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Abstract 10 

Settlement of structures is determined by the stiffness of the soil where they are built. 11 

Compression index (𝑐𝑐𝑐𝑐) quantifies the compressibility of the soil and is a key parameter in the 12 

design of geotechnical structures. To predict the value of 𝑐𝑐𝑐𝑐 in clay soils, a global database of 13 

more than 1000 data points was collected and analysed. Liquid limit, plasticity index, natural 14 

water content, and initial void ratio were considered as predictor variables. A super-learner 15 

machine learning model was developed to predict 𝑐𝑐𝑐𝑐 from these variables. The model 16 

demonstrated a reasonable predictive performance and was subsequently integrated into an online 17 

tool. Additionally, four symbolic regression expressions were obtained to relate 𝑐𝑐𝑐𝑐 with some of 18 

the input variables when not all data are available, providing simple and practical alternatives for 19 

𝑐𝑐𝑐𝑐, estimation. This study provided two major contributions: (1) the non-local nature of the data 20 

expands the scope and generalizability of the findings, and (2) the availability of the proposed 21 

algorithm through an online application ensures its accessibility for geotechnical engineers, 22 

enhancing the work's practical applicability and intrinsic value. 23 
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1. Introduction 29 

Compression index (𝑐𝑐𝑐𝑐), which is the slope of the linear section of the 𝑒𝑒–log𝜎𝜎′ plot (and is 30 

dimensionless), and the coefficient of consolidation (𝑐𝑐𝑣𝑣), primarily define the compressibility 31 

properties of fine-grained soils (Craig 2004). 𝑐𝑐𝑐𝑐 is a crucial parameter for characterizing soil 32 

compressibility and deformation behaviour under load. It is commonly used in geotechnical 33 

engineering to estimate the settlement and deformation of soil structures, such as foundations and 34 

embankments (Das 2021). Soils with a higher 𝑐𝑐𝑐𝑐 tend to be more compressible and deformable 35 

under load, whereas soils with a lower 𝑐𝑐𝑐𝑐 are less compressible and have a greater capacity to 36 

withstand deformation when they are loaded. The 𝑐𝑐𝑐𝑐 value in soils is obtained through the 37 

oedometer test, which is relatively time-consuming and results in higher costs when compared to 38 

standard index tests. Since Atterberg limits initially characterize soils, these state parameters have 39 

been used to establish correlations with various other engineering properties of soils. Furthermore, 40 

plasticity is influenced by the electrochemical behaviour of clay minerals (Carter and Bentley 41 

1991) in the same way as 𝑐𝑐𝑐𝑐 (Onyejekwe et al. 2015). For this reason, several attempts were made 42 

in the past to correlate basic geotechnical properties with 𝑐𝑐𝑐𝑐. Numerous authors provided linear 43 

equations relating 𝑐𝑐𝑐𝑐 to the liquid limit (LL) of soils (e.g. Azzouz et al. 1976; Bowles 1979; Park 44 

and Lee 2011; Sridharan and Nagaraj 2000; Terzaghi et al. 1967; Tsuchida 1991). On the other 45 

hand, plasticity index (PI), was also correlated with 𝑐𝑐𝑐𝑐 (Sridharan and Nagaraj 2000; Wroth and 46 

Wood 1978). Additionally, many correlations based on a linear relationship with natural water 47 

content (𝑤𝑤) were proposed (e.g. Azzouz et al. 1976; Koppula 1981; Rendon-Herrero 1980). The 48 

relationship with initial void ratio (𝑒𝑒0) was examined by Nishida (1956), Hough (1957) and 49 

(Bowles 1979), among others. Other studies included more than one index property in the 50 

estimation of 𝑐𝑐𝑐𝑐, such as 𝑤𝑤 and LL (Koppula 1981) or 𝑒𝑒0 and LL (Al-Khafaji and Andersland 51 

1992). However, when these correlations were tested with new data, they exhibited significant 52 

scatter, with deviations reaching up to 30% (Spagnoli and Shimobe 2020), suggesting a lack of 53 

universally applicable validity. They are applicable within specific limits and should be restricted 54 

to the soil type or location where they were validated (Verbrugge and Schroeder 2018). Using 55 
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these correlations in different conditions may lead to unsatisfactory outcomes (Onyejekwe et al. 56 

2016). To address the limits of classic regression approaches in geotechnical engineering, the 57 

application of machine learning (ML) algorithms have been extensively developed, 58 

demonstrating improved performance for predicting several soil engineering properties compared 59 

to traditional statistical methods (e.g. Bardhan et al. 2023; Bardhan et al. 2021; Dam Nguyen et 60 

al. 2022; Díaz and Tomás 2021; Salvatore et al. 2022; Singh et al. 2023; Trong et al. 2021). 61 

However, it is important to be aware of the limitations and uncertainties associated with ML 62 

approaches before applying them to real-world geotechnical engineering projects. Numerous 63 

studies (Baghbani et al. 2022; Zhang et al. 2023; Zhang et al. 2022) have exposed these 64 

limitations, which are primarily: a) the scarcity of high-quality data, b) the difficulty in 65 

interpreting the models, and c) the lack of generalization. Regarding data availability, 66 

geotechnical data can be costly and often incomplete or uncertain. This can lead to ML models 67 

that are not as accurate or reliable as desired. Another limitation of ML is the interpretability of 68 

the models (i.e., black box). ML models are often complex and nonlinear, making it challenging 69 

to understand the relationship between input data and output predictions. Finally, due to the 70 

inherent heterogeneity and spatial variability of soil deposits, it is difficult for empirical models 71 

trained on limited datasets to reliably extrapolate beyond the geographic scope represented by 72 

those data. Therefore, while ML shows great potential to complement traditional approaches in 73 

geotechnical engineering, it is crucial to address these limitations before the implementation of 74 

any ML model.  75 

Recently, numerous studies have employed ML algorithms to predict 𝑐𝑐𝑐𝑐  from some parameters 76 

related to this property showing promising results (e.g. Desai et al. 2009; Kalantary and Kordnaeij 77 

