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Abstract
The performance of manufacturing operations relies heavily on the operators’ performance. When operators begin to exhibit
signs of fatigue, both their individual performance and the overall performance of the manufacturing plant tend to decline.
This research presents a methodology for analyzing fatigue in assembly operations, considering indicators such as the EAR
(Eye Aspect Ratio) indicator, operator pose, and elapsed operating time. To facilitate the analysis, a dataset of assembly
operations was generated and recorded from three different perspectives: frontal, lateral, and top views. The top view enables
the analysis of the operator’s face and posture to identify hand positions. By labeling the actions in our dataset, we train a deep
learning system to recognize the sequence of operator actions required to complete the operation. Additionally, we propose
a model for determining the level of fatigue by processing multimodal information acquired from various sources, including
eye blink rate, operator pose, and task duration during assembly operations.

Keywords Automatic control · Computer Vision · Deep Learning · Fatigue recognition

1 Introduction

Fatigue in manufacturing processes is a crucial factor that
warrants analysis as it leads to a decline in operator perfor-
mance during their daily work. This decline in performance
not only affects the operators themselves but also negatively
impacts the overall productivity of the manufacturing pro-
cess.

The objective of this work is to contribute to the research
on fatigue by creating a dataset comprising assembly opera-
tions of a simple manufacturing process. Multiple operators
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were recorded performing the same process under different
levels of fatigue.

The recorded videos capture the assembly operations from
three different perspectives: top, front, and side views. The
front view enables the detection of fatigue through facial cues
such as facial expressions, eye blinking, and ear movements.
The top view allows for the analysis of hand movements and
action recognition during the assembly process. The side
view facilitates the evaluation of operator posture, includ-
ing bending and the assessment of non-ergonomic postures.
This dataset can be utilized in investigating work design,
as it allows for the measurement of time taken to perform
specific manufacturing actions through the recorded videos.
Each video in the dataset is accompanied by corresponding
labels for actions and objects.

The main contribution of this work is the proposal of a
model that determines the fatigue level of an operator by
processing multimodal data. This model evaluates the flicker
rate, operator posture, and time spent performing various
assembly operations.

The subsequent sections of this research paper are orga-
nized as follows: Section 2 provides a review of related
works, including literature on fatigue in manufacturing envi-
ronments, automatic process monitoring, and action recogni-
tion. Section 3 describes the proposed system architecture for
fatigue analysis. Section 4 presents the details of the dataset
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created for the training process of assembly activities, allow-
ing for the identification of fatigue and other manufacturing
elements. Section 5 analyzes the experimental design and
showcases the final product of the assembly. Finally, the last
section presents the conclusions drawn from the research and
outlines potential future lines of investigation.

2 RelatedWork

In this section, we review scientific articles that examine
the impact of fatigue in production environments, including
research on human factors affectingmanufacturing processes
and the development of automatic monitoring systems.

Several studies have investigated the consequences of
fatigue on worker performance, productivity, and safety.
Fatigue has been found to diminish cognitive abilities, lead-
ing to an increase in errors and a reduction in the efficiency
of manufacturing tasks.

Human factors, which focus on how ergonomics influ-
ences operators, productivity, and safety, play a signifi-
cant role in the efficiency of manufacturing processes. For
instance, the designof ergonomically optimizedworkstations
can reduce physical strain and fatigue, thereby enhancing
physical well-being and worker productivity.

In recent years, automatic monitoring systems have
emerged as valuable tools for fatigue detection in manufac-
turing environments. These systems employ computer vision
and machine learning techniques to analyze worker behavior
and identify early signs of fatigue. By continuously monitor-
ing vital parameters and behavioral patterns, they can provide
timely alerts and interventions.

Digital twin technology has shown promise in the field
of human factors and fatigue studies. Sharotry [1] employed
digital twin technology to assess fatigue in manufacturing
operations. The study utilized the dynamic time warping
(DTW)algorithm to analyze changes in joint angles.Byusing
a digital twin, it becomes possible to evaluate the presence
of fatigue in operators. The research findings suggest that
fatigue can occur in different groups of joints in individuals,
necessitating the adjustment of digital twin configurations to
reflect these characteristics.

