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Abstract: Thermal pollution reduces water quality through any process that leads to a change in the
water’s ambient temperature. Karun is one of the most relevant sources of water supply in Iran, and
its pollution, created by industrial, urban, and agricultural issues, has been one of the most critical
challenges throughout the last few years. As the water temperature rises, the amount of dissolved
oxygen in it decreases, thereby affecting the entire ecosystem associated with it. Drainage of urban
and industrial runoff into surface water sources can increase the water temperature. Dams also
constitute a significant part, modifying spatial patterns of temperature along river routes and causing
thermal contamination. In this paper, the thermal pollution of the Karun River was assessed, and
regions along this river with unusually raised water temperatures were identified and compared
over 20 years. By analyzing the results, it can be found that the thermal pollution from dams has a
significant impact on the downstream river environment and ecology that is considerably relevant
during summer periods, showing average decreases of 3 degrees Celsius immediately beyond the
dams’ locations (from 41 degrees Celsius upstream dams to 38 degrees Celsius beyond them) or even
bigger (reductions of 13 degrees Celsius in one of the studied dams). Hence, our results showed that
water temperature is colder downstream in the hot seasons of the year than upstream of the dams.
The results suggest that the usage of remote sensing data effectively could complement collected data
from ground-based sensors to estimate water temperature and to identify pollution areas. It provides
experts with spatially extensive and highly synchronized data.

Keywords: water pollution; thermal imaging; dam; Landsat satellite; Karun River

1. Introduction

Over the past few decades, a significant portion of water resources, particularly those
situated in close proximity to urban and industrial areas, has become polluted or is at a
high risk of contamination [1]. As a consequence, the continuous and extensive monitoring
of river water through both direct and indirect sampling approaches has become a vital
criterion for planners and decision-makers in related disciplines [1,2]. One of the objectives
in monitoring water systems is to initially manage and subsequently mitigate the current
sources of pollution [3]. Extensive research has been undertaken to simulate water quality
parameters, aiming to assess the extent of water pollution, including thermal pollution [4,5].
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The thermal aspect is a crucial determinant of water quality due to its profound influ-
ence on various physical, chemical, and biological processes within aquatic ecosystems [6].
Temperature impacts the solubility of gases, affecting the availability of the dissolved
oxygen that is critical for aquatic life. It also governs chemical reactions, bacterial activ-
ity, and the density of water, influencing nutrient cycling, organic matter decomposition,
and water circulation [7]. Additionally, human-induced factors like thermal pollution can
further exacerbate these effects, posing threats to water quality [7]. So, monitoring and
managing water temperature are essential components of maintaining a sustainable and
healthy aquatic environment.

Numerical models are one of the approaches used to solve this problem. Reference [8]
investigated thermal contamination from a power plant utilizing the Irtysh River for cooling.
A 2D numerical model was employed to simulate heated water discharge characteristics,
demonstrating good alignment with the measured results. The research explored various
scenarios of discharge, determining thermal pollution areas for different speeds. Ref. [9]
introduced the mechanistic i-Tree Cool River Method, designed to identify causes and
mitigation strategies for thermal pollution. The model estimates riparian shading effects
based on vegetation characteristics and solar geometry. Along the New York Mountain
River was demonstrated the sensitivity of this model to storm sewer and subsurface
inflows, riparian shading, and upstream boundary temperatures, highlighting the model’s
effectiveness in assessing thermal pollution dynamics [9].

In water resources management, the quality assessment is considered a crucial factor,
as it gives useful chemical information that could be used to solve possible problems and
planning the management of reservoirs and rivers [2]. Nevertheless, achieving precise
simulations necessitates the use of appropriate input data. Using in situ data sampling is
both the common approach and a high-quality approach; however, based on numerous
works from the literature, it is neither cost- nor time-efficient. With huge advancements in
technology, remote sensing approaches are replacing the old methods, as they are more
comprehensive, more accessible, and cheaper [10,11].

Landsat is a series of Earth-observing satellites that provide multispectral imagery for
various applications, including environmental monitoring and resource management [12].
Its advantages include consistent global coverage, long-term data continuity, and the ability
to capture images across different wavelengths. Landsat satellites are equipped with
thermal and infrared sensors, extending their capabilities beyond visible-light imagery [12].
These sensors enable the detection of temperature variations and surface features not visible
to the naked eye, allowing for an enhanced analysis of environmental conditions, such as
identifying heat patterns, monitoring changes in land surface temperatures, and assessing
vegetation health.

