El marketing de influencia se ha convertido en una herramienta efectiva para que las marcas conecten con sus consumidores en las redes sociales a través de los influenciadores. Aunque esta forma de marketing ha generado en los últimos años un mayor interés en la comunidad científica, se sabe relativamente poco sobre el contenido y la estrategia de los influencers y los vínculos con los comportamientos que generan en sus seguidores. En este contexto digital, cabe destacar un tipo de influencer relacionado con la literatura: los bookstagrammer. Usuarios que comparten su pasión por los libros, reseñan noticias de editoriales y fomentan el hábito de la lectura. Este estudio analiza cómo la estrategia de contenido y engagement de los bookstagrammers (medida por el número de seguidores, volumen de contenido y publicaciones de interés) se asocia con el engagement de los seguidores de estos influencers culturales en Instagram, tanto de forma independiente como interactiva. El estudio analiza un conjunto de datos recopilados de bookstagrammers analizando el contenido generado por estos influencers para probar las hipótesis propuestas. Los hallazgos muestran que las publicaciones que incluyen fotografías del autor o portadas de libros se asocian positivamente con la participación de los seguidores en Instagram, mientras que las publicaciones emocionales que expresan sentimientos se asocian negativamente con la participación de los seguidores. Los hallazgos muestran que las publicaciones cargadas de emociones, aunque generen mayor engagement, también pueden conducir a un mayor compromiso con los seguidores en Instagram.
1. Introducción

The unprecedented integration of social networks into people’s daily lives has provided brands with ample opportunities to connect with customers and users (Papacharissi, 2002; Kaplan & Haenlein, 2010; Kietzmann et al., 2011). However, the gradual saturation of social media platforms with brand messaging has led to increasing user fatigue (Jacobson et al., 2020), which has yielded less than satisfactory returns on brands’ efforts on social networks (De Vries et al., 2017). Of the wide variety of innovative approaches that brands have been experimenting with, influencer marketing has emerged as a successful approach to connect with potential customers via social media (Childers et al., 2019; Lou et al., 2019).

Influencers are prominent social media users who amass a large following by creating an authentic online personality (Lou et al., 2019; Sokolova & Kefi, 2020). These people, who through their lifestyle, values or beliefs have a direct influence on a certain number of followers, create deep psychological bonds with them by sharing personal content that revolves around their lifestyle and interests (Ladhari et al., 2020; Guo & Chen, 2022). Social media users generally see these influencers as being authentic and similar to themselves (Schouten et al., 2020; Sokolova & Kefi, 2020). The positive perception that followers have of influencers makes the messages of these public personalities very effective in terms of creating the desired brand impact (Lou & Yuan, 2019). Influencer marketing involves leveraging the trust and connection that influencers forge with their followers to amplify the reach and impact of brands on social networking sites (Enke & Borchers, 2019; Martinez-Sanz et al., 2023).

Research on influencer marketing has addressed several relevant topics, such as the promotion of products (Lou et al., 2019), influencer likeability (De Veirman et al., 2017; Sokolova & Kefi, 2020), the opinion leadership of influencers (Ladhari et al., 2020) or the effectiveness of influencers in relation to traditional celebrities (Schouten et al., 2020), among others.

This technological omnipresence has also led to the emergence of influencer profiles on very diverse topics, ranging from scientific (health, medicine, sports, psychology, gastronomy, etc.), business (economics, marketing, communication, etc.), fashion (design, designers, entrepreneurs, models, etc.), or profiles linked to the world of literature (writers, publishers, readers, etc.), where readers are of great importance because of their contribution to culture through the recreation of spaces in which literary criticism and the promotion of the habit of reading converge with the promotion of reading material and the sale of books.

It is precisely in this context that a new term has been introduced on Instagram, one that focuses on uploading images related to books: Bookstagram. It relates to activists on Instagram who upload specific content about reading books. Through their book reviews, bookstagrammers have positioned themselves as reading influencers, becoming co-authors and prosumers on a social network like Instagram that is characterized by posting images, and acting as active agents who communicate their reading interests to their followers (Monteblanco, 2015). These influencers are turning increasingly to Instagram to create their profiles, send posts, announce cultural events and communicate with users. With the increase in the number of active bookstagrammers, the volume of data on Instagram represents an unprecedented data source for social researchers (Boy & Uitermark, 2016) and as such, justifies carrying out research into Instagram.

 Compared to other Instagram influencers who can earn a lot of money from their posts, bookstagrammers generally do not get paid for the content they post on Instagram because they only share information about books or reading activities out of interest (Darma et al., 2021), as evidenced in the sample analysed. Nevertheless, by exerting their influence on Instagram, bookstagrammers position themselves in the literary world.