2012; Kumar and Rani 2011; Nesamatha and Arumairaj 2015; Samui et al. 2012). Alam et al. 78 

(2014) compiled a database of 125 clay samples, which included 𝑤𝑤, LL, 𝑒𝑒0, and PI as input 79 

variables and created an Artificial Neural Network (ANN) model to predict 𝑐𝑐𝑐𝑐. Kumar and Rani 80 

(2011) also used an ANN to predict 𝑐𝑐𝑐𝑐, considering 41 samples with the following input variables: 81 

fine contents, LL, PI, maximum dry density, and optimal moisture content. Park and Lee (2011) 82 

developed an artificial neural network (ANN) model by utilizing 947 consolidation tests 83 
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performed on soil samples gathered from 67 construction sites in the Republic of Korea. They 84 

considered as input variables, 𝑤𝑤, LL, PI, 𝑒𝑒0,  specific gravity of soil particles (𝐺𝐺𝑠𝑠), and weight 85 

percentage of sand, silt and clay. Benbouras et al. (2019) developed an ANN model with 373 86 

oedometer test samples to correlate 𝑐𝑐𝑐𝑐 with wet density, w, 𝑒𝑒0, fine content, LL, PI, and soil type. 87 

The dataset utilized in this research comprised samples gathered from various projects executed 88 

in the city of Algiers (Algeria). Zhang et al. (2021) used a Random Forest algorithm that utilized 89 

a database with 311 samples, encompassing three input variables (LL, PI, 𝑒𝑒0). Asteris et al. (2022) 90 

introduced extreme learning machine models that applied Manta ray foraging optimization to 91 

predict 𝑐𝑐𝑐𝑐 from void ratio at liquid limit, LL and PI. It should be noted that the void ratio at LL is 92 

a parameter that is not usually available in the design phases of geotechnical projects, whereas 93 

𝑒𝑒0, is more frequently encountered. Long et al. (2023) established a relationship between 𝑐𝑐𝑐𝑐 and 94 

w, LL, PI, 𝑒𝑒0, and 𝐺𝐺𝑠𝑠 using Tree-Based Techniques from 391 samples from Northern Iran. 95 

However, all these approaches have, to a greater or lesser extent, a local character, or a relatively 96 

small number of samples. All the studies presented either rely on a limited dataset, or the collected 97 

samples have a local nature (i.e., they come from the same area or country), or they do not have 98 

a direct application because they are based on ML algorithms. Many engineers lack knowledge 99 

of the programming language or specific software required to utilize the proposed algorithms. 100 

Therefore, the main objective of this work is threefold: 1) to create an algorithm based on a dataset 101 

with a large number of samples, 2) to ensure these samples are collected worldwide to eliminate 102 

any local bias, and 3) to design the proposed algorithm in a way that any geotechnical engineer 103 

can easily use it. The present paper took advantage of ensemble learners, to develop and validate 104 

an accurate prediction model for forecasting the compression index of clay soils for a large 105 

number of data (1008) collected worldwide. Subsequently, this model was deployed to a user-106 

friendly web application. This paper is structured as follows. A brief summary of the experimental 107 

database is given in Section 2. The machine learning process performed is presented in Section 108 

3. Later, in Section 4, the main results obtained are studied and interpreted by evaluating the 109 

super-learner machine learning model. Section 5 describes the online tool deployed. An analysis 110 
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of the dataset using Symbolic Regression is included in Section 6. The final section (Section 7) 111 

ends the paper and presents the main conclusions obtained. 112 

 113 

2. Database description and analysis. 114 

The collection of the dataset is the first step in the building of a machine learning model. In the 115 

present work, the experimental database of 𝑐𝑐𝑐𝑐 (1008 samples) comprised 913 samples from 116 

research papers (Alhaji et al. 2017; Benbouras et al. 2019; Kalantary and Kordnaeij 2012; LCPC 117 

1977; McCabe et al. 2014; Mitachi and Ono 1985; Widodo and Ibrahim 2012), and 95 samples 118 

from authors' own data. This database has samples of different countries as Nigeria, Ireland, 119 

Spain, Iran, Indonesia, France, Algeria, Bangladesh, among others. In the same way, the database 120 

has soils with low plasticity to very high plasticity. In fact, LL ranges from 17.1% to 199.0% and 121 

PI from 2.0% to 82.0%. On the other hand, the database included soils with very high 122 

compressibility and soils with low compressibility according to 𝑒𝑒0 values (ranging from 0.279 to 123 

7.114). This fact is also corroborated, by examining the values of 𝑐𝑐𝑐𝑐 varying these between 0.013 124 

and 2.2. Finally, the  𝑤𝑤 values, also varies widely ranging from 8% to 244.1%. Based on all the 125 

above, the database includes a significant amount of data and a wide range of them, making it 126 

suitable for a reliable study. The final dataset can be found in Table S1 (accessible online), which 127 

includes details such as references, soil type, mineralogy, and origin when available. Furthermore, 128 

the dataset includes both the actual 𝑐𝑐𝑐𝑐 values and those obtained by the super-learner ML model. 129 