Virtual reality (VR) technology has also been employed in
the study of workspace ergonomics. VR allows for the cre-
ation of virtual workspaces that simulate real-life working
conditions, enabling the evaluation of a person’s movements.
Grajewski [2] discussed the use of virtual reality in develop-
ing two workstation models: a soldering station and a drill
bench.

Within the field of human factors, fatigue is a sub-area of
particular importance, as it informs the design of worksta-

tions and processes. In the present research, we will further
explore the analysis of fatigue in automatic control systems,
as discussed in the following section.

2.1 Fatigue in Production Environments

Berti et al. [3] emphasized the role of ergonomics in detecting
fatigue in operator performance during manufacturing tasks.
They proposed a model that considers fatigue as a cumu-
lative factor that increases after completing each task. As
operators accumulate fatigue, their performance gradually
declines, leading to a reduction in the overall throughput of
the production process.

Lambay [4] conducted research confirming that increased
operator fatigue directly correlates with decreased efficiency
in the production process. The study of human factors
revealed that fatigue levels can vary among different work
centers and operators. Factors such as workloads, individual
fatigue status, and demographic characteristics were taken
into account. Amachine learning algorithmwas developed to
predict fatigue levels in operators, introducing a newmethod
for fatigue level prediction.

Li [5] designed a helmet equipped with inertial mea-
surement sensors and EEG (electroencephalography) to
determine operator fatigue. The helmet includes a buzzer
to alert the operator and sends a signal for fatigue detection,
which can prompt the stopping of processes or machines.

Facial markers have been employed to estimate fatigue in
individuals, particularly in drivers. Studies by Savas et al.
[6] and Zhu et al. [7] focused on facial markers such as the
percentage of eye-opening frequency (PERCLOS) and the
mouth aspect ratio (MAR) to assess fatigue levels.

In related research on fatigue monitoring in industrial
environments, various sensors and techniques have been
employed. For instance, Lambay (2021) mentions the use
of invasive techniques like EMG sensors, as well as non-
invasive techniques such as computer vision, for fatigue
monitoring [8].

Regarding the utilization of deep learning techniques for
fatigue monitoring, it is common to find the application of
recurrent neural networks (RNNs) for fatigue prediction, as
demonstrated in the work by Lambay (2021) [8]. It is worth
noting that studies such as Escobar-Linero (2022) and Lam-
bay (2021) trained their systems using datasets obtained from
IMU sensors [8, 9].

Our proposed architecture is based on three-dimensional
convolutional neural networks (3D CNNs) for training a
CNN model for action recognition. This type of CNN effec-
tively captures temporal information in video sequences.

The 3D CNN neural network comprises multiple 3D con-
volutional layers, followed by clustering layers and fully
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connected layers. Each 3D convolutional layer performs
convolutions in the spatial and temporal dimensions of the
input volume, capturing relevant features at each frame and
throughout the video sequence. Clustering layers reduce
dimensionality and extract essential features, while fully
connected layers classify the learned features into different
action classes.

2.2 Automated Inspection Systems

Acrucial aspect of our research involves the use of automated
inspection systems employing computer vision to analyze the
influence of fatigue on inspection processes in Industry 4.0.

In manufacturing, inspections are commonly performed
either manually or through automated processes. The use of
computer vision has significantly accelerated these tasks in
various industries. Lukinac et al. [10] implemented a com-
puter vision system for quality control in the beer industry,
focusing on characteristics such as physical appearance and
fermentation. This non-destructive inspection process has
proven valuable for the food industry.

Villalba-Diez and Kazemian [11] discuss vision sys-
tems for monitoring product quality in manufacturing envi-
ronments, specifically for quality monitoring in printing
systems. They developed a computer vision algorithm to
implement a closed-loop extrusion system, using recorded
videos to segment and analyze each element of the extrusion
system.