The emergence of these literary influencers forms part of a wider spectrum of the changes that digitalization is bringing about in literature, information and communication technologies (ICTs), and specifically social networks, have generated a virtual space for the literary world and, in particular, for reading (Giuria, 2021; Ravettino, 2015; Kunin, 2008). Various studies have analyzed in depth how technology affects aspects such as the way people read (Casany et al., 2012; Cavallo & Chartier, 1998), the book as a support in terms of whether it is in digital or paper format (Ackerman & Goldsmith, 2011; Kretzschmar et al., 2013; Margolin et al., 2013), or images of publications on social media (Dezuanni et al., 2022). In this vein, and focusing on digital literary influencers, various studies have been carried out on creators, known as Booktubers, who generate audiovisual content about the books they read and who started out on YouTube (Jeffman, 2017; Lluch Crespo, 2014; Rovira-Collado, 2015; Mara & Sorensen, 2013). Authors such as Tomasena (2021) examine the sociodemographic characteristics that define them, highlighting, among other aspects, that 62% of the broadcast channels belong to women.

However, due to the nascent state of this field of research, several relevant topics have yet to be explored. For example, no research has been carried out that analyzes the organic content and
engagement strategies of these literary influencers with their followers on Instagram. Although many of these influencers cultivate a transmedia content strategy, the characteristics of Instagram pose distinct challenges in terms of content development. This, together with the specific influence of influencers on Instagram, makes an approximate study relevant to understanding the phenomenon. Therefore, the responses of followers in terms of liking, commenting and sharing organic content from literary influencers is a scientific area that has yet to be studied.

Our study therefore aims to address these gaps by investigating the content and engagement strategies of cultural influencers in the world of literature and the relationship of these strategies with the engagement of followers on Instagram. Specifically, it develops a set of hypotheses that link the number of followers and the volume of content of these influencers with the engagement of these followers and examines whether these relationships are moderated by the type of content of these influencers on Instagram. Our study is based on the theory of social influence (Kelman, 2006) and uses data taken from the Instagram profiles of literary influencers to test the proposed hypotheses. The reference data was collected manually from the Instagram accounts of the most influential individuals in the dissemination of this cultural information.

The findings contribute to the understanding of the content and engagement strategies of cultural influencers associated with the behavior of their followers on Instagram and fill the gap in this type of research. Our approach thus extends existing findings that only analyzed discrete influencer activities such as individual post characteristics or discrete follower responses such as Likes and Comments in relation to individual posts (Lou & Yuan, 2019; Lou et al., 2019). Since our study investigates aggregate behavior, the findings are more generalizable to other modes of social influence.

Our findings also act a guideline for the development of efficient and effective marketing strategies by companies (Jiménez-Castillo & Sánchez-Fernández, 2019), and specifically those of the publishing world. Increasingly, publishers or literary authors who self-publish their works rely on collaborating with literary influencers. Based on the results, we provide recommendations for companies in this sector on how they can generate better results from a deeper understanding of the behavior of cultural influencers and their followers online. This will allow them to gain notoriety, retain customers and increase their sales through an intelligent association with these bookstagrammers.

Therefore, this study aims to: 1) analyze the communication of bookstagrammers on Instagram; 2) compare the behavioral engagement of these cultural influencers on Instagram, and 3) compare the levels of popularity, engagement, and virality of these profiles on Instagram.

The research is structured as follows. First, the theoretical background of the study is described. Next, the conceptual framework and hypotheses are presented. The study methodology is then detailed and, finally, the empirical findings are presented. The remaining sections of the paper discuss the theoretical and managerial implications of the findings.

2. Theoretical context

2.1. Influencers on social networks

Influencers are prominent users of social networks who are seen as experts in specific fields of interest such as fashion, lifestyle, photography, travel, culture, etc. (Ladhari et al., 2020). They are ordinary social media users who cultivate a following by crafting compelling narratives about their interests and lifestyle (De Veirman et al., 2017; Ki et al., 2020; Lou & Yuan, 2019). These influencers create a powerful online identity by communicating authentic personal narratives that combine photos, videos, and various activities (Childers et al., 2019). This online personality helps influencers attract followers and engage them on an ongoing basis (Ladhari et al., 2020).

Identification occurs when followers accept influence in order to establish or maintain a self-defined relationship with the influencer, who becomes part of the followers’ self-image (Kelman, 2006). Followers maintain the relationship and the satisfying self-definition it provides by emulating the influencer (Kelman, 1961). Influence through identification is based on attractiveness. In other words, the influencer possesses qualities such as desired roles, popularity, or creativity that followers themselves lack, which in turn makes an ongoing relationship with the influencer desirable (Kelman, 2006). In general, influence through identification is intrinsically motivated and goes much deeper than compliance since it is associated with followers’ concept of themselves.

2.2. Bookstagrammers: literary influencers on Instagram

Understanding the phenomenon of bookstagrammers requires mentioning those who were pioneers in recommending books and, therefore, literary influencers. YouTube was first to position itself in this area. Here, literary influencers were known as booktubers. As a social network, it grew in interaction and involvement among Spanish users (Camacho & Alonso, 2010).
Tomasena (2021) describes the profiles of these content generators according to sociodemographic aspects, level of popularity and best-known content, finding that they are mostly women (62%), with university studies, and young (20 to 29 years old). Tomasena’s study confirms previous ones by Carbajo (2014) and Pastor (2020), who conclude that the profiles consist of mostly young women who generate simple, fun videos by recording themselves on camera and commenting on their reading, a find in a second-hand bookstore or offers found on a website.