The main statistics of the compiled database are shown in Table 1. 130 

 131 

 LL (%) PI (%) 𝒆𝒆𝟎𝟎 𝒘𝒘 (%) 𝒄𝒄𝒄𝒄 

Samples 1008 947 1008 1008 1008 
Mean 46.49 21.78 0.817 29.73 0.236 

Standard deviation 15.90 9.83 0.467 17.06 0.210 
Minimum 17.10 2.00 0.279 8.00 0.013 

25th percentile 36.00 15.07 0.598 21.00 0.143 
Median 44.85 22.03 0.712 25.40 0.180 

75th percentile 54.14 28.05 0.852 31.20 0.246 
Maximum 199.00 82.00 7.114 244.10 2.200 

Table 1. Descriptive statistics of the data analysed. 132 

 133 
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Figure 1 shows box plots for LL, PI, 𝑒𝑒0, 𝑤𝑤 and 𝑐𝑐𝑐𝑐 of the database. Box plots are used to visualize 134 

data dispersion, which was split into quartiles. The method is used to detect outliers (if any), data 135 

symmetry, dispersion, and skewness (Reagan and Kiemele 2008). The box in a box plot shows 136 

the interquartile range (IQR), with the bottom and top of the box representing the 25th and 75th 137 

percentiles, respectively. The whiskers extend to the final data value inside the inner fence, which 138 

is 1.5 times the IQR from the box's edge. The height of the box represents the interquartile range. 139 

Outliers are defined as data points extending to 3×IQR (Reagan and Kiemele 2008). Some points 140 

in Figure 1 are identified as outliers, mainly corresponding to high values of the variables. The 141 

analysis of these box plots reveals the wide range of variation and high dispersion of the variables 142 

studied clearly related to the worldwide character of the compiled database. For a better 143 

interpretation of Figure 1, the data included in Table 1 can be consulted. 144 

 145 

 146 

Figure 1. Box plots of the variables considered. 147 

 148 

The scatter plots of the considered parameters are depicted in Figure 2, to show a descriptive 149 

overview of the data distribution. These plots indicate a positive relationship between 𝑐𝑐𝑐𝑐 and the 150 

rest of the variables. This fact implies, to a greater or lesser extent, that an increase in the 151 
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considered input variables tends to proportionally increase 𝑐𝑐𝑐𝑐. This relationship is clearer in 152 

variables as 𝑒𝑒0 and 𝑤𝑤 and more diffuse in LL and PI. Finally, a strong relationship between 𝑒𝑒0 153 

and 𝑤𝑤 must also be noted. 154 

 155 

 156 

Figure 2. Scatter plots and distribution histograms of the variables. 157 

 158 

These linear trends can be quantified numerically using the Pearson correlation coefficient (r) and 159 

a correlation matrix. A correlation matrix is a table showing the correlation values, which measure 160 

the degree of linear relationship between each pair of variables. Correlation values can be between 161 

-1 and +1. If the two variables tend to increase or decrease at the same time, the correlation value 162 
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is positive. In Table 2 is shown the correlation matrix providing an overview of the Pearson 163 

correlation coefficient. From the analysis of the table, it can be verified that the same relationships 164 

established previously in a visual manner are the ones that obtain the highest correlation values. 165 

Indeed, a strong and positive correlation is shown between 𝑐𝑐𝑐𝑐 and 𝑒𝑒0 (r=0.87) and 𝑤𝑤 (r=0.89), and 166 

a somewhat less strong and also positive correlation between 𝑐𝑐𝑐𝑐 and LL (r=0.66). Between 𝑐𝑐𝑐𝑐 and 167 

PI, the correlation is low and positive (r=0.34). On the other hand, there is a strong and positive 168 

correlation between 𝑒𝑒0 and 𝑤𝑤 (r=0.92). 169 

 170 

 LL PI 𝒆𝒆𝟎𝟎 𝒘𝒘 𝒄𝒄𝒄𝒄 

LL 1.00     

PI 0.92 1.00    

𝒆𝒆𝟎𝟎 0.61 0.23 1.00   

𝒘𝒘 0.64 0.28 0.92 1.00  

𝒄𝒄𝒄𝒄 0.66 0.34 0.87 0.89 1.00 

Table 2. Correlation matrix of the variables considered. Note that the values indicated 171 

correspond to the Pearson correlation coefficient (r). 172 

 173 

The equations obtained by linear regression for the cases with the highest value of Pearson 174 

correlation coefficient are (Equations 1 to 3): 175 

 176 

𝑐𝑐𝑐𝑐 =   0.393𝑒𝑒0 − 0.0842                    (1) 177 

𝑐𝑐𝑐𝑐 =   0.011𝑤𝑤(%) − 0.0905                    (2) 178 

𝑒𝑒0 =  0.0252𝑤𝑤(%) + 0.0687                    (3) 179 

 180 
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The coefficient of determination (R2) of each of the three equations above presented is 0.76, 0.80, 181 

0.85, respectively. Equation 3 is very interesting, as the 𝑒𝑒0 value can be estimated by 𝑤𝑤, 182 

considering that 𝑒𝑒0 relates the soil structure with its geologic history (Onyejekwe et al. 2015). 183 