Landsat data were extensively utilized for thermal pollution, especially for areas
near power plants, which are the most prone regions [13]. For example, Ref. [14] used
Landsat data to analyze thermal anomalies subsequent to the Tianwan Nuclear Power
Plant operation. The findings reveal a notable expansion of thermally polluted areas from
2001 to 2020 post-operation. The largest thermal pollution occurs in spring, followed by
summer, winter, and autumn. Furthermore, Landsat observations were also used for river
and reservoir pollutant monitoring. Ref. [15] proposed a remote sensing method using
Landsat 8 imagery to detect thermal pollution around the Neka power plant, situated
by the Caspian Sea. Utilizing Landsat 8’s Operational Land Imager (OLI), along with
thermal infrared remote (TIR) sensors, the research revealed a temperature rise in the
power plant’s water outlet channel, indicating potential environmental consequences from
water thermal pollution. Reference [16] utilized the Landsat Enhanced Thematic Mapper
Plus (ETM+) thermal infrared imagery to evaluate thermal waste induced by the Geheyan
and Gaobazhou Dams on the Qingjiang River, a Yangtze River tributary. An analysis of
54 cloud-free Landsat ETM+ scenes from 2000 to 2014 revealed cooler water temperatures
downstream of both dams during summer, with stable temperatures along the river in
winter, indicating clear signs of dam-induced thermal pollution, affecting areas extending
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over 20 km downstream of the Geheyan Dam and beyond the confluence of the Qingjiang
and Yangtze Rivers for the Gaobazhou Dam [16].

Fazelpoor et al. [17] utilized MODIS satellite images to evaluate the water surface
temperature and correlation with water depth in the Persian Gulf. The evaluation was
performed at 250, 500, and 1000 m spatial resolutions. The results indicated that temperature
variations, especially in the northern and central latitudes, have an inverse relationship
with water depth. In other words, as the water depth increases, the temperature decreases,
and vice versa [17]. Lopez and colleagues evaluated the sea surface temperature and
salinity in coastal areas by utilizing Sentinel-2 data. They demonstrated that this method
can be applied effectively in precise coastal and oceanographic applications [18]. Park and
Jang retrieved the sea surface temperature by using 257 OLI image frames captured by a
Landsat-8 satellite from 2013 to 2017. According to their research methodology, the root
mean square error (RMSE) was approximately 0.59 centigrade and 0.72 centigrade. The
results demonstrated the need for coastal areas to have high spatial-resolution satellite
data [19].

The Karun River is one of the most significant surface water sources for Khuzestan
State in Iran and, simultaneously, for the entire country. The watershed of this river en-
compasses at least five provinces in the country. Moreover, 90% of the water for industries,
70% of the population, and 60% of the agricultural lands in Khuzestan Province are sup-
plied through this river [20]. Urban, industrial, and agricultural are the main Karun River
thermal pollution sources [21]. The Karun River is severely contaminated by wastewater
from industrial and agricultural facilities [22]. The industrial part of Karun River’s thermal
pollution is primarily associated with power stations and factories. They use Karun’s water
to reduce the temperature of cooling equipment and machinery [23]. Moreover, agricultural
regions play a significant role in the thermal pollution of the Karun River. Considering the
extensive agricultural activities, the pollution load of these activities is increasing. Returned
water from agriculture, drinking, and aquaculture are the main pollution causes [19].

Another human activity that changes the hydrological processes in rivers is the con-
struction of dams along rivers [16,24–26]. They play a crucial role in changing the spatial
pattern of the temperature along the course of rivers, contribute significantly to thermal
pollution, and exert a considerable impact on riverine aquatic ecosystems [24]. Specifically,
the river water temperature often changes by dams [27,28]. A lot of studies have been
conducted under various regions and weather conditions to understand the thermal effects
of dams on downstream rivers. Among them, a study integrated remote sensing data and
geographic information systems (GIS) to model the water-resource pollution of the Dez
Dam [21]. For this purpose, they utilized ASTER sensor imagery, ground station informa-
tion, electrical conductivity, and the temperature of the dam. Similarly, certain scientific
studies assessed thermal changes in the water temperature after the Keepit Dam on the
downstream river in Australia [29], the multipurpose dams of the Willamette River, and the
Glen Canyon Dam in the Western United States [30,31]. Likewise, Paso de las Piedras Dam
in Argentina [32] and the Geheyan, Gaobazhou, Three Gorges, and Danjiangkou Dams in
China [16,33,34] were examples of activities that have evaluated the water temperature
changes by dams.