At 74%, Instagram ranks highest in terms of having the most influencers currently being followed by users, followed at some distance by YouTube (44%), with Facebook (26%) and TikTok (24%) in joint third place. Women aged between 12 and 17 years old (78%), 18 to 24 (69%) and those between 25 and 40 (60%) are the most to follow these accounts (IAB, 2022).

Both Instagram and YouTube have contributed to the generation of this type of reading community, but not in the same way. As Gioria (2021) points out, booktubers focus on promoting reading by using, among other techniques, challenges that encourage their followers to interact and that in the long term generate ties with their community, while bookstagrammers rely on aesthetics and have a more direct relationship with bookfairs and the sale of books, aspects analyzed here based on the evolution of the content generated by bookstagrammers and improvements in usability that Instagram constantly makes.

Observing how influencers these people behave online is especially relevant, an aspect reflected in recent sectoral studies worldwide. Some of the most important findings include the observation that more than a million people watch live videos daily, “like” more than four billion times a day and that ninety-five million posts are posted daily. Video creation has quadrupled since 2017 and more than 30% of users have made a purchase (Statista, 2020; TheSocialmediafamily, 2021). They are “lovers” of what they read, have a great passion for reading and like to share their opinion about the books they are reading or that were important at some stage in their lives. They recommend reading and report on new publications. Their demographic profile indicates that they are usually young, which determines the type of reading they most recommend or comment on (Martínez-Ezquerro, 2020).

2.3. Conceptual framework and development of hypotheses

The conceptual framework shown in Figure 1 is based on the background literature presented in the previous section. This conceptual framework proposes the engagement of followers as the main variable, which measures the participation of followers and the interactive responses regarding the content of influencers on social networks (Arora et al., 2019). This is evident in behaviors such as liking/marking as favorite and sharing and commenting on influencers’ social media posts (Lou et al., 2019).

Figure 1: Proposed Research Model

![Figure 1: Proposed Research Model](image)

Source: Produced by the authors

The basic premise of this conceptual framework is that the content elements of cultural influencers’ posts are independently and interactively associated with follower engagement (Tafesse & Wood, 2021).

Through engagement, followers view influencers favorably, interact with their content and are willing to accept their influence. As such, they provide a numerical measure of the degree of influence on social networks. These individual interactions are indicators of the audience’s response to certain content.

To generate the influence index, it is important to use the characteristics of the data provided by social networks through statistical regressions (Agarwal & Mehta, 2018).
2.4. The effect of image on engagement with influencers

The responses of Instagram users to influencer posts are influenced differently by image attributes (Rietveld et al., 2020), resulting in different behaviors regarding Likes, Comments and sharing. Specifically, Likes, as immediate reactions, tend to be driven by content that features ordinary people, points of view, or habits (Bakhshi et al., 2014). Based on these arguments, we propose the following hypotheses:

H1: The content, sentiment and format of posts have a direct impact on the ability to generate engagement with users.

H2: Likes and Comments explain the engagement.

H3a: The image of a book cover or its author has a greater capacity to generate Likes from the followers of a bookstagrammer than any other post.

H3b: The image of the book cover or its author has a greater capacity to generate Comments from the followers of a bookstagrammer than any other post.

3. Methodology

To study the community of bookstagrammers, a descriptive exploratory study was carried out based on the analysis of the content generated by ten bookstagrammers on their Instagram profiles (Table 1). This method consists of tracking and drawing conclusions from qualitatively collected data (Easterby-Smith et al., 2015).

<table>
<thead>
<tr>
<th>Name</th>
<th>Followers (millions)</th>
<th>Posts published</th>
</tr>
</thead>
<tbody>
<tr>
<td>en_bookl</td>
<td>69.3</td>
<td>69</td>
</tr>
<tr>
<td>Dimeunlibro</td>
<td>85.4</td>
<td>86</td>
</tr>
<tr>
<td>Mimundodelecturas</td>
<td>75.6</td>
<td>60</td>
</tr>
<tr>
<td>Ari_godoy</td>
<td>1.2</td>
<td>40</td>
</tr>
<tr>
<td>Darkfaerietales</td>
<td>166</td>
<td>477</td>
</tr>
<tr>
<td>Maditales</td>
<td>142</td>
<td>211</td>
</tr>
<tr>
<td>Adictaalibros</td>
<td>106</td>
<td>65</td>
</tr>
<tr>
<td>Booksandlibros</td>
<td>67.8</td>
<td>145</td>
</tr>
<tr>
<td>Sumaiyya.books</td>
<td>100</td>
<td>320</td>
</tr>
<tr>
<td>Book.and.beers</td>
<td>63 77.3</td>
<td>321</td>
</tr>
</tbody>
</table>

Source: Produced by the authors

The sample was selected by triangulating the rankings generated by Marquina (2016), Shereads.com (2022), larazon.es (2021), as well as the ranking resulting from Google’s SEO algorithm and the ranking of tags most used by this community on Instagram by 15th September 2023: #bookstagram (81 million), #booklover (30.8 million) and #instabook (14.7 million).