Reich et al. [12] configured a vision system to monitor a
production process and determine the demands on staff time
and resources. They proposed a programming block ontology
that reduced the implementation time of the vision system by
allowing the representation of a computer vision algorithm.

Deep learning techniques have been employed to enhance
automated inspection processes. Riedel et al. [13] developed
a modular assembly assistant for real-world products using
RGB camera detection to reduce errors. Other researchers,
such as Chang et al. [14], Cheng et al. [15], Denkena et al.
[16], Kousi et al. [17], Tao and Zamora-Hernandez [18, 19],
proposed intelligent assistants that utilize computer vision
or data fusion to enable real-time interaction and control in
assembly processes.

Furthermore, Böllhoff et al. [20], Denkena et al. [16],
Qeshmy et al. [21], and Riedel et al. [13] specialized their
assistants for manufacturing, focusing on operator interac-
tion with visual systems that can detect or prevent errors,
improve the assembly process, or enhance operator protec-
tion.

Regarding the inspection of the operators and the interac-
tion with objects, deep learning techniques have facilitated
the development of applications that can identify both. The
recognition of actions is an ongoing topic in computer
vision research. Perera et al. [22] are working on developing

datasets that enable the development of action recognition
systems.

Varol et al. [23] utilize synthetic videos for activity track-
ing and recognition. They reconstruct a 3D model of the
human body to generate synthetic videos and label the per-
formed activities. They also introduce a novel methodology
for data generation, enabling the training of spatiotemporal
CNNs (Convolutional Neural Networks) for action classifi-
cation.

Jones et al. [24] propose the use of a Latent Convolutional
Skip Chain Conditional Random Field (LC-SC-CRF) time
series model, which can learn a set of primitive actions based
on interpreted sensor data, such as accelerometers.

Action recognition is vital for applications such as robot
interaction, action automation, and surveillance systems.
Wang et al. [25] emphasize the importance of timely knowl-
edge of the operating context to improve safety and efficiency
in human-robot collaboration. They utilize machine learn-
ing, specifically a deep convolutional network adapted from
AlexNet, for continuous motion analysis in human-robot
collaboration and future predictions of movements. Their
experiment, focused on a motor assembly task, achieved a
96% accuracy in action recognition.

3 Manufacturing Fatigue Recognition
Architecture

This paper introduces an arquitecture designed to moni-
tor and analyze fatigue levels in individuals during work
activities. The primary objective of this arquitecture is to
enhance the well-being of operators, optimize their per-
formance, and effectively address fatigue-related concerns.
The system is based on the architecture of the Fig.1. It
comprises multiple interconnected modules, including the
ActionRecognitionModule, PoseRecognitionModule, Face
RecognitionModule, and Fatigue EvaluationModule. These
modules collaborate to detect indicators of fatigue, facilitate
smooth data transfer, offer decision support, present analyzed
data in a user-friendly format, and enable seamless integra-
tion with other systems. Figure 1 illustrates the proposed
architecture.

• Action Recognition Module.This module is designed
to identify the actions carried out by the operator during
their work. It relies on a top view camera positioned on
the workbench to capture the necessary data. By utiliz-
ing this perspective, themodule is capable of recognizing
tools, objects, hands, and their corresponding actions on
the workbench. To train the system, a dataset was cre-
ated involving both expert and inexperienced users who
performed assembly actions. This dataset was utilized to
train the module effectively. Once deployed, this module
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Fig. 1 This figure shows the
Components of the System
Proposal

is able to identify the actions performed by the user and
determine if any deviations from the prescribed proce-
dure have occurred. Moreover, it actively monitors the
production quality and provides warnings in the event of
potential errors.

• Pose Estimation Module. This module serves the pur-
pose of posture recognition for users during their work.
It utilizes a camera positioned at the side view to facil-
itate this task. The module has been trained on videos
captured from the side view, which are annotated with
the individual’s skeletal structure while they are engaged
in work activities. As a result, it is capable of assessing
andmonitoring posture changes throughout the workday.
Evaluating posture is instrumental in identifying indica-
tors of fatigue.