Although some studies have measured thermal changes in dams downstream the
rivers, these studies were conducted periodically rather than continuously. In addition,
field measurements have certain limitations, including low spatial and temporal resolution,
high cost, time-consuming procedures, and a lack of statistical distribution maps due to the
limited number of observations. To overcome these limitations, we used satellite data to
measure and analyze the changes in water temperature over consecutive years along the
Karun River. More specifically, we assessed the impact of urban areas, industrial plants,
agricultural fields, and dams on the thermal pollution of the Karun River over a period of
20 consecutive years (from 1999 to 2019).
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2. Materials and Methods
2.1. Study Area

The Karun River, as depicted in Figures 1 and 2, holds a prominent status among the
rivers in Khuzestan Province and stands as the largest and most abundant river in Iran,
showing a total length of 950 km. Notably, it distinguishes itself as the sole river in the
country, with a connection to international waters and oceans. Beyond its geographical
significance (its basin encompasses a total area of 65,230 km2), the Karun River plays a vital
role in providing essential resources to the region [21].
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Functioning as a primary source of drinking water for Khuzestan Province, the majestic
Karun River fulfills the water requirements of 16 cities, numerous villages, 65,000 hectares
of agricultural land, and various industrial facilities [20]. Situated in the southwestern part
of Iran, the Karun River spans approximately 48◦15′ to 52◦15′ latitude and 30◦17′ to 33◦49′

longitude. Its expansive reach and crucial contributions underscore its importance as a
lifeline for the communities and industries it sustains [22].

Figure 2 shows a comprehensive view of the neighboring cities. The northeastern
dams of Khuzestan Province are also shown in Figure 2. The Abbaspour Dam, also known
as the Karun 1 Dam, is one of the largest dams in Iran, showing a total stored volume
of 3140 km3. Located approximately 50 km northeast of Masjed Soleyman in Northern
Khuzestan, it is a double-curve concrete dam. The construction of this dam, one of the
earliest dams in Iran and the Middle East, began in 1965 and continued until 1975 [20,22].

The Masjed Soleyman Dam, or Karun 2 Dam, located in Khuzestan Province, is 25.5 km
northeast of the city of Masjed Soleyman and 160 km northeast of Ahvaz, and is built on
the Karun River. This dam belongs to the category of earth dams and has a current water
volume of 0.261 km3. The Gotvand Dam is one of the largest dams in Iran, located on the
Karun River in Northern Khuzestan. Located 380 km from the river’s source, 25 km north
of Shushtar and 10 km northeast of the city of Gotvand, it plays an important role in the
region’s water management thanks to its great capacity (4.5 km3 according to [20,21]).

2.2. Landsat Imagery

In this study, Landsat-8 satellite images (from 2013 to present) were used to estimate
the water temperature of the Karun River (Table 1). Thermal images were obtained from
thermal bands within the wavelength ranges of (10.5–11.5 µm) and (11.5–12 µm), with a
spatial resolution of 100 m. Although Landsat 7 has thermal bands with a spatial resolution
of 60 m, Landsat-8 imagery was preferred. This choice was made because Landsat-7 has
been subject to striping errors since 2003, and the use of neighboring pixels is recommended
to address this issue. As the focus of this study is the Karun River, and the width of the
river covers only a few pixels in the image, Landsat-7 images were not used. In addition,
Landsat-5 imagery was used to compare temperature changes in the region over the
past 20 years. Landsat-5 thermal imagery (1984–2012) covers the wavelength range of
(10.4–12.5 µm), with a spatial resolution of 120 m (Table 1).

Table 1. Specifications of satellite images used in the present study.

Satellite Sensors Date Time Row Column

Landsat 8 OLI/TIRS 2019/03/13 07:15:03 38 165
Landsat 8 OLI/TIRS 2019/07/22 07:15:27 38 165
Landsat 5 TM 1999/03/11 06:49:00 38 165
Landsat 5 TM 1999/07/17 06:52:12 38 165

2.3. Normalized Difference Water Index (NDWI)

The water threshold considered in remote sensing is based on the usage of pixel
data, and by testing these data with each other, water particles are recognized. The use
of automated methods to detect water in the study area is often limited to studies of
groundwater or flowing water [2,3,5]. One of the reasons for choosing this method in
reference studies is the lack of sufficient information on the spatial location of the water
phenomenon under investigation.

Extracting water areas from satellite images is essential for various applications. There-
fore, different techniques were used to achieve this goal in [35]. One of the most effective
tested indices is the NDWI. This index is perhaps one of the most popular indices in remote
sensing for identifying the spatial location of liquid water, and it is presented in one of
the two methods below [36]. In this study, the NDWI was calculated within the most
common method (Equation (1)), and this numerical expression resulted in being more
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suitable to estimate the water mask of this place rather than the alternative method of
NDWI estimation, as shown in Equation (2) [26,35,36].