 184 

3. Machine learning procedure. 185 

3.1. Model selection process. 186 

According to the analysis of the dataset carried out in the previous section, PI has 61 data less 187 

than the rest of the variables. To match the number with the rest of the variables, a data imputation 188 

technique was used. This is a technique widely used in ML algorithms for dealing with missing 189 

values and it has been used in geotechnical issues satisfactorily (e.g. Aydın et al. 2023; Díaz et al. 190 

2023). For the imputation of values, a multivariate feature imputation algorithm has been chosen 191 

(Little and Rubin 2019; Van Buuren and Oudshoorn 2000). This technique uses the information 192 

of all of the available features in order to estimate the missing value of one variable by considering 193 

samples which have a similar situation in terms of all of the features in the dataset. After imputing 194 

the missing data, an outlier detection analysis was conducted using the one-class SVM algorithm 195 

developed by Schölkopf et al. (1999) and successfully employed in similar works (e.g. Díaz et al. 196 

2023). This algorithm is a method designed to identify outliers and anomalies within a dataset, 197 

utilizing the principles of traditional Support Vector Machines (SVM). The core idea behind SVM 198 

is to identify a hyperplane that maximizes the separation between different classes within the 199 

dataset. Once this hyperplane is established, new data points can be classified based on their 200 

position relative to the hyperplane. In the case of the one-class SVM, there is only one class, and 201 

it defines the hyperplane for normal data points while classifying data points located outside the 202 

hyperplane as outliers. Upon applying this algorithm, 9 outliers were identified. These 9 data 203 

points were thoroughly examined, but no anomalous values in their properties were observed. 204 

Therefore, due to their limited number, it was decided not to remove them from the dataset. With 205 

the final dataset including 1008 records of each variable, a machine learning algorithm selection 206 

process was carried out using the k-fold cross-validation technique (with k=10). The results of 207 

this selection process are shown in Table 3, ordering the selected algorithms, from best to worst 208 
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performance considering four statistical indicators, mean absolute percentage error (MAPE), 209 

coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error 210 

(MAE). Three algorithms, all of them based on decision trees, outperform over the rest: Extra 211 

Trees Regressor (Geurts et al. 2006), Random Forest Regressor (Ho 1995), and Gradient Boosting 212 

Regressor (Friedman 2001). 213 

 214 

Model RMSE MAPE MAE R2 

Extra Trees Regressor 0.0767 0.2521 0.0466 0.87 
Random Forest Regressor 0.0776 0.2534 0.0473 0.86 

Gradient Boosting Regressor 0.0781 0.2529 0.0478 0.86 
Huber Regressor 0.1050 0.2766 0.0559 0.75 

Light Gradient Boosting Machine 0.1059 0.2831 0.0576 0.74 
K Neighbors Regressor 0.1000 0.2919 0.0578 0.75 

AdaBoost Regressor 0.0876 0.3427 0.0581 0.81 
Ridge Regression 0.1084 0.3106 0.0610 0.74 
Linear Regression 0.1117 0.3106 0.0613 0.72 

Least Angle Regression 0.1117 0.3106 0.0613 0.72 
Bayesian Ridge 0.1113 0.3124 0.0616 0.72 

Decision Tree Regressor 0.0966 0.3296 0.0622 0.79 
Elastic Net 0.1040 0.3307 0.0625 0.74 

Orthogonal Matching Pursuit 0.1034 0.3471 0.0654 0.74 
Lasso Regression 0.1170 0.3479 0.0668 0.68 

Lasso Least Angle Regression 0.1170 0.3479 0.0668 0.68 
Passive Aggressive Regressor 0.1232 0.3562 0.0728 0.63 

Table 3. Performance of base machine learning models obtained by k-fold cross validation.  215 

 216 

This process was carried out with the variables without normalization. But it should be noted that 217 

the same algorithm selection process was also performed normalizing the variables using the min-218 

max method, which scales each variable individually between zero and one. The results of this 219 

process normalizing the variables, were exactly the same in the three models with the best 220 

performance.  221 

 222 

3.2. Model development. 223 

To ensure a proper generalization of the algorithms, it is good practice to assess their performance 224 

on unknown data. For this purpose, the dataset was divided into two groups (training and test) 225 

with an 80/20 partition. Subsequently, the three algorithms with the best performance were 226 
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subjected to a tuning process of their hyperparameters to maximize their performance. For this 227 

purpose, the particle swarm optimisation (Kennedy and Eberhart 1995) was used. This is a 228 

computational technique which optimises problems by iteratively improving candidate solutions 229 

(aka particles). The results of this optimization are shown in Table 4, in terms of R2, RMSE, and 230 

MAE and with the result in both in the training and in the test set. 231 

 232 

Model Set R2 MAE RMSE 

Extra Trees 
Regressor 

Training 0.92 0.034 0.059 
Test 0.92 0.040 0.055 

Random Forest 
Regressor 

Training 0.92 0.039 0.061 
Test 0.92 0.041 0.055 

Gradient Boosting 
Regressor 

Training 0.93 0.038 0.056 
Test 0.91 0.042 0.058 

Table 4. Summary of performance metrics of the trained machine learning algorithms. 233 

 234 

With the tuned algorithms, they were ensembled to improve their predictive capacity. Among the 235 

existing approaches, the super-learner algorithm (Laan et al. 2007) was chosen. The super-learner 236 

algorithm is a type of ensemble method that applies stacked generalization to k-fold cross-237 

validation. It combines multiple prediction models (base learners) by assigning different weights 238 

to these models to find their optimal combination and produce a single best prediction function. 239 