• Blink Rate Estimation Ratio Module.This module is
specifically designed to recognize the face of the indi-
vidual engaged in the activity. It leverages the video feed
captured by a camera positioned in front of the opera-
tor on the worktable. By doing so, the system is able to
accurately identify the frequency of the person’s blinking
while they are working. One of the fundamental premises
of this research is that the blink frequency increases over
time, serving as an indicator of fatigue resulting from
the workload. It is important to note that this study solely
focuses on evaluatingphysical fatigue,while aspects such
as mental fatigue are not considered. The primary objec-
tive of this module is to assess the blinking patterns as
a means to gauge the level of fatigue experienced by the
individual during the task, thus providing insights into
theirworkload-related tiredness. Itwas found that theEye
Aspect Ratio (EAR) is a widely used indicator to analyze
thepresenceof fatigue in drivers. In thiswork,wepropose
to utilize this EAR indicator to analyze fatigue in manu-
facturing operations, specifically in assembly tasks. The
system measures the eye-opening ratio of the operator as
an indicator. To measure the EAR, we utilize landmarks
of the eye, as shown in Figure 2. By analyzing the infor-
mation extracted from these landmarks, our system can
detect signs of fatigue in the operator.

• Fatigue Evaluation Module. The information obtained
from the aforementioned modules is utilized within the
Fatigue Evaluation Module to determine the factors

employed in assessing operator fatigue. Consequently,
the evaluation encompasses an analysis of the actions
performed by the operator, the frequency of blinking,
and the changes in posture. By considering these key fac-
tors, the Fatigue Evaluation Module can derive insights
regarding the level of fatigue experienced by the operator
during their work activities. This comprehensive evalua-
tion enables a more accurate assessment of the operator’s
fatigue state, contributing to the overall goal of promoting
operator well-being and ensuring optimal performance.
This module generates the final result of our proposal by
integrating the outputs of the remaining components.

The global fatigue level of our model is defined using the
following equation:

f s = of f · α + p f f · β +
∑n_task

1 (t ts)

n_task
· γ + b (1)

where:

f s = fatigue scoring
α = fatigue scoring adjustment factor

of f = ocular fatigue factor
β = ocular fatigue factor adjustment factor

p f f = positional fatigue factor
n_task = number of tasks

t ts = time task scoring
γ = positional fatigue factor adjustment factor
b = bias for personal adjustment of the operator

Fig. 2 This figure illustrates the eye landmarks
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The equation consists of the following parts, each ofwhich
will be detailed below:

• Ocular Fatigue Component
• Component of positional fatigue
• Component of the contribution of task time scoreweights
• Operator Adjustment Bias

It is important to consider the limitations and sensitivity
of our manufacturing action recognition and fatigue moni-
toring system. The accuracy of the system can be affected
by the quality of the images or data streams. Blurred images
or inadequate illumination can pose challenges in accurate
feature extraction or action recognition.

The system’s sensitivity may vary depending on the diver-
sity of actions performed in our dataset. This limitation arises
from the limited set of actions, which restricts the general-
ization and recognition of less frequent actions.

Another aspect to consider is the adaptability of the sys-
tem to different manufacturing environment configurations.
Since production environments may vary in facility layouts,
equipment used, and specific tasks, additional adjustments
and adaptations to the model architecture and hyperparam-
eters may be required to ensure optimal performance in
different contexts.

4 FATIGACTION: Dataset for Action
Recognition and Fatigue Evaluation in
Manufacturing Environments

This section provides an overview of our dataset, which we
have developed specifically for the purpose of human action
recognition in manufacturing environments.

There are currently limited datasets available that are
specifically tailored for action recognition in industrial set-
tings. For instance, Dallel et al. [26] utilized digital twins
(DT) to generate synthetic self-labeled data, resulting in the
creation of the inHard-DT dataset. The DT simulates assem-
bly actions to generate synthetic self-labeled data for the
purpose of creating an action recognition dataset.