NDWI =
G−NIR
G + NIR

(1)

NDWI =
NIR− SWIR
NIR + SWIR

(2)

where NDWI is the Normalized Difference Water Index, G depicts the reflectance in the
green band, NIR represents the reflectance in the near-infrared band, and SWIR depicts the
short-wave infrared channels or bands.

2.4. Brightness Temperature

The Earth’s surface releases the maximum amount of energy at a wavelength of
approximately 7.9 µm, constituting thermal infrared energy as a by-product of the Earth’s
heat [9–11]. Although this thermal radiation is invisible to the naked eye, it can be detected
by thermal sensors like radiometers and scanners. The study of this thermal infrared region
falls under the domain of thermal remote sensing, a specialized field in remote sensing that
is dedicated to processing and interpreting data derived from this spectral range.

In essence, all materials emit electromagnetic waves when their surface temperature
exceeds absolute zero. The quantity of energy emitted by each material correlates directly
with its surface temperature. This fundamental relationship is encapsulated by the Stefan–
Boltzmann law (Equation (3)) [37], providing a critical foundation for understanding the
thermal behavior of materials and contributing to the principles governing thermal remote
sensing.

E = σ·T4 (3)

This equation states that the total energy emitted per unit area, E, is equal to the
Stefan–Boltzmann constant, σ, multiplied by the fourth power of the absolute temperature,
T, of the material in Kelvin [37].

Equation (3), known as the Stefan–Boltzmann law, is applicable when the material
exhibits characteristics of a black body—a theoretical construct that absorbs all incident
energy and re-emits it entirely. The wavelength at which a black body’s radiation reaches
its maximum intensity is intricately tied to the body’s temperature, an association governed
by Wien’s displacement law (Equation (4)).

λmax ·T = b (4)

In Equation (4), λmax is the wavelength at which the radiation is at its maximum; b is
Wien’s displacement constant, equal to 2898 µmK; and T is the absolute temperature of the
radiating material in Kelvin (K).

2.5. Radiometric Correction

Due to noise, shadows, and unwanted information in Landsat imagery, reflections of
recorded phenomena are not true. In the direct registration of sensor reflections on Landsat
series satellites, no effective measures were taken to reduce this unwanted information [38].
Under such conditions, the recorded digital numbers (DNs) do not accurately represent
the true reflections of different land surface phenomena. By applying precise calibration
coefficients to the images, it is possible to convert DN into Top of Atmosphere (TOA)
reflectance values.

This information is used to calculate the brightness temperature from the TIRS thermal
band sensor. To obtain the brightness temperature, the DN of each pixel is first converted to
spectral radiance, using the calibration values provided. To convert the values of each pixel
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in the images to the corresponding spectral radiance, Equation (5) is used for Landsat-8
images, and Equation (6) is used for Landsat-5 images [39].

Lλ = gain×DN + bias (5)

In Equation (5), Lλ represents the spectral radiance recorded by the TOA sensor
corresponding to the wavelength, λ, measured in

[
W·m2·sr·mm

]
. DN stands for the pixel

values of the thermal image, and the parameters gain and bias are specific calibration
factors for the Landsat-8 image band in consideration.

Lλ =

(
LMax − LMin

QCalMax −QCalMin

)
∗DN + LMin (6)

Equation (6) features Lλ, denoting the spectral radiance recorded by the TOA sensor
at the wavelength, λ, measured in

[
W·m2·sr·mm

]
. DN signifies the pixel values of the

thermal image. Additionally, QCalMax represents the maximum pixel value (255); QCalMin
is the minimum pixel value (1); and LMax and LMin are, respectively, the minimum and
maximum recorded spectral radiance values by the sensor in

[
W·m2·sr·mm

]
.

2.6. Atmospheric Correction

Due to the effects of atmospheric scattering and absorption on the recorded energy,
the TOA values differ from the actual reflections of ground surface phenomena [40]. Ap-
plying atmospheric corrections to surface reflections is essential in most cases, especially
in multitemporal studies and extensive areas [41]. The impact of atmospheric absorption
and scattering on the recorded DN of dark phenomena, including dense vegetation cover
and water areas, is more pronounced [42]. In fact, the radiance in the atmosphere has
atmospheric errors and requires correction, making it one of the crucial topics in satellite
image processing. To estimate the surface water temperature, the atmospheric radiance is
converted to the corrected surface radiance, using the following equation [42,43]:

Lλ(Ts) =
Lλ − Lup

λ

t× ελ
− 1− ελ

ελ
× Ldown

λ (7)

In Equation (7), Lλ(Ts) represents the corrected surface radiance, and Lλ represents
the uncorrected surface radiance, calculated using Equations (5) and (6). Lup

λ and Ldown
λ

denote the upward radiance or atmospheric path radiance and the downward radiance or
sky radiance, respectively. Additionally, t and ελ represent atmospheric transmittance and
surface emissivity, respectively [43,44].