Data collection was carried out by monitoring the activity of these literary influencers on Instagram, which was chosen for being the social network with the largest number of followers in this category of products/services. Instagram was also used because users as well as influencers and publishers increasingly rely on it for their marketing strategies while gaining more followers every day among those interested in the world of literary culture. The influencer’s country of origin does not appear in the sample because most of them do not state in their profiles where they are from or where they currently reside (Figure 2).
Figura 2: Instagram en_bookle.

Para evaluar la participación comportamental (Brodie et al., 2013) de los seguidores de estos influencers culturales, se registraron las reacciones de los seguidores en Instagram. Mientras que el periodo de estudio cubrió el año 1 de enero a 31 de diciembre de 2021, el análisis de los datos se realizó entre 1 de abril y 15 de mayo de 2022, permitiendo un periodo suficiente para que todos los posts alcanzasen la máxima reacción. La función "print as PDF" disponible en Chrome se utilizó para mantener un registro del contenido en caso de que los perfiles se descontinuaren mientras se realizaba la investigación.

Los datos de los posts de estos bookstagrammers fueron recogidos manualmente, codificando un total de 569 posts de una muestreos sistemática aleatoria de todos los posts publicados por cada bookstagrammer. Con esta muestreo, se buscó analizar un año completo mientras se aseguraba de que el tiempo y el orden de publicación no influyeran en los valores observados.

La opción de incluir el número de seguidores como variable no se ha considerado, ya que, en general, el mayor el número de seguidores, mayor la tendencia a aumentar el número de likes, pero esto no justifica que todos tengan el mismo nivel de actividad y participación, tanto en dar likes como en escribir comentarios. Normalizando el conjunto de datos supondría asumir que todos los seguidores son igualmente activos.

Tres categorías se emplearon para clasificar el contenido (Tabla 2). La primera, proporcionada por Çukul (2015), y la segunda, basada en Goor (2012), se obtuvieron de la literatura científica y usadas en el análisis de los perfiles de Instagram (Brown, 2003). Para especificamente evaluar los perfiles de estos diez influencers, se desarrolló una tercera categorización propuesta por los autores de esta investigación, asegurando que dicha categorización fuera auténticamente exhaustiva, excluyente, objetiva, fidedigna y relevante (Krippendorff, 2004). De la sumatoria de las tres categorizaciones, el contenido recopilado se estructuró en 12 categorías, según contenidos (5 categorías de la modelo de Çukul), sentimientos (2 categorías del modelo de Goor) y aspectos formales del post (5 categorías del modelo del autor).
Table 2: Study variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>The book being promoted is shown</td>
<td></td>
</tr>
<tr>
<td>Price/Promotion</td>
<td>The price of the book is shown / promotes a book</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Advertising</td>
<td>Contains an advertising slogan or headline</td>
</tr>
<tr>
<td></td>
<td>Special day</td>
<td>Announces a literary event or special day</td>
</tr>
<tr>
<td></td>
<td>Event</td>
<td>A special event is promoted (e.g. book presentation)</td>
</tr>
<tr>
<td></td>
<td>Emotion</td>
<td>The product is linked to emotion (e.g. drama, laughter, suspense)</td>
</tr>
<tr>
<td></td>
<td>Engagement</td>
<td>Post invites users to buy</td>
</tr>
<tr>
<td></td>
<td>Influencer</td>
<td>Post includes photograph of bookstagrammer</td>
</tr>
<tr>
<td></td>
<td>Author</td>
<td>Post includes photograph of author or book</td>
</tr>
<tr>
<td>Format</td>
<td>Series of photos</td>
<td>Post includes various photographs</td>
</tr>
<tr>
<td></td>
<td>Bookstore</td>
<td>Post includes photograph of bookstore</td>
</tr>
<tr>
<td></td>
<td>Video</td>
<td>Post is in the form of a video</td>
</tr>
</tbody>
</table>

Source: Produced by the authors

The applicability of each post to each of the 12 categories was determined and the number of reactions to the post, both as Likes and Comments, was counted. The comments were counted numerically without taking into account the sentiment of the comment because by being international accounts, the comments often referred to topics unrelated to the analyzed posts in addition to being written in different languages.

Prior to the data analysis, three coders from outside the research team were trained. The reliability of the coded data was verified and an Inter-Coder Analysis was then carried out, measuring Scott’s Pi and Cohen’s Kappa coefficients, which relate the coded data to the values that would be obtained randomly, obtaining expected values in all the descriptive categories in which a subjective assessment does not apply.

For data treatment and analysis, SPSS version 3.5.1 was employed. Three levels were used for statistical decisions: the most demanding with a value of p<0.001 (designated by ***p), an intermediate at p<0.05 (represented as **p) and a third, weaker but relevant, at p<0.1 (denoted as *p). Frequency tables were obtained with the absolute and relative frequencies for the qualitative variables, as well as tables with the summary statistics –N, median, and quartiles– for the quantitative variables. Similarly, bivariate tests were carried out following the Chi-squared test for qualitative variables and the non-parametric Mann-Witney test for quantitative variables. Bivariate tests were also carried out between the response variables (Comments and Likes) and each of the explanatory variables using the non-parametric Mann-Witney or Kruskal-Wallis test, also obtaining the summary statistics N, median, and quartiles. Regarding the modelling, a multiple linear regression model was adjusted for each of the dependent variables, transforming the variables beforehand by means of logarithms in order to provide stability in the regressors and reduce atypical observations.