Another notable industrial dataset is the Human Action
Multimodal Monitoring in Manufacturing (HA4M) dataset
developed by Cicirelli et al. [27]. This dataset encompasses
a variety of data types, including RGB images, depth maps,
IR images, depth-aligned RGB images, point clouds, and
skeleton data.

4.1 Dataset Overview

The foundation of our research lies in the assumption that the
operator will be working at a workstation and following spe-

cific instructions. To effectively analyze fatigue levels, it is
important to capture relevant elements such as facial expres-
sions and general body postures in the recorded videos. We
have recorded these videos from three synchronized points
of view: front, top, and side.

Our dataset comprises three distinct views: the top view,
the front view, and the side view. Each view offers unique
perspectives of the worker, allowing for the capture and anal-
ysis of actions in manufacturing environments. The top view
provides a comprehensive recording of the worker’s hands,
tools, and spatial relationships between objects. This detailed
view enables a thorough understanding of the worker’s inter-
actions with the tools and their manipulation techniques. The
front view focuses on capturing the worker’s face, which
allows us to analyze factors such as blinking and the Eye
Aspect Ratio (EAR) as indicators of fatigue. Lastly, the side
view records the skeleton of the person, enabling analysis of
their posture.

Figure 3 illustrates two different moments of an assembly
captured from the three views (front, top, and side).

The recorded videos feature individuals performing prod-
uct assemblies, serving as training data for our system. It is
crucial for the videos to closely resemble a manufacturing
environment. The workstations in the videos have dimen-
sions ranging from 100 cm to 120 cm by 60 cm to 70 cm.
The operator is standing and utilizes their hands or tools dur-
ing the assembly process.

To ensure proper lighting conditions during recording, we
employ artificial light. The videos are recorded in high defi-
nition (720 lines), and all three video views are captured from
the same distances to the workstation.

During recording, a green desktop is utilized on the work-
stations, accompanied by white backgrounds. This setup
facilitates the identification of hands, parts, components, and
tools, among other elements, during the training process.

When selecting volunteers for the recordings, we aimed
to generate variability in terms of the operators’ physical
characteristics, including physical build, height, gender, and
skin color.

4.2 Experimental Environment

The recording and production of the videos took place in a
designated area within the Human Factors Laboratory of the
School of Industrial Engineering at the University of Costa
Rica.Workstationswere specifically assigned and set upwith
a green background. The positions, types of cameras, and
means of holding the cameras were carefully defined.

The laboratory is equipped with artificial white light illu-
mination and provides ample space and ventilation for the
work teams. To mitigate the impact of temperature-related
fatigue, we maintain control over the ambient temperature.
Additionally, the laboratory is designed to minimize external
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Fig. 3 This figure showcases
two different moments of an
assembly captured from the
three views (front, top, side)

noise, preventing noise fatigue and aiding operators in main-
taining concentration. Access to the laboratories is controlled
to minimize distractions during video recordings.

We utilized Logitech C310 and Microsoft high-definition
webcams to capture the videos. All videos were recorded in
Full HD (1920 x 1080 pixels) and UHD (3840 x 2160 pixels)
resolutions. Each camera was positioned using a holder to
ensure stability.

The videos were recorded in HD (1280 x 720 pixels) at
a frame rate of 30 frames per second. All audio tracks were
removed from the videos. To achieve synchronization across
the three views, we used the OBS Project application and the
Record source plugin running on Ubuntu.

5 Experimentation and Results

This section outlines the experimentation phase, which was
conducted in two stages. The first stage involved validating
the inputs for the system. This stage focused on the detection
of objects, actions, skeleton and hands, time measurement,
and fatigue signs. The second stage integrated all these ele-
ments and generated the results. We will provide detailed
explanations of these stages below.