Thus, the predictions of the base learners are used to train a regression model (meta learner) that 240 

assigns relative weights to the predictions of each base-model. In this case, and after a process of 241 

trial and error, the best results were obtained using the tuned Extra Trees Regressor and Gradient 242 

Boosting Regressor algorithms as base learners, and the tuned Random Forest Regressor 243 

algorithm as meta learner. It must be indicated that the meta learner was trained on the base 244 

models’ predictions as well as the original training data. The performance metrics resulting in the 245 

super-learner machine learning model, are shown in Table 5. 246 

 247 

Model Set R2 MAE RMSE 

Super-Learner 
Training 0.93 0.034 0.057 

Test 0.93 0.039 0.053 
Table 5. Summary of performance metrics of the super-learner machine learning model. 248 
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As can be seen the super-learner machine learning model improved slightly the predictions of the 249 

best of the three selected algorithms (Table 4).  250 

 251 

4. Results. 252 

4.1. Analysis of the super-learner ML model for predicting 𝒄𝒄𝒄𝒄. 253 

The prediction accuracy of the super-learner machine learning model is evaluated using training 254 

and test datasets. Figure 3 shows the scatter plots for the actual values of 𝑐𝑐𝑐𝑐 (x-axis) versus the 255 

predicted values of 𝑐𝑐𝑐𝑐 (y-axis). This figure shows that the vast majority of data are located close 256 

to the no error line, indicating a good agreement between the predicted and measured values. 257 

Additionally, in Figure 3 are included the values of R2 on both the training and test datasets. These 258 

values (0.93 in both sets) are indicative of a high predictive capacity, and since they are the same, 259 

it is assured a correct behaviour of the model in unseen data, discarding overfitting issues. The 260 

predictive performance of the selected model was also evaluated based on the anteriorly defined 261 

performance metrics (MAE and RMSE). In the training dataset, MAE and RMSE values of 0.034 262 

and 0.057 were obtained, respectively. In the test set, these values were similar (MAE of 0.039 263 

and RMSE of 0.053). These metrics are summarized in Table 5 (previous section) for both the 264 

train and test datasets. Additionally, the a20-index (Apostolopoulou et al. 2020; Asteris et al. 265 

2021a; Asteris et al. 2021b) was calculated. The a20-index offers the advantage of having a clear 266 

engineering interpretation, indicating the percentage of samples that meet the predicted values 267 

within a ±20% deviation from the experimental ones. The values obtained in the training and test 268 

sets were 73.45% and 71.27%, respectively, showing a similar and reasonable performance for 269 

the prediction of 𝑐𝑐𝑐𝑐. 270 

 271 
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 272 

Figure 3. Scatter plot showing graphical performance of the super-learner machine learning 273 

model in (a) training set, and (b) test set. The identity line (i.e., no error line) and the best fit 274 

line were included in both figures. 275 

 276 

In order to evaluate the results of the adopted model, a residuals study was performed. The 277 

residuals were defined as the difference between the predicted and actual value obtained by the 278 

super-learner model. In Figure 4 are shown the residuals for both the training and test datasets 279 

with two different visualizations, a scatter plot, and a histogram distribution. An inspection of this 280 

figure shows that for the two datasets considered, the residuals are concentrated around zero and 281 

have Gaussian distributions (i.e., residuals are normally distributed) and, thus, there are not many 282 

outliers. These facts are indicative of a robust algorithm with a great generalization ability and do 283 

not reveal significant issues in the predictions. 284 

 285 
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 286 

Figure 4. Residuals scatter plot and histogram distribution in (a) training set and (b) test set of 287 

the super-learner machine learning model. 288 

 289 

Figure 5 compares the experimental and predicted 𝑐𝑐𝑐𝑐 values on the test set (unseen data). The 290 

prediction performance of the testing set, according to what was previously discussed, was very 291 

good. Figure 5 shows that the super-learner machine learning model, can accurately capture the 292 
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evolution of the actual values, the prediction results are consistent, and the difference between the 293 

minimum and maximum predicted values is relatively small. No large deviations are observed in 294 

a general manner, affecting only isolated samples. 295 

 296 

 297 

Figure 5. Performance plot of super-learner machine learning model prediction results vs 298 

actual values of 𝑐𝑐𝑐𝑐 in the test set. 299 

 300 

4.2. Sensitivity analysis. 301 

Subsequently, a sensitivity analysis of the parameters involved in the super-learner ML model 302 

was conducted. This analysis employed Sobol's method (Sobol 1990), a technique for assessing 303 

the significance of input parameters in computational models. Sobol's method evaluates their 304 

impact on the output by quantifying their contribution to output variance. Within this method, the 305 

First-order sensitivity indices (S1) measure the influence of each variable in isolation while 306 

holding all other variables constant. Total-order sensitivity indices (ST) encompass not only the 307 

individual effects of each variable but also their interactions with other variables on the output. 308 

The results of this analysis are collected in Table 6, showing that 𝑒𝑒0 was the most influential 309 

variable, with a ST of 0.839, implying that it had the greatest effect on the variability of the 310 

model's output. Following 𝑒𝑒0, 𝑤𝑤 emerged as the second most important factor in this analysis (ST 311 