3. Implementation and Results

The investigation utilized four satellite images, namely Landsat 8 and Landsat 5,
corresponding to the summer and winter seasons of 20 years (from 1999 to 2019). The
overall research trend is illustrated in Figure 3.
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Figure 3. Proposed method output: Map showing regional temperature changes and identifica-
tion of polluted areas. Evaluation includes a 20-year water temperature comparison and profiling
temperature differences pre- and post-dam construction.

3.1. Implementation

In the initial step of estimating river water temperature, the generation of a water
mask is essential. This task is performed using two methods: unsupervised classification
and the NDWI technique [34–36].

• Unsupervised classification: Satellite data, specifically ISODATA (Iterative Self-Organizing
Data Analysis Method (ISODATA)), were analyzed using the unsupervised classifica-
tion technique. This method was applied to nonthermal bands with a cluster range of
(2–5). The results are shown in Figure 4.
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• Water index: Before calculating the water mask using the NDWI (Figure 5), radiometric
corrections were applied to the visible bands, using calibration parameters. The
implementation details are explained in Section 3.2.
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Figure 5. Water mask obtained with NDWI method. (A) Winter (water showed in orange color).
(B) Summer (water in yellow color).

As can be seen from the results, the use of an indexing and thresholding approach
requires user supervision, given the geographical location of the region and the numerous
features within the images. This approach, especially when applied to areas downstream
of dams, has proven to provide a clearer spatial identification of water bodies.

In this study, the emissivity of water was assumed to be 0.9885 based on the work
of Simon et al. [45]. In addition, the values of Lup

λ , Ldown
λ , and t were obtained using the

online atmospheric correction parameter calculation tool. This tool takes into account the
sensor type, the geographical location of the study area, and the image acquisition time
(see Figure 6). Finally, the water temperature was calculated using the corrected surface
radiance (Lλ(Ts)) and thermal band constants according to Equation (8) [46].

Ts =
K2

ln
(

K1
Lλ(Ts)+1

) − 273.15 (8)

where Ts represents the temperature of water in Celsius; K1 and K2 are the thermal band
constants with values of 774/8853 W·m2·sr·mm and 1321/0789 respectively; and Lλ(Ts) is
the corrected surface radiance in radians.
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3.2. Experiments and Results

After applying radiometric and atmospheric improvements to the satellite images, the
river water temperature image for the Karun River was generated. Before analyzing the
graphs, it is important to note that the Landsat-8 thermal images have a spatial resolution
of 100 m, as explained above. Consequently, the rivers studied should have a minimum
width of 200-to-300 m in order to allocate at least two or three pixels in the thermal image.
It is recommended to focus on areas where the river width in the thermal image is at least
three pixels [12,13].

There are many features in different scenes of the image, such as urban, agricultural,
mountainous, and aquatic areas. A manual profile of temperature fluctuations along the
dam and river course was accomplished by selecting water pixels, constituting a non-
systematic method. In addition, the width of the river, which ranges from 150 to 300 m,
increases the likelihood of selecting non-water pixels, especially in areas where the river’s
width is less than three pixels. Therefore, in order to decrease the human error associated
with the incorrect selection of pixels along the longitudinal profile drawing, it is essential
to apply a masking operation to separate non-water features from water features. For this
reason, the generated water mask in Figure 5 was transformed into a binary image using a
threshold, as shown in Figure 7, to separate non-water areas from water areas.



Sustainability 2024, 16, 646 11 of 20

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 20 
 

river’s width is less than three pixels. Therefore, in order to decrease the human error 
associated with the incorrect selection of pixels along the longitudinal profile drawing, it 
is essential to apply a masking operation to separate non-water features from water 
features. For this reason, the generated water mask in Figure 5 was transformed into a 
binary image using a threshold, as shown in Figure 7, to separate non-water areas from 
water areas. 

 
Figure 7. The water mask of the Karun River and the Gotvand and Shahid Abbaspour Dams. 

After creating the water temperature map for the study area, the map of temperature 
changes was generated. Thus, Figure 8 shows the map of temperature changes in the 
Karun River and its surroundings during the summer and winter seasons. Longitudinal 
profiles or histograms were then drawn on the temperature change map, allowing us to 
observe great temperature differences in summer, while moderate changes in this 
variable were registered during winter. This situation can be verified in each studied dam 
in Figure 9. 