4. Results

4.1 Correlation analysis between the dependent variables Likes and Comments

First, the normality of the two dependent variables was analyzed using the Kolmogorov-Smirnov test, considering it normal if it had a significance greater than 0.05 (Tables 3 and 4).
Table 3: Normality tests, Comments.

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov*</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>gl</td>
</tr>
<tr>
<td>Logarithm_Comments</td>
<td>0.086</td>
<td>521</td>
</tr>
</tbody>
</table>

* Lilliefors significance correction.

Source: Produced by the authors

Table 4: Normality tests, Likes

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov*</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>gl</td>
</tr>
<tr>
<td>Logarithm_Likes</td>
<td>0.069</td>
<td>521</td>
</tr>
</tbody>
</table>

* Lilliefors significance correction.

Source: Produced by the authors

Since the variables are not normally distributed, the non-parametric version of the Spearman’s correlation coefficient of the Pearson’s correlation coefficient (Table 5) was used.

Table 5: Correlations

<table>
<thead>
<tr>
<th></th>
<th>Logarithm Comments</th>
<th>Logarithm Likes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithm Comments</td>
<td>Correlation coefficient</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilateral)</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>521</td>
</tr>
<tr>
<td>Spearman’s rho</td>
<td>Correlation coefficient</td>
<td>0.627**</td>
</tr>
<tr>
<td>Logarithm Likes</td>
<td>Sig. (bilateral)</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>521</td>
</tr>
</tbody>
</table>

**. The correlation is significant at a level of 0.01 (bilateral).

Source: Produced by the authors

As can be seen in Table 5, the bivariate correlation between the logarithm of Likes and the logarithm of Comments is statistically significant at the 0.01 level (bilateral), reaching a value of 0.627.

4.2 Analysis of the dependent variable Likes

We then carried out a multiple regression analysis on the logarithm of Likes. Before starting, the assumption of linearity was verified. This assumption implied that the relationship between the variables was linear. To do this, the bivariate correlation between the dependent variable and each of the independent variables was analyzed separately, thus eliminating the effect of the other independent variables included in the analysis.

Next, we confirmed that there was a statistically significant correlation between Likes and posts in the Emotion, Engagement, Bookstagrammer and Author attributes, but not in Product, Price/Promotion, Advertising, Special Day, Event, Series of photos, Bookstore and Video. These last eight variables did not meet the assumption of linearity and were therefore not included in the regression analysis.

After verifying the assumption of linearity and eliminating the eight variables that did not meet it, we then carried out the multiple linear regression analysis itself. Analyzing the five independent variables
that fulfilled the assumption of linearity, we observed that all were statistically significant and therefore included in the analysis (Table 6).

Table 6: Anova

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of squares</th>
<th>gl</th>
<th>Root mean square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>14.024</td>
<td>5</td>
<td>2.805</td>
<td>17.218</td>
<td>0.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>83.891</td>
<td>515</td>
<td>0.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>97.914</td>
<td>520</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predictors: (Constant) Author, Series of photos, Engagement, Bookstagrammer and Emotion.

Source: Produced by the authors

A summary of the analysis model of the Likes variable is detailed in Table 7.

Table 7: Summary of model

<table>
<thead>
<tr>
<th>R model</th>
<th>R²</th>
<th>Adjusted R²</th>
<th>Standard error of the estimate</th>
<th>Change in R²</th>
<th>Change in F</th>
<th>gl1</th>
<th>gl2</th>
<th>Sig. Change in F</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.378**</td>
<td>0.143</td>
<td>0.135</td>
<td>0.143</td>
<td>17.218</td>
<td>5</td>
<td>515</td>
<td>0.000</td>
<td>1.078</td>
</tr>
</tbody>
</table>

* Dependent variable: Logarithm of Likes

** Predictors: (Constant), Author, Series of photos, Engagement, Bookstagrammer and Emotion.

Source: Produced by the authors

As can be seen, the regression is statistically significant (Table 5), with an R² of the dependent variable Logarithm of Likes of 13.5% (Table 7). Although relatively low, the adjusted R² is sufficient because the aim of this analysis is not to make a prediction from the expression obtained, but to analyze the influence of the distinct independent variables.

The non-standardized coefficients of the five independent variables that are statistically significant are presented below (Table 8).