= 0.122). Next, LL possessed a moderate ST, with a value of 0.066. Finally, PI exhibited the 312 
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lowest ST, with a value of 0.018. The values of ST and S1 for each variable were similar, 313 

suggesting that the majority of the influence of the variables on the model's output was attributed 314 

to their individual effects rather than complex interactions among them. 315 

 316 

Variable ST S1 
LL 0.066 0.064 
PI 0.018 0.016 
𝒆𝒆𝟎𝟎 0.839 0.802 
𝒘𝒘 0.122 0.080 

Table 6. Sensitivity analysis of variables using Sobol's method comparing the Total (ST) and 317 

First-Order (S1) Sensitivity Indices for input variables. 318 

 319 

After establishing the significance of the variables, an analysis was conducted to understand the 320 

impact of variations in these inputs on the overall results. Initially, partial dependence plots for 321 

single input features were analysed to visualize the relationship between individual input variables 322 

and the output variable in a regression model. These plots are instrumental in understanding how 323 

a single input variable influences the output while holding other variables constant. The results of 324 

this analysis are displayed in Figure 6 in terms of partial dependence (average predicted effect). 325 

For the variables LL and PI, an increasing trend was observed, with some fluctuations, indicating 326 

a positive and near linear relationship with cc. In the case of variable 𝑒𝑒0, a very strong growth 327 

trend was noted until 𝑒𝑒0=2.5, after which the impact stabilizes. This suggests that within this range 328 

of values (up to 𝑒𝑒0=2.5), small variations in 𝑒𝑒0 will cause a significant impact on the value of 𝑐𝑐𝑐𝑐, 329 

clearly indicating that the relationship is not linear. As for 𝑤𝑤, a similar pattern to 𝑒𝑒0 was observed, 330 

but with a lesser impact on the value of 𝑐𝑐𝑐𝑐, with the effect becoming stable around values of 110%. 331 

 332 



17 
 

 333 

Figure 6. Partial dependence plots for single input features in terms of the average predicted 334 

effect. Note that the figure has a dual x-axis, with the upper one for 𝑒𝑒0 and the lower one for the 335 

variables LL, PI and 𝑤𝑤. 336 

 337 

Finally, partial dependence plots for pairs of input features were computed. These plots are 338 

designed to illustrate the joint influence of input feature pairs on the model's predictions, offering 339 

insights into their collective impact on the output variable. They assist in elucidating complex 340 

interactions between input features and the model's response. These graphs depicting the pairs of 341 

variables LL and PI, as well as 𝑤𝑤 and 𝑒𝑒0, are presented in Figure 7. The graphs showing the 342 

remaining variable pairs are included in Figure S1. From this analysis, it was established that most 343 

of the impact on the model's output can be attributed to the individual effects of the variables, 344 

rather than complex interactions among them. In the LL and PI pair (Figure 7a), as well as in the 345 

𝑤𝑤 and 𝑒𝑒0 pair (Figure 7b), some interaction was observed, although not excessively significant. 346 

These conclusions were consistent with the Sobol analysis.  347 
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 348 

Figure 7. Partial dependence plots for pairs of input features. a) LL - PI and b) 𝑤𝑤 - 𝑒𝑒0. 349 

 350 

In conclusion, the analyses conducted highlighted that the most significant variable in the model 351 

was 𝑒𝑒0, which also caused the most substantial changes in the predicted value of 𝑐𝑐𝑐𝑐, both 352 

individually and in terms of interactions between pairs of variables. 353 

 354 

4.3. Overfitting analysis 355 

One of the common challenges encountered in ML models is overfitting. This occurs when a 356 

model performs exceptionally well in replicating the data used for its development and training. 357 

However, when applied to input parameter values outside those used during development and 358 

training, the model may generate highly unusual predictions. To analyse the overfitting of a ML 359 

model, there are several techniques, highlighting the works of Asteris et al. (2019) or Armaghani 360 

and Asteris (2021), where the final model is checked with datasets in which the inputs gradually 361 

increase in value as they are tests made for a subsequent analysis. In this study, it is not like this 362 

since the inputs do not increase gradually as they were tests conducted on soils where the values 363 

of the input variables do not follow a gradual pattern. Thus, alternative techniques were chosen 364 

to enable the identification of overfitting in a model. To this end, the difference in model 365 

performance between the training set and the test set was initially assessed. In this case, a very 366 

small difference was observed between the training and test errors (Table 5), indicating that there 367 

was no evidence of overfitting. Alternatively, analysing the residuals can provide insights into 368 

potential overfitting in the model. Specifically, the residuals of the train and test sets were 369 
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analysed based on the following criteria: a) size: if the test residuals are significantly larger than 370 

the train residuals, it is a sign of overfitting; b) variance: if similar variances exist in train and test, 371 

it is indicative that the model generalizes well, not evidencing overfitting; and c) correlation: if 372 

the residuals are correlated, it is a sign that the model is learning patterns that are not relevant for 373 

predicting the dependent variable, which is a sign of overfitting. In this case, the size of the 374 

residuals and their variance were given by the mean and standard deviation, respectively. The 375 

correlation of the residuals was carried out through the Durbin-Watson test, which is a method to 376 

detect the presence of autocorrelation among the residuals in regression analysis. The value of the 377 

Durbin-Watson statistic varies between 0 and 4. A value close to 2 suggests that there is no 378 

autocorrelation; values less than 2 indicate positive autocorrelation; and values greater than 2 379 

indicate negative autocorrelation. The summary of this analysis is shown in Table 7. 380 