 
Figure 8. Map of temperature changes in the Karun River in 2019. (A) Summer. (B) Winter. 

(A) Summer (B) Winter 

Figure 7. The water mask of the Karun River and the Gotvand and Shahid Abbaspour Dams.

After creating the water temperature map for the study area, the map of temperature
changes was generated. Thus, Figure 8 shows the map of temperature changes in the Karun
River and its surroundings during the summer and winter seasons. Longitudinal profiles
or histograms were then drawn on the temperature change map, allowing us to observe
great temperature differences in summer, while moderate changes in this variable were
registered during winter. This situation can be verified in each studied dam in Figure 9.
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Likewise, our analysis of the spatial and temporal patterns of water temperature
using Landsat OLI thermal infrared imagery reveals a significant impact of the dams
studied on river temperature. Figure 9 shows the temperature values at the locations of the
Gotvand and Shahid Abbaspour Dams during summer and winter. As can be seen from
the graphs, the water temperature upstream of the dams shows negligible variations due to
the static and immobile nature of the water. However, downstream of the dams, the water
temperature undergoes more significant changes. In summer, when water is released from
the upstream reservoir, the water temperature drops. In contrast, in winter, the temperature
downstream of the dams remains relatively stable and almost the same as upstream.
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Figure 9. Changes in the water temperature at (A) Shahid Abbaspour Dam in 2019 and (B) Gotvand
Dam in 2019.

Temperature change graphs, categorized by dam, are presented in Figure 9, with
summer temperature change profiles shown in orange and winter temperature change
profiles shown in blue. In Figure 9A, the average water temperature upstream of Shahid
Abbaspour Dam is about 41 degrees Celsius in the summer and about 37 degrees Celsius
downstream. In winter, the average water temperature upstream is about 27 degrees
Celsius, and downstream, it is about 28 degrees Celsius. In Figure 9B, the average water
temperature upstream of Gotvand Dam is about 41 degrees Celsius in summer and about
38 degrees Celsius downstream. In winter, the average water temperature upstream is
about 29 degrees Celsius, and downstream, it is about 30 degrees Celsius.

The graphs and results show that the Shahid Abbaspour Dam causes the river water’s
temperature to be about 4 degrees Celsius cooler in summer and about 1 degree Celsius
warmer in winter. Similarly, the Gotvand Dam gives similar results to the Shahid Abbaspour
Dam, causing the river water to be about 3 degrees Celsius cooler in summer and about
1 degree Celsius warmer in winter. These two dams, Gotvand and Shahid Abbaspour, are
about 70 km apart and have similar effects on the Karun River. This suggests that, after
passing through the Shahid Abbaspour Dam, the water temperature decreases, and then it
increases between the Shahid Abbaspour Dam and the reservoir of the Gotvand Dam, until
it returns to its original temperature. Subsequently, passing through the Gotvand Dam
leads to a decrease in water temperature.

The assessments were repeated on Landsat-5 imagery to examine the impact of the
dams on temperature changes over a 20-year period. The results of water temperature
changes in 1999–2000 for both summer and winter are shown in Figure 10. The orange
profile corresponds to temperature changes in summer, and the blue profile represents the
winter season. In summer, the average water temperature upstream of Shahid Abbaspour
Dam is about 50 degrees Celsius. When the water is released, the water temperature
downstream reaches about 45 degrees Celsius, and over time, as it moves away from the
dam, it first drops to about 36 degrees Celsius and then gradually rises. In winter, the
average water temperature upstream is about 23 degrees Celsius, reaching about 25 degrees
Celsius downstream after the water is released.

At the Shahid Abbaspour Dam, the discharged water is about 5 degrees Celsius cooler
in summer and about 2 degrees Celsius warmer in winter. This pattern of temperature
change repeats itself. The pattern of temperature changes in the Karun River for Landsat-5
imagery in the years 1999–2000 is consistent with Landsat-8 imagery in the years 2018–2019,
showing a recurring pattern. This suggests that the presence of dams has a noteworthy
impact on the temperature of the river.
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Figure 10. Changes in water temperature in the Shahid Abbaspour Dam in 1999–2000.

In summer, when the natural flow of the river is low, it is not possible to supply
air to the lower layers. As a result, multiple layers of water form, with warmer water
at the top and colder water at the bottom. Oxygen decreases in these layers. As these
layers are very cold and their dissolved oxygen content is low, an increase in temperature
provides a favorable environment for bacterial growth and pollution. However, in winter,
the temperature of the upper layers often drops, and there is less stratification than in
summer. Therefore, the water temperature downstream of the dams can change suddenly
because the water behind the dam has a different temperature due to thermal stratification.