Table 8: Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Non-standardized coefficients</th>
<th>Standardized coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Dev. Error</td>
<td>Beta</td>
<td>Tolerance</td>
<td>VIF</td>
<td></td>
</tr>
<tr>
<td>1 (Constante)</td>
<td>3.103</td>
<td>0.074</td>
<td>42.184</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Serie de fotos</td>
<td>0.153</td>
<td>0.061</td>
<td>0.107</td>
<td>2.525</td>
<td>0.012</td>
</tr>
<tr>
<td>Emoción</td>
<td>-0.114</td>
<td>0.038</td>
<td>-0.131</td>
<td>-2.985</td>
<td>0.003</td>
</tr>
<tr>
<td>Compromiso</td>
<td>0.182</td>
<td>0.049</td>
<td>0.160</td>
<td>3.701</td>
<td>0.000</td>
</tr>
<tr>
<td>Bookstagrammer</td>
<td>0.323</td>
<td>0.068</td>
<td>0.200</td>
<td>4.736</td>
<td>0.000</td>
</tr>
<tr>
<td>Autor</td>
<td>0.942</td>
<td>0.238</td>
<td>0.164</td>
<td>3.962</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* Dependent variable: Logarithm of Likes.

Source: Produced by the authors
In order to validate that this analysis is optimal, the fulfillment of four other assumptions must be verified: independence, homoscedasticity, normality and non-collinearity.

The assumption of the independence of the errors implies that the errors in the measurement of the explanatory variables are independent of each other. For this, the Durbin-Watson statistic should be analyzed, considering the variables to be independent if this statistic is around 2.0 and, in any case, greater than 1.0. As can be seen in Table 7, the Durbin-Watson statistic is 1.078, a figure that lies within this range. Consequently, the assumption of independence is satisfied.

The assumption of homoscedasticity implies that the errors have constant variance. For this, the scatter plot between the standardized forecasts and the standardized residuals must be analyzed qualitatively. The assumption of homoscedasticity assumes that the variation of the residuals is uniform, that is, that the graph shows no patterns of association. Although visual observation of the graph does not show these patterns, for a more quantitative approach, the assumption of homoscedasticity can be analyzed by calculating the statistical significance of the correlation between the residual scores in absolute values and the predicted scores. In this regard, the correlation is not significant because it has a bilateral significance of 0.370. Consequently, there is no correlation and the assumption of homoscedasticity holds.

The assumption of normality implies that the variables follow a normal distribution. For this, the normal probability plot, which represents the accumulated proportions of the expected variable with respect to the accumulated proportions of the observed variable, must be analyzed qualitatively. The assumption of normality assumes that both proportions are adjusted. Although the visual observation of the graph does not show a good fit between the cumulative proportions of the expected and observed variables, for a more quantitative approximation the assumption of normality can be analyzed by performing a Kolmogorov-Smirnov test, normality being considered if it has a bilateral asymptotic significance greater than 0.05. In this instance, the bilateral asymptotic significance is 0.006, which is less than 0.05 assuming that the variable does not follow a normal distribution. Consequently, the assumption of normality does not hold.

The assumption of non-collinearity implies that the independent variables are not correlated with each other. For this, the tolerance and the variance inflation factor (VIF) must be analyzed. A tolerance less than 0.10 or a VIF value greater than 10 points to serious collinearity problems. In this instance, the tolerance is always greater than 0.1 and the VIF is always less than 10. Consequently, the assumption of non-collinearity holds.

In view of the fulfillment of four of the five assumptions and despite normality not being fulfilled, a multiple linear regression analysis was carried out, arriving at the following expression:

\[
\text{Logarithm of Likes} = 3.103 + 0.153 \cdot \text{Series of photos} - 0.114 \cdot \text{Emotion} + 0.182 \cdot \text{Engagement} + 0.323 \cdot \text{Bookstagrammer} + 0.942 \cdot \text{Author}
\]

In relation to the proposed hypotheses, two are partially validated since the Likes are explained by five of the twelve variables. The most prominent is “Author”, with a coefficient of 0.942. On the other hand, the more “Emotion” the bookstagrammers convey, the fewer Likes are produced.

4.3 Analysis of dependent variable Comments

Next, the logarithm of comments was analyzed with the aim of also providing stability in the regressors and reducing atypical observations by explaining the engagement generated by bookstagrammers based on the independent variables analyzed. However, before performing the multiple linear regression analysis, the assumption of linearity was confirmed again. This assumption also implied that the relationship between the variables was linear. For this, the bivariate correlation between the dependent variable and each independent variable was analyzed separately, thus eliminating the effect of the other independent variables included in the analysis.

In the analysis of the variable Logarithm of Comments, a statistically significant correlation was found between Comments and Posts, Promotion, Advertising, Bookstagrammer, Author, and Video, but not with Product, Special Day, Event, Emotion, Engagement, Series of photos and Bookstore. For this reason, these last seven variables did not meet the assumption of linearity and, therefore, were not included in the regression analysis.

Therefore, after verifying the assumption of linearity and eliminating the seven variables that did not meet it, we then carried out the multiple linear regression analysis itself. Analyzing the six independent variables that fulfilled the assumption of linearity, we observed that the variable Video was not statistically significant and was omitted from the analysis and from the following results (Table 9).
Table 9: Anova*

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of squares</th>
<th>gl</th>
<th>Root mean square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>13.009</td>
<td>5</td>
<td>2.602</td>
<td>12.096</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>110.776</td>
<td>515</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>123.785</td>
<td>520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Dependent variable: Logarithm of Comments

** Predictors: (Constant), Photo of author, Promotion, Advertising, Posts, Photo of bookstagrammer.

Source: Produced by the authors

A summary of the analysis model of the Comments variable is shown in Table 10.