 381 

Set Mean 
Standard 
deviation 

Durbin–Watson 
statistic 

Training 0.0003 0.05730 1.95 
Test −0.0038 0.05301 1.87 

Table 7. Summary of residual metrics in the training and test sets. 382 

 383 

From the analysis of the results, it was evident that the mean of the residuals is very close to zero 384 

for both sets, which is good as it suggested that there is no systematic bias in the predictions. The 385 

standard deviations were also comparable, indicating that the dispersion of errors was similar in 386 

both sets. The Durbin-Watson values were close to 2, implying that the residuals exhibited 387 

independence. According to the results obtained in the residual analysis, there is no evidence of 388 

overfitting from this perspective. 389 

Although none of the conducted analyses indicated signs of overfitting in the model, an additional 390 

analysis was undertaken by perturbing the input values of the test set. In this analysis, a random 391 

perturbation of ±1% was applied to the test set data (including all input variables) to simulate 392 

natural variability and assess the robustness of the model and its propensity for overfitting. 393 

Subsequently, the super-learner ML model was tasked with making predictions on both the 394 

original test set and the perturbed test set to evaluate how the model reacted to disturbances in the 395 
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input data. A model that is excessively sensitive to small perturbations in the data might be 396 

overfitting, meaning it has learned to adjust to the particularities and noise of the training set, 397 

rather than capturing general trends. The results of this analysis are presented in Figure 8, where 398 

the scatter plot revealed an almost perfect correlation (R2 of 0.999) between the original and 399 

perturbed predictions. The histogram showed that the average changes in predictions due to 400 

perturbations were minimal, with a mean of 0.0036, suggesting significant stability of the model 401 

against minor variations in the data. As a conclusion of this analysis, the model was highly robust 402 

and showed low sensitivity to disturbances in the input data. Therefore, the three conducted 403 

analyses concluded that the super-learner ML model exhibited strong generalization abilities, 404 

capturing underlying trends rather than fitting to specific noises or peculiarities of the training 405 

data. 406 

 407 

 408 

Figure 8. Analysis of model robustness to input perturbation. a) Scatter plot comparing original 409 

and perturbed model predictions, and b) Histogram of absolute changes in model predictions 410 

due to perturbation. 411 

 412 

4.4. Comparison of the super-learner ML model with geotechnical correlations. 413 

In order to assess the performance of the proposed model, a comparative analysis was conducted 414 

using the database compiled for this study. This analysis involved nine empirical correlations for 415 
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estimating 𝑐𝑐𝑐𝑐 with a global scope. The results are depicted in Figure S2 as a scatter plot, 416 

showcasing the comparison between each correlation's predictions and the actual values from the 417 

comprehensive dataset. Additionally, in this figure, the formulas of the tested correlations are 418 

included. The super-learner ML model proposed in this work clearly achieved the best 419 

performance overall, with the highest R2 score, lowest RMSE, and lowest MAE (Figure S2a). In 420 

contrast, the Sridharan and Nagaraj (2000) correlation (Figure S2b) performed very poorly, with 421 

a negative R2 score (-0.79), high RMSE (0.281), and high MAE (0.257), clearly showing it did 422 

not work well for this dataset. Other correlations such as Azzouz et al. (1976) (Figure S2e), 423 

Rendon Rendon-Herrero (1980) (Figure S2g), and Koppula (1981) (Figure S2f) achieved 424 

moderate results, with R2 scores around 0.7, RMSE values around 0.10, and MAE values around 425 

0.06. The Wroth and Wood (1978) (Figure S2c), Bowles (1979) (Figure S2h), and Al-Khafaji and 426 

Andersland (1992) (Figure S2i) correlations demonstrated low performance, characterized by low 427 

R2 scores around 0.20, RMSE values around 0.19, and high MAE values. Additionally, the 428 

Koppula (1981) (Figure S2j) correlation also had poor outcomes, with negative R2 scores, high 429 

RMSE, and high MAE. It is noteworthy that some correlations, such as Sridharan and Nagaraj 430 

(2000) (Figure S2b and d), Koppula (1981) (Figure S2f and j), and in less extent, Wroth and Wood 431 

(1978) (Figure S2c), consistently predicted values significantly above the actual ones. 432 

Conversely, correlations like Al-Khafaji and Andersland (1992) (Figure S2i) and Bowles (1979) 433 

(Figure S2h) tended to predict consistently below the actual values. Furthermore, the four 434 

expressions obtained through Symbolic Regression in this study (Equations 4 to 7) also exhibited 435 

superior performance metrics compared to the analysed correlations. In summary, the model 436 

proposed in this paper was unequivocally the most accurate and effective for this dataset. 437 

 438 

5. Online tool developed 439 

Machine learning models have seen their use increase exponentially in recent years due to their 440 

high performance on the predictions and for their ability of discovering robust patterns in complex 441 

datasets. However, their application is usually difficult because it is necessary to know the trained 442 

algorithm fully, with all its hyperparameters and to know the tools with which it has been 443 
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developed (e.g., programming language or specific software). This means that currently, many 444 

machine learning researches do not have a great practical application. In this study, an online 445 

application has been developed to facilitate the non-expert user, the usage of the machine learning 446 

model presented here, becoming one of the few studies that offers a practical implementation of 447 

the trained machine learning algorithm. Figure 9 shows the graphical user interface of the 448 

developed prediction tool, which is located at 449 

https://huggingface.co/spaces/EstebanDC/Compression_Index. In this tool, the value of 𝑐𝑐𝑐𝑐 of a 450 

clay soil can be easily obtained by the user, defining the input values (i.e., LL(%), (PI %), 𝑤𝑤(%) 451 

and 𝑒𝑒0). Once these values are introduced, the compression index is calculated using the optimized 452 

super-learner ML model. This online tool can be used on any device with an internet connection 453 