After investigating the impact of the dam on temperature changes in the Karun River,
the impact of urban, agricultural, and industrial areas on temperature changes was also
investigated. The analysis shown in Figure 11 identified areas that caused temporary
and unusual increases in water temperature, and the temperature changes are shown in
Figures 12 and 13. Through visual interpretation of the temperature map in Figure 11A
along the Karun River from the Gotvand Dam to the Jannat Makan and Somaleh regions,
transient temperature increases were observed at some points. It is worth noting that the
areas identified in Figure 11 present several urban, agricultural, and industrial pollution
zones. Due to the increasing scarcity of water resources in arid and semi-arid regions, this
situation is becoming more frequent [47,48].

Figure 11B shows the temperature variation map of the Karun River in the Shushtar
urban area, highlighting the impact of urban and industrial zones on temperature variation.
Through a visual interpretation of the map, it can be observed that instantaneous tempera-
ture increases occur at some points. These instantaneous increases are considerably related
to water discharges from industrial zones which elevate the average temperature of this
river [21,22].

Rivers are one of the chief sources of water for various purposes, including agriculture,
industry, and drinking. However, they are also among the most common sources of
pollution, especially in arid and semi-arid areas [1,2]. The Karun River, the most important
surface water source in Khuzestan Province and the country, is no exception, receiving
pollution from urban, agricultural, and industrial sources. The country’s heavy industrial
complexes, located in five industrial zones along the Karun River, contribute significantly
to the pollution of the river. Industrial effluents from the cities of Abadan, Dezful, Masjed
Soleyman, Khorramshahr, and Shushtar are discharged into the Karun River. Irrigation
networks, drainage, and cultivation play an important role in ensuring global food security.
The return flow of water from agricultural, drinking, and aquaculture uses poses a challenge
to water resources in terms of quality.
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Figure 11. Areas surveyed for thermal pollutants: (A) Shushtar town, where points depict transient
temperature increases. (B) The towns of Gotvand, Jannat Makan, and Somaleh, where points depict
instantaneous temperature increases.
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Figure 12. Profiles of the temperature changes caused by the urban areas and industrial areas
(Shushtar) (according to Figure 11A) and their average temperature trends. (A) Changing water
temperatures in relation to Landsat-8 imagery in 2019. (B) Changing water temperatures in relation
to Landsat-5 imagery in 1999.

After passing through the Gotvand Dam, the Karun River flows through towns such
as Gotvand, Jannat Makan, Somaleh, and Shushtar before reaching Ahvaz. As mentioned
above, urban, agricultural, and industrial pollution affects this river, leading to an increase
in water temperature [20–22]. One of the methods used to identify and monitor pollution
sources on a regular and continuous basis is the use of thermal maps generated from
satellite imagery.
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Figure 13. Profiles of the temperature changes caused by the urban areas, the agricultural areas, and
the industrial areas (Gotvand, Jannat Makan, and Somaleh) (according to Figure 11B).

To complement the visual interpretation of the thermal pollution maps of urban,
agricultural, and industrial areas shown in Figure 11, temperature change profiles were
drawn according to the identified regions in Figures 12 and 13. The process of drawing
temperature change profiles in 2019 and 1999 using Landsat-8 and Landsat-5 satellite
imagery was undertaken to identify and compare areas along the Karun River where water
temperature is unusually increasing over a 20-year period. A comparison of the temperature
change diagrams and the results of water temperature changes in the Gotvand, Jannat
Makan, and Shushtar areas over the 20-year period revealed almost identical patterns,
indicating the continued presence of most of these pollution sources from 1999 to the 2019.
According to the obtained results (Figure 12), a clear surge in the average water temperature
in the river was estimated in 2019, whereas, in 1999, this increasing trend was not observed.
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4. Discussion

The rising water temperatures of rivers are a major environmental hazard, directly
and indirectly affecting the climate of neighboring regions, aquatic ecosystems, etc., but are
scarcely studied regarding other causes of surface and groundwater contamination, such
as chemical loads from industry or agriculture [48–55]. The considered remote sensing
sources have been demonstrated to be useful tools to detect and quantify temperature
changes in rivers, and the same goes for numerous water and environmental bodies (such
as aquifers, wetlands, agricultural plots, etc.) that usually depict the same limitation to
apply remote sensing data: the reduced spatial size of these elements, which encompass low
pixels from the mentioned satellite sources [56–60]. Therefore, studying, investigating, and
presenting appropriate solutions in this area can be very useful and practical to the scientific
community and to local authorities. Historical water temperature data over large regions
and long time periods are usually not readily available, owing to the restricted number of
ground-based sensors [49,51]. Even if rivers and dams are equipped with sensors for water
temperature, the supposition that data collected by one or more ground-based sensor at
scarce different locations offer sufficient information about the spatial distribution of the
overall water temperature in the studied area may not hold in practice [53]. In this study,
a large area of the Karun River was studied over a long period of time, using remotely
sensed imagery.