Fig. 4 This figure illustrates an example of the workstations used for
video recording
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Fig. 5 This figure demonstrates
object and action recognition

5.1 Action RecognitionModule

The primary purpose of thismodule is to verify the operator’s
actions and determine their level of fatigue. This module
incorporates the action processing engine based on the Deep
Activity Description Vector, developed by the University of
Alicante [28]. This application utilizes a sequence of images
to accurately recognize actions. We validated the dataset’s
ability to correctly identify actions and used our dataset for
the validation process (Fig. 5).

In this module, we adjusted the training data to recognize
the following actions:

1. hold
2. tight
3. screw
4. locknut
5. hit
6. drilling
7. put
8. release

We utilized the entire dataset of videos for conducting the
experiments.We employed Scikit-learn to analyze the results
and generate the confusion matrix analysis. The mean values
for recall and F1-score metrics were found to be 96.13% and
96.25%, respectively. Recall indicates a high level of posi-
tive classification by the model, while the F1-score indicates
a high level of correct responses. The confusion matrix is
presented in Figure 6, and the results can be visualized in
Figure 7.

Figure 5 illustrates an example of the frames used to train
the system. The frames are labeled using the CVAT software
[29]. For action recognition, a label is placed at the beginning
and end of each frame, indicating the action performed by
the worker during that time.

5.2 Pose EstimationModule

To evaluate fatigue, we utilize complementary measures
based on human factors characteristics, which will be fur-
ther detailed in the following section.

For skeleton and hand detection, we employ OpenCV,
which greatly facilitates these tasks in our experiment. Our
team conducted visual tests to verify the correct opera-
tion, where we visually inspected the videos and determined
whether the detection was performed accurately or not. The
detection of hands follows a similar procedure. This infor-
mation serves as a complement to the action recognition. An
example of the skeleton identification process from different
views can be seen in Figure 8.

By analyzing the operator’s posture, we can determine
if they slouch while performing their job. When operators
engage in repetitive actions and remain in one position for
extended periods, theymay adopt a non-upright posture, indi-

Fig. 6 Action confusion matrix
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Fig. 7 Results of the action
confusion matrix

Fig. 8 Pose Estimation

Fig. 9 Results of fatigue using
skeleton positions confusion
matrix

123



The International Journal of Advanced Manufacturing Technology

Fig. 10 Positional Estimation

cating signs of fatigue due towork accumulation. The system
can detect these changes in position by analyzing the com-
puterized skeletons. To estimate the presence of fatigue, we
also consider the EAR indicator. Additionally, we measure
the operation time to determine if the person takes longer
to perform the same assembly operation, which can be an
indication of fatigue. We use the duration taken by an expert
individual to perform the assembly as a reference.

The results of fatigue detection using skeleton positions
are presented in Figure 9, showing the confusion matrix. The
precision, recall, and f1-score metrics are as follows:

This component represents one of our innovative pro-
posals. While the existing literature predominantly focuses
on fatigue detection related to blinking or drowsiness, our
research introduces the concept of dynamic fatigue analy-
sis in manufacturing. To determine the adjustment factor β,
extensive testing has been conducted by the team (Figs. 10
and 11).

To accurately identify this crucial factor, computer vision
techniques have been leveraged for skeleton monitoring and

the estimation of operators’ body inclination variations. It
is hypothesized that a fatigued operator may exhibit a com-
promised upright posture during work, thus necessitating the
consideration of this factor to effectively detect the onset of
fatigue. This information holds significant importance for
decision-makers as it not only impacts the overall product
quality but also plays a vital role in ensuring occupational
safety. By incorporating these findings, proactive measures
can be implemented to effectively address concerns related
to fatigue.

The accuracy of positional fatigue detection is 98%, indi-
cating that the system is able to accurately detect fatigue
based on changes in posture and operation time.

5.3 Blink Rate Estimation Ratio

The system generates an analysis primarily based on the
operators’ blinking frequency, which contributes to the rating
used in the equation.