(computers, tablets, or smartphones). 454 

 455 

 456 

Figure 9. Application developed with the trained super-learner machine learning model. 457 

 458 

 459 

 460 

https://huggingface.co/spaces/EstebanDC/Compression_Index
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6. Symbolic regression 461 

In addition to the analysis carried out using the machine learning models presented previously, 462 

the dataset was analysed using Symbolic Regression. The aim of this analysis is to propose 463 

mathematical expressions, which relate 𝑐𝑐𝑐𝑐 with some of the input variables. These expressions 464 

can be applied alternatively to the super-learner machine learning model when data for all the 465 

input variables are not available. Symbolic Regression-based approaches provide alternative 466 

machine learning methods that are recently gaining popularity. These approaches, as other ML 467 

algorithms, learn patterns from observed data and they have a great advantage over other ML 468 

algorithms due to their interpretability and explanation capabilities. Symbolic Regression 469 

attempts to explain a target variable by multiple input variables using a mathematical expression 470 

involving of a predefined set of basic computation functions. In this study, a symbolic regressor 471 

based on Feynman’s path integral formulation from quantum field theory (Broløs et al. 2021) was 472 

applied. With this approach, four expressions (Equations 4 to 7) were obtained, and their 473 

performance metrics are presented in Table 8. 474 

 475 

𝑐𝑐𝑐𝑐 =   1.95 − 2.04 tanh(1.82(0.204𝑒𝑒0 − 1)2)            (4) 476 

 477 

𝑐𝑐𝑐𝑐 = 1.72𝑒𝑒−4.02(1−0.209𝑒𝑒0)4−0.599(0.00363𝐿𝐿𝐿𝐿−1)2 + 0.0513     (5) 478 

 479 

𝑐𝑐𝑐𝑐 = 3.32𝑒𝑒−3.82(1−0.219𝑒𝑒0)2−2.0𝑒𝑒−9.78(1−0.244𝑒𝑒0)2−0.237(−0.0135𝑃𝑃𝑃𝑃−1)2  − 0.0409   (6) 480 

 481 

𝑐𝑐𝑐𝑐 = 2.67𝑒𝑒−1.99(1−0.209𝑒𝑒0)2−0.406(0.00286𝑤𝑤−1)2 − 0.26      (7) 482 

 483 

With 𝑤𝑤, LL, and PI expressed in %. 484 

 485 

 486 

 487 



24 
 

Equation Set R2 MAE RMSE 

4 
Training 0.85 0.049 0.083 

Test 0.87 0.042 0.065 

5 
Training 0.86 0.047 0.072 

Test 0.86 0.049 0.088 

6 
Training 0.86 0.047 0.078 

Test 0.91 0.043 0.063 

7 
Training 0.85 0.048 0.082 

Test 0.92 0.047 0.068 
Table 8. Summary of performance metrics of the proposed equations. 488 

 489 

Symbolic Regression approach gets good prediction performance, albeit being less accurate than 490 

the trained super-learner machine learning model, although presenting moderately long training 491 

times. Alternatively to the Equations 4 to 7, those obtained by linear regression and included in 492 

section 2 (Equations 1 to 3) can be used, although they offer worse metrics than those obtained 493 

by Symbolic Regression. These expressions must be fed with values of the input variables within 494 

the ranges with which the algorithm has been trained, since the behaviour outside these ranges is 495 

unknown. 496 

 497 

7. Conclusions. 498 

This study proposes a novel super-learner ML algorithm that provides a reliable and accurate 499 

model for predicting 𝑐𝑐𝑐𝑐, a key parameter in engineering applications. This algorithm is reasonably 500 

capable of predicting the value of 𝑐𝑐𝑐𝑐 based on variables previously related to this parameter (i.e., 501 

LL, PI, e0 and w). To this aim, a database was built including more than 1000 samples collected 502 

worldwide, in order to reduce the local character of the proposals presented. The high and 503 

satisfactory error metrics, including R2, MAE, RMSE, and a20-index, demonstrate the model's 504 

robust performance, particularly considering the global nature of the dataset and the dispersion in 505 

the input variables. To facilitate the use of the model, a user-friendly prediction tool has been 506 

deployed online (https://huggingface.co/spaces/EstebanDC/Compression_Index). Additionally, 507 

four symbolic regression expressions have been proposed for cases where all input parameters 508 

are not available. A comparative analysis was carried out using the compiled database against 509 

https://huggingface.co/spaces/EstebanDC/Compression_Index
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global empirical correlations, demonstrating that super-learner ML model was the most accurate 510 

and effective for this dataset. The global scope of this study and the development of an online tool 511 

enhance the proposed algorithm's applicability and value beyond other methods in the field, 512 

thereby making it more useful for geotechnical engineers. Future work will focus on expanding 513 

the dataset and updating the model to increase its generalization ability and application range. 514 

Finally, it is important to exercise caution when applying the model or expressions beyond the 515 

specified input variable ranges, as this can lead to predictions of questionable reliability, a 516 

common issue with predictive algorithms. 517 

 518 

  519 
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