Table 10: Summary of model*

<table>
<thead>
<tr>
<th>R model</th>
<th>R²</th>
<th>Adjusted R²</th>
<th>Standard error of the estimate</th>
<th>Change in R²</th>
<th>Change in F</th>
<th>gl1</th>
<th>gl2</th>
<th>Sig. Change in F</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.324**</td>
<td>0.105</td>
<td>0.096</td>
<td>0.46379</td>
<td>0.105</td>
<td>12.096</td>
<td>5</td>
<td>515</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* Dependent variable: Logarithm of Comments

** Predictors: (Constant), Photo of author, Promotion, Advertising, Posts, Photo of bookstagrammer.

Source: Produced by the authors

As can be seen, the regression is statistically significant (Table 11), with an R² of the dependent variable Logarithm of Comments of 9.6% (summary table of the model). As in the previous case, and although the adjusted R² relatively low, it is sufficient for the purposes of this study.

The non-standardized coefficients of the five independent variables that are statistically significant are presented in Table 11.

Table 11: Coefficients*

<table>
<thead>
<tr>
<th>Model</th>
<th>Non-standardized coefficients</th>
<th>Standardized coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Desarrollo. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>(Constant)</td>
<td>1.386</td>
<td>0.077</td>
<td></td>
<td>17.929</td>
<td>0.000</td>
</tr>
<tr>
<td>Posts</td>
<td>0.174</td>
<td>0.069</td>
<td>0.108</td>
<td>2.525</td>
<td>0.012</td>
</tr>
<tr>
<td>Price/Promotion</td>
<td>0.483</td>
<td>0.112</td>
<td>0.181</td>
<td>4.322</td>
<td>0.000</td>
</tr>
<tr>
<td>Advertising</td>
<td>0.181</td>
<td>0.075</td>
<td>0.101</td>
<td>2.400</td>
<td>0.017</td>
</tr>
<tr>
<td>Bookstagrammers</td>
<td>0.272</td>
<td>0.078</td>
<td>0.150</td>
<td>3.491</td>
<td>0.001</td>
</tr>
<tr>
<td>Author</td>
<td>0.782</td>
<td>0.273</td>
<td>0.121</td>
<td>2.865</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* Dependent variable: Logarithm of Comments.

Source: Produced by the authors

As in the previous analysis, in order to confirm that this analysis is optimal, four other assumptions must be verified: independence, homoscedasticity, normality and non-collinearity.
For the assumption of the independence of the errors, the Durbin-Watson statistic was analyzed, which in this case is 1.543; the assumption of independence therefore holds.

Regarding the assumption of homoscedasticity, although visual observation of the graph shows these patterns, for a more quantitative approach we decided to analyze the assumption of homoscedasticity by calculating the statistical significance of the correlation between the residual scores in absolute values and the predicted scores. In this instance, the correlation is significant at the 0.01 level (bilateral). Consequently, there is correlation and the assumption of homoscedasticity does not hold.

In relation to the assumption of normality, although the visual observation of the graph does not show a good fit between the accumulated proportions of the expected and observed variables, for a more quantitative approximation the assumption of normality can be analyzed by performing the Kolmogorov-Smirnov test, normality being considered if it has a bilateral asymptotic significance greater than 0.05. The bilateral asymptotic significance is 0.000, a figure less than 0.05, assuming that the variable does not follow the normal distribution. Consequently, the assumption of normality does not hold.

For the assumption of non-collinearity, the tolerance and the VIF should be analyzed. In this instance, the tolerance is always greater than 0.1 and the VIF is always less than 10; consequently, the assumption of non-collinearity is fulfilled.

In view of the fulfillment of three of the five assumptions and despite those of normality and homoscedasticity not holding, the multiple linear regression analysis was carried out, arriving at the following expression:

\[
\text{Logarithm of Comments} = 1.386 + 0.174 \cdot \text{Series of photos} + 0.483 \cdot \frac{\text{Price/Promotion}}{\text{Price/Promotion}} + 0.181 \cdot \text{Advertising} + 0.272 \cdot \text{Bookstagrammer} + 0.782 \cdot \text{Author}
\]

In relation to the proposed hypotheses, two of these are partially validated since the comments are explained by five of the twelve variables. The most outstanding is “Author”, with a coefficient of 0.782.

In order to do a content analysis and check the fact that the image of a book cover or its author has a greater capacity to generate Likes and Comments from the followers of a bookstagrammer better than any other post, it has been studied a discriminant analysis to see the behavior of the influencers based on their posts.

Once each of the 521 posts had been labelled according to their cluster of membership, a discriminant analysis was carried out, using the stepwise inclusion method with Wilks’ lambda. Two discriminant functions have been obtained; both are statistically significant. The first one has a much higher explanatory power than the second one, with 94.9% and 5.1% of variance explained respectively. As for Wilks’ lambda, this is a statistic that measures the discriminating power of a set of variables, and it should be as close to zero as possible to maximize the discriminating power of the variables considered. This is observed precisely in the first and second functions, with lambdas of 0.009 and 0.339 respectively, which corroborates the previous results obtained with the explained variance, as we can see in Table 12.