Fig. 11 Blink Rate Estimation
Ratio
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To discern the blink frequency of individuals engaged
in assembly tasks and gather insights into ocular fatigue,
the application of OpenCV and computer vision techniques
has been employed. These advancedmethodologies facilitate
the identification of eyes and their corresponding land-
marks, thereby enabling the detection of blink incidents.
This research significantly contributes to the field of fatigue
monitoring by leveraging the power of computer vision
approaches.

In the time measurement experimentation, the research
team compared the results generated by the system. The sys-
tem was used to detect actions, and the time was determined
by counting consecutive frames. The task’s time was calcu-
lated by multiplying the frames per second (FPS) rate by the
number of frames.After the videoswere generated, theywere
divided into frames for labeling, and then training activities
were performed, these videos were processed at 30 FPS.

The evaluation of the time measurements was done based
on the following rules: - If the difference between the elapsed
timemeasured by the system and the researcher was less than
one second, it was labeled as "timed_ok". - If the difference
was greater than one second but less than three seconds, it
was labeled as "timed_acceptable". - If the time difference
was longer than three seconds, it was labeled as "timed_bad".

The results of the timemeasurement analysis are presented
in Figure 12 as the confusion matrix. The precision, recall,
and f1-score metrics are as follows:

The accuracyof the timed task detection is 98%, indicating
that the system can accurately measure the time taken to
perform assembly tasks. The precision and recall values are
high, indicating a reliable identification of the task times,
which are important inputs for various calculations in the
system.

5.4 Fatigue EvaluationModule

The table 5.4 illustrates the outcomes obtained through the
application of various monitoring modules to assembly tasks
within the scope of this experiment. The results indicate that
an experienced operator requires approximately 8 minutes
and 45 seconds to complete the assembly actions. In contrast,
based on a study involving 30 recorded videos, it was found

that an inexperienced user takes an average of 10 minutes
and 45 seconds to accomplish the same tasks.

User Type Blinking Freq Positional Dev Time Execution
(min)

Expert 74 3 8.45
Normal 115 5 10.45

In terms of blink frequency and positional deviation, it
was observed that experienced users blink approximately
74 times and exhibit a positional deviation of 3 degrees
while performing these activities. Conversely, inexperienced
users display an average positional deviation of 5 degrees
and a blink frequency of 115 times. It is worth noting that
these observations were made during daytime work sessions,
and both expert and non-expert users reported experiencing
fatigue.

To determine the level of fatigue, we calculate a fatigue
score. As there were no predefined limits, we established the
thresholds for determining fatigue based on the following
approach:

After testing the system with 15 individuals, we sought
evaluation from industrial engineering experts to assess our
metrics. Out of the 15 tests, they confirmed that 13 cor-
rectly identified the operator fatigue levels. Consequently, we
defined a score of 850 or higher as indicative of a fatigued
operator.

6 Conclusions and FutureWork

In the manufacturing industry, measuring productivity is
essential for assessing performance based on metrics such
as total production time, product damage, or rework. Among
the various factors that can affect these metrics, operator
fatigue has been identified as a significant contributor. How-
ever, there is currently no real-time instrument for measuring
operator fatigue.

This paper proposes an innovative solution for assess-
ing operator fatigue, providing a means to determine when
productivity is degraded due to fatigue. Additionally, our sys-

Fig. 12 Results of timed task
confusion matrix
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tem estimates the total time required to complete production
tasks.

The main contribution of this work is the development
of subsystems for visually analyzing operator fatigue dur-
ing assembly operations in the manufacturing industry. By
combiningmultimodal information, including eye blink rate,
operator pose, and task duration, we achieve accurate fatigue
detection.

The findings of this research have direct implications for
manufacturing companies and theirmanagers, enabling them
tomakebetter-informeddecisions.Bycontrollingproduction
rework and minimizing losses due to manufacturing errors,
companies can realize benefits such as cost reduction.

Moving forward, we plan to refine our model to assess the
impact of different submodules on the final classification,
thereby improving the system’s overall accuracy. As well as
the creation of a digital twin to be able to work with synthetic
data and obtain better results in the proposed model.
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