The results suggest that the use of remote sensing data effectively overcomes the
limitations and shortcomings of ground-based sensors for estimating water temperature
and identifying pollution areas. It provides experts with spatially extensive and highly syn-
chronized data. Thermal pollution from dams has a significant impact on the downstream
river environment and ecology [48–52]. A case study using Landsat-8 imagery (during the
period 2018–2019) shows that the Shahid Abbaspour and Gotvand Dams lead to a decrease
in downstream water temperature (Figure 9). After the Shahid Abbaspour Dam ends, the
water temperature is about 4 degrees Celsius cooler in summer and remains relatively
constant in winter (about 1 degree Celsius warmer). The Gotvand Dam shows similar
results, with water temperatures about 3 degrees Celsius cooler in summer and about 1
degree Celsius warmer in winter. The monitoring of the Gotvand Dam was repeated over
a period of 20 years, using Landsat-5 images (during the period 1999–2000). The water
temperature is about 5 degrees Celsius cooler in summer and about 2 degrees Celsius
warmer in winter when water is released upstream. These results are consistent with the
findings for the period 2018–2019.

In addition to the effects derived from dams or reservoirs on streams and related ecosys-
tems [49,61], other factors commonly contribute to the pollution of rivers, such as urban,
agricultural, and industrial pollutants [48–51,62]. The discharge of pollutants into rivers
not only increases chemical pollution [1,48] but also increases water temperature [49,63]. As
shown in Figures 12 and 13, these pollutants have been discharged into the river and have
caused an increase in water temperature. The accessibility and volume of these pollutants
have facilitated their entry into rivers [52–54]. By analyzing the results of temperature
changes along the Karun River, it can be concluded that the pollutant sources that were
present in 1999 continue to increase the temperature of the Karun River to this day (over a
twenty-year period). The introduction of pollutant sources into rivers during these years
highlights the need to use novel and cost-effective monitoring methods to control the
reduction of pollutant sources and to seriously reconsider how polluted areas are identified
and monitored.

5. Conclusions

Thermal contamination is the reduction of water quality caused by any process altering
the ambient temperature of the water. Monitoring water resources traditionally relies on
ground-based sensors and field measurements to simulate water quality and identify
pollutants. Nevertheless, these methods are often expensive, time-consuming, and limited
by the number of sensors, as well as spatial and temporal constraints.
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To address these challenges, this research proposes an economical and cost-effective
approach for monitoring thermal pollution in the Karun River. This method utilizes
free remote sensing imagery, specifically the thermal bands of Landsat-8 and Landsat-5
satellites. The selection of the Karun River for this work is justified by the existence of
numerous dams along its course and its expansive estuary. This study focused on the
Shahid Abbaspour Dam (Karun 1) and the Gotvand Dam over a 20-year period to estimate
the surface water temperature. The findings reveal that the dams exhibit a seasonal impact
on the river’s temperature. During the summer, low natural flow behind the dam inhibits
the air from reaching the underlying layers, causing thermal stratification in the water.
Consequently, water flowing downstream is much colder than the river’s water, resulting
in lower temperatures downstream of the dams compared to the reservoir’s upstream
surface water temperature.

After examining the dams’ effect on temperature changes, this study investigated the
influence of urban, agricultural, and industrial areas on temperature fluctuations. The
Gotvand Dam area in the Jannat Makan region and Shushtar town along the Karun River
were selected for visual interpretation. Urban, agricultural, and industrial facilities were
identified, pinpointing temperature increases. Temperature change profiles for these areas
were plotted using satellite imagery for 2019 and 1999. Comparing the temperature change
graphs over the 20-year period revealed consistent patterns in polluted areas, indicating the
sustained presence of pollutant sources over time. Moreover, the number of these sources
has increased to the present day.

In general, the results of this study indicate that satellite data can be useful as an
accessible and free source for monitoring thermal pollution and temperature changes over
time and space. However, these temperature changes may vary depending on different
factors and pollutant sources, and they may show seasonal or permanent behavior. This
aspect should be taken into account in the planning and monitoring processes.
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