Table 12: discriminant analysis.

<table>
<thead>
<tr>
<th>Function</th>
<th>Eigenvalue</th>
<th>% Variance</th>
<th>Cumulative %</th>
<th>Correlation</th>
<th>Lambda Wilks</th>
<th>Chi-squared</th>
<th>gl</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.954</td>
<td>94.9</td>
<td>94.9</td>
<td>0.986</td>
<td>0.009</td>
<td>2413.13</td>
<td>16</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.946</td>
<td>5.1</td>
<td>100</td>
<td>0.813</td>
<td>0.339</td>
<td>555.946</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Source: Produced by the authors

As can be seen, the discrimination capacity of the first function is very high, but this is not the case for the second function. In both functions, a total of 8 of the 12 variables have been found to be statistically significant, in particular the image of a book cover or a photograph of the book’s author. The results of the classification carried out corroborate that 99.0% of the posts initially analysed could be correctly grouped on the basis of the discriminant analysis carried out, a figure which corroborates the proposal’s capacity for discrimination. Only 5 of the 521 were not correctly classified, easily identifiable in graph 1.
5. Conclusions

As a social network, Instagram currently has one of the most active communities, where users can find content related to all kinds of interests and influencers can find their niches to spread their productions and transmedia creations. Bookstagrammers are well established in and perfectly adapted to Instagram’s own mechanics, thereby generating greater influence among audiences.

The main aim of the approach we employ here to the community of bookstagrammers was to determine, through the analysis of selected profiles, the content dynamics they developed in order to get closer to their followers and the marketing strategies being imposed on their discourse, taking into account the level of engagement and the number of followers they gained during the period analyzed.

According to the findings of our study, Likes and Comments explain the engagement that the bookstagrammers generate. Also, the content, sentiment and format of posts have a direct impact on the ability of bookstagrammers to generate engagement. Finally, posts showing a photograph of the author or a photograph of the book have a greater impact on audience participation. Our findings are in line with the conclusions of Lindell (2019), which offers clear implications for specialists in social media marketing.

Furthermore, whilst not conclusive due to the sample size, our results confirm that, like booktubers, shared and generated posts converge and are similar, as Gee (2012) points out.

6. Discussions

With the daily increase in the power of social media, millions of people use their social media accounts to engage with other users or to follow influencers. Instagram is becoming increasingly popular in the field of culture as it provides easy access to information, videos and photographs about literature.

Here our aim was to investigate the content of posts and the effects of the popularity metrics of cultural influencers who specialize in literature, and to see how these contents are related to the engagement they generate among Instagram users in the form of Likes and Comments. Previous research on popularity metrics yielded conflicting results, revealing situations in which a higher number of Likes could be beneficial (De Veirman et al., 2017; Seo et al., 2019).

The study presented here contributes to the growing literature on influencer marketing, and specifically to literature on bookstagrammers in digital environments, as it aims to explain engagement through variables selected in a previous content analysis by the authors of this study. Our research is important both for specialists in social media marketing in specialized sectors, such as the publishing industry, and for influential people in the field of literary culture. Our results show that user engagement on Instagram depends largely on the content of the publication, the physical elements present in the images and the format without going into the assessment of what type of reading is being recommended and whether these contents are properly identified as an influencer’s personal proposal or, on the contrary, obey a commercial strategy.
Like all research, despite the important theoretical and practical implications that emerge from it, this study is not without limitations. Although the bookstagrammers studied here were selected objectively—mainly on the basis of the number of followers—the sample is general, leaving open the expansion and eventual comparison with bookstagrammers specializing in different literary specialties or from different geographical regions. Another way of extending the study would be to consider not only Instagram but also other social networks such as Twitter, Facebook or YouTube.

Moreover, the assessments regarding positive and negative impacts were based on the mean values of the interactions. However, heterogeneous degrees of dispersion were also observed that in some instances relativize the significance of these mean values. Further work on the role of this dispersion and the reasons for it is a promising area of expansion.

Finally, with a view to future studies on influence linked to literature, it would be worth carrying out taxonomic studies that show the variety of profiles involved in promoting reading habits in addition to determining what type of reading is really being promoted beyond the legitimate interests a publisher may have in the launching of their products.

7. Specific contribution of each author

<table>
<thead>
<tr>
<th>Contributions</th>
<th>Signees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conception and study design</td>
<td>Signee 3</td>
</tr>
<tr>
<td>Search for documents</td>
<td>Signee 1 y 3</td>
</tr>
<tr>
<td>Data collection</td>
<td>Signee 2</td>
</tr>
<tr>
<td>Analysis and critical interpretation of data</td>
<td>Signee 1 & 2</td>
</tr>
<tr>
<td>Review and approval of versions</td>
<td>Signee 1 & 3</td>
</tr>
</tbody>
</table>

8. Financing

This article is part of the Project “Redes Sociales y Emprendimiento” (B02.0402-P1) financed by the Cátedra de Creación de Empresas y Empresa Familiar UAO CEU (2020-2023).

9. Declaration conflict of interest

The authors declare that there is no conflict of interest.

10. Bibliography

