999)

22. V. Szebehely, Theory of orbits: The Restricted Problem of Three Bodies (Academic Press Inc., New York, 1967)
23. D.J. Scheeres, On symmetric central configurations with application to satellite motion about rings. Ph.D. thesis, University of Michigan (1992)
24. D.J. Scheeres, N.X. Vinh, The restricted p + 2 body problem. Acta Astron. 29(4), 237–248 (1993)
25. K.E. Papadakis, Asymptotic orbits in the (n + 1)-body ring problem. Astrophys. Space Sci. 323, 261–272 (2009)

123


	Analysis of the geometry of the zero-velocity curves in the N-body ring problem depending on the mass ratio parameter
	Abstract
	1 Introduction
	2 The general equations of motion
	3 Zones of stationary solutions
	3.1 The stability condition of the equilibrium points

	4 The zero-velocity curves and their relation with β
	4.1 Critical values of β in the interval (0,β_N^*)
	4.2 Parametric evolution of the zero-velocity curves
	4.2.1 Scenario with  N<11
	4.2.2 Scenario with 11leNle16
	4.2.3 Scenario with 17leNle100


	5 Conclusions
